Files
test2/tests/python/bl_pyapi_prop_array.py
Thomas Barlow dc8e2c09d9 Fix #109024: Off-by-1 in rna_access for non-array props without raw access
The `a + array_len > in.len` check was off-by-1 whenever accessing a
non-array property without raw access. This was because `array_len` was
actually the array length of the property, which is `0` for non-array
properties.

Given an array which was too short, this would cause the slower loop to
overrun the end of the array by one item. When getting items this would
cause a crash on a debug build with `Fatal Python error:
_PyMem_DebugRawFree: bad trailing pad byte`.

So use `item_len` instead, wichi is always set to `1` for non-array
properties.

Also do not assume that an `array_len` of `0` means that the property is
an array. While this may be true currently, it is cleaner and safer to
use the dedicated RNA API to check that.

This PR also adds some basic checks for expected failure of `foreach_set`
/`foreach_get` API when the provided array is too small.

Co-authored-by: Bastien Montagne <bastien@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/115967
2025-06-18 11:03:27 +02:00

387 lines
13 KiB
Python

# SPDX-FileCopyrightText: 2020-2023 Blender Authors
#
# SPDX-License-Identifier: Apache-2.0
# ./blender.bin --background --python tests/python/bl_pyapi_prop_array.py -- --verbose
import bpy
from bpy.props import (
BoolVectorProperty,
FloatVectorProperty,
IntVectorProperty,
)
import unittest
import numpy as np
id_inst = bpy.context.scene
id_type = bpy.types.Scene
# -----------------------------------------------------------------------------
# Utility Functions
def seq_items_xform(data, xform_fn):
"""
Recursively expand items using ``xform_fn``.
"""
if hasattr(data, "__len__"):
return tuple(seq_items_xform(v, xform_fn) for v in data)
return xform_fn(data)
def seq_items_as_tuple(data):
"""
Return nested sequences as a nested tuple.
Useful when comparing different kinds of nested sequences.
"""
return seq_items_xform(data, lambda v: v)
def seq_items_as_dims(data):
"""
Nested length calculation, extracting the length from each sequence.
Where a 4x4 matrix returns ``(4, 4)`` for example.
"""
return ((len(data),) + seq_items_as_dims(data[0])) if hasattr(data, "__len__") else ()
# -----------------------------------------------------------------------------
# Tests
class TestPropArray(unittest.TestCase):
def setUp(self):
id_type.test_array_f = FloatVectorProperty(size=10)
id_type.test_array_f_2d = FloatVectorProperty(size=(4, 1))
id_type.test_array_f_3d = FloatVectorProperty(size=(3, 2, 4))
id_type.test_array_i = IntVectorProperty(size=10)
id_type.test_array_i_2d = IntVectorProperty(size=(4, 1))
id_type.test_array_i_3d = IntVectorProperty(size=(3, 2, 4))
def tearDown(self):
del id_type.test_array_f
del id_type.test_array_f_2d
del id_type.test_array_f_3d
del id_type.test_array_i
del id_type.test_array_i_2d
del id_type.test_array_i_3d
@staticmethod
def parse_test_args(prop_array_first_dim, prop_type, prop_size):
match prop_type:
case 'INT':
expected_dtype = np.int32
wrong_kind_dtype = np.float32
wrong_size_dtype = np.int64
case 'FLOAT':
expected_dtype = np.float32
wrong_kind_dtype = np.int32
wrong_size_dtype = np.float64
case _:
raise AssertionError("Unexpected property type '%s'" % prop_type)
expected_length = np.prod(prop_size)
num_dims = len(prop_size)
assert expected_length > 0
too_short_length = expected_length - 1
match num_dims:
case 1:
def get_flat_iterable_all_dimensions():
return prop_array_first_dim[:]
case 2:
def get_flat_iterable_all_dimensions():
return (flat_elem for array_1d in prop_array_first_dim[:] for flat_elem in array_1d[:])
case 3:
def get_flat_iterable_all_dimensions():
return (flat_elem
for array_2d in prop_array_first_dim[:]
for array_1d in array_2d[:]
for flat_elem in array_1d[:])
case _:
raise AssertionError("Number of dimensions must be 1, 2 or 3, but was %i" % num_dims)
return (expected_dtype, wrong_kind_dtype, wrong_size_dtype, expected_length, too_short_length,
get_flat_iterable_all_dimensions)
def do_test_foreach_getset_current_dimension(self, prop_array, expected_dtype, wrong_kind_dtype, wrong_size_dtype,
expected_length, too_short_length, get_flat_iterable_all_dimensions):
with self.assertRaises(TypeError):
prop_array.foreach_set(range(too_short_length))
prop_array.foreach_set(range(5, 5 + expected_length))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(too_short_length, dtype=expected_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(expected_length, dtype=wrong_size_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_get(np.arange(expected_length, dtype=wrong_kind_dtype))
a = np.arange(expected_length, dtype=expected_dtype)
prop_array.foreach_set(a)
with self.assertRaises(TypeError):
prop_array.foreach_set(a[:too_short_length])
for v1, v2 in zip(a, get_flat_iterable_all_dimensions()):
self.assertEqual(v1, v2)
b = np.empty(expected_length, dtype=expected_dtype)
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
b = [None] * expected_length
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
def do_test_foreach_getset(self, prop_array, prop_type, prop_size):
if not isinstance(prop_size, (tuple, list)):
prop_size = (prop_size,)
num_dimensions = len(prop_size)
test_args = self.parse_test_args(prop_array, prop_type, prop_size)
# Test that foreach_get/foreach_set work, and work the same regardless of the current dimension/sub-array being
# accessed.
self.do_test_foreach_getset_current_dimension(prop_array, *test_args)
if num_dimensions > 1:
for i in range(prop_size[0]):
self.do_test_foreach_getset_current_dimension(prop_array[i], *test_args)
if num_dimensions > 2:
for j in range(prop_size[1]):
self.do_test_foreach_getset_current_dimension(prop_array[i][j], *test_args)
def test_foreach_getset_i(self):
self.do_test_foreach_getset(id_inst.test_array_i, 'INT', 10)
def test_foreach_getset_f(self):
self.do_test_foreach_getset(id_inst.test_array_f, 'FLOAT', 10)
def test_foreach_getset_i_2d(self):
self.do_test_foreach_getset(id_inst.test_array_i_2d, 'INT', (4, 1))
def test_foreach_getset_f_2d(self):
self.do_test_foreach_getset(id_inst.test_array_f_2d, 'FLOAT', (4, 1))
def test_foreach_getset_i_3d(self):
self.do_test_foreach_getset(id_inst.test_array_i_3d, 'INT', (3, 2, 4))
def test_foreach_getset_f_3d(self):
self.do_test_foreach_getset(id_inst.test_array_f_3d, 'FLOAT', (3, 2, 4))
class TestPropArrayMultiDimensional(unittest.TestCase):
def setUp(self):
self._initial_dir = set(dir(id_type))
def tearDown(self):
for member in (set(dir(id_type)) - self._initial_dir):
delattr(id_type, member)
def test_defaults(self):
# The data is in int format, converted into float & bool to avoid duplication.
default_data = (
# 1D.
(1,),
(1, 2),
(1, 2, 3),
(1, 2, 3, 4),
# 2D.
((1,),),
((1,), (11,)),
((1, 2), (11, 22)),
((1, 2, 3), (11, 22, 33)),
((1, 2, 3, 4), (11, 22, 33, 44)),
# 3D.
(((1,),),),
((1,), (11,), (111,)),
((1, 2), (11, 22), (111, 222),),
((1, 2, 3), (11, 22, 33), (111, 222, 333)),
((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444)),
)
for data in default_data:
for (vector_prop_fn, xform_fn) in (
(BoolVectorProperty, lambda v: bool(v % 2)),
(FloatVectorProperty, lambda v: float(v)),
(IntVectorProperty, lambda v: v),
):
data_native = seq_items_xform(data, xform_fn)
size = seq_items_as_dims(data)
id_type.temp = vector_prop_fn(size=size, default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix(self):
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix_with_callbacks(self):
# """
# Internally matrices have rows/columns swapped,
# This test ensures this is being done properly.
# """
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
local_data = {"array": data}
def get_fn(id_arg):
return local_data["array"]
def set_fn(id_arg, value):
local_data["array"] = value
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', get=get_fn, set=set_fn)
id_inst.temp = data_native
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
class TestPropArrayDynamicAssign(unittest.TestCase):
"""
Pixels are dynamic in the sense the size can change however the assignment does not define the size.
"""
dims = 12
def setUp(self):
self.image = bpy.data.images.new("", self.dims, self.dims)
def tearDown(self):
bpy.data.images.remove(self.image)
self.image = None
def test_assign_fixed_under_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = [1.0, 1.0, 1.0, 1.0]
def test_assign_fixed_under_0px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = []
def test_assign_fixed_over_by_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = ([1.0, 1.0, 1.0, 1.0] * (self.dims * self.dims)) + [1.0]
def test_assign_fixed(self):
# Valid assignment, ensure it works as intended.
image = self.image
values = [1.0, 0.0, 1.0, 0.0] * (self.dims * self.dims)
image.pixels = values
self.assertEqual(tuple(values), tuple(image.pixels))
class TestPropArrayDynamicArg(unittest.TestCase):
"""
Index array, a dynamic array argument which defines its own length.
"""
dims = 8
def setUp(self):
self.me = bpy.data.meshes.new("")
self.me.vertices.add(self.dims)
self.ob = bpy.data.objects.new("", self.me)
def tearDown(self):
bpy.data.objects.remove(self.ob)
bpy.data.meshes.remove(self.me)
self.me = None
self.ob = None
def test_param_dynamic(self):
ob = self.ob
vg = ob.vertex_groups.new(name="")
# Add none.
vg.add(index=(), weight=1.0, type='REPLACE')
for i in range(self.dims):
with self.assertRaises(RuntimeError):
vg.weight(i)
# Add all.
vg.add(index=range(self.dims), weight=1.0, type='REPLACE')
self.assertEqual(tuple([1.0] * self.dims), tuple([vg.weight(i) for i in range(self.dims)]))
class TestPropArrayInvalidForeachGetSet(unittest.TestCase):
"""
Test proper detection of invalid usages of foreach_get/foreach_set.
"""
dims = 8
def setUp(self):
self.me = bpy.data.meshes.new("")
self.me.vertices.add(self.dims)
self.ob = bpy.data.objects.new("", self.me)
def tearDown(self):
bpy.data.objects.remove(self.ob)
bpy.data.meshes.remove(self.me)
self.me = None
self.ob = None
def test_foreach_valid(self):
me = self.me
# Non-array (scalar) data access.
valid_1b_list = [False] * len(me.vertices)
me.vertices.foreach_get("select", valid_1b_list)
self.assertEqual(tuple([True] * self.dims), tuple(valid_1b_list))
valid_1b_list = [False] * len(me.vertices)
me.vertices.foreach_set("select", valid_1b_list)
for v in me.vertices:
self.assertFalse(v.select)
# Array (vector) data access.
valid_3f_list = [1.0] * (len(me.vertices) * 3)
me.vertices.foreach_get("co", valid_3f_list)
self.assertEqual(tuple([0.0] * self.dims * 3), tuple(valid_3f_list))
valid_3f_list = [1.0] * (len(me.vertices) * 3)
me.vertices.foreach_set("co", valid_3f_list)
for v in me.vertices:
self.assertEqual(tuple(v.co), (1.0, 1.0, 1.0))
def test_foreach_invalid_smaller_array(self):
me = self.me
# Non-array (scalar) data access.
invalid_1b_list = [False] * (len(me.vertices) - 1)
with self.assertRaises(RuntimeError):
me.vertices.foreach_get("select", invalid_1b_list)
invalid_1b_list = [False] * (len(me.vertices) - 1)
with self.assertRaises(RuntimeError):
me.vertices.foreach_set("select", invalid_1b_list)
# Array (vector) data access.
invalid_3f_list = [1.0] * (len(me.vertices) * 3 - 1)
with self.assertRaises(RuntimeError):
me.vertices.foreach_get("co", invalid_3f_list)
invalid_3f_list = [1.0] * (len(me.vertices) * 3 - 1)
with self.assertRaises(RuntimeError):
me.vertices.foreach_set("co", invalid_3f_list)
if __name__ == '__main__':
import sys
sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [])
unittest.main()