Files
test2/source/blender/blenkernel/intern/shrinkwrap.c
Sergey Sharybin e012fc8107 Fix #22487: Shrinkwrap ignores preceding deform modifiers
ShrinkwrapCalcData->vert contains verts from derivedMesh this coordinated
are deformed by vertexCos only for normal projection (to get correct normals)
for other cases this field contains undeformed dm's coordinates and
vertexCos should be used
2010-06-07 17:38:52 +00:00

605 lines
17 KiB
C

/**
* shrinkwrap.c
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <string.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BKE_shrinkwrap.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_utildefines.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_subsurf.h"
#include "BLI_math.h"
#include "BLI_editVert.h"
#include "MEM_guardedalloc.h"
/* Util macros */
#define TO_STR(a) #a
#define JOIN(a,b) a##b
#define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
/* Benchmark macros */
#if !defined(_WIN32) && 0
#include <sys/time.h>
#define BENCH(a) \
do { \
double _t1, _t2; \
struct timeval _tstart, _tend; \
clock_t _clock_init = clock(); \
gettimeofday ( &_tstart, NULL); \
(a); \
gettimeofday ( &_tend, NULL); \
_t1 = ( double ) _tstart.tv_sec + ( double ) _tstart.tv_usec/ ( 1000*1000 ); \
_t2 = ( double ) _tend.tv_sec + ( double ) _tend.tv_usec/ ( 1000*1000 ); \
printf("%s: %fs (real) %fs (cpu)\n", #a, _t2-_t1, (float)(clock()-_clock_init)/CLOCKS_PER_SEC);\
} while(0)
#else
#define BENCH(a) (a)
#endif
typedef void ( *Shrinkwrap_ForeachVertexCallback) (DerivedMesh *target, float *co, float *normal);
/* get derived mesh */
//TODO is anyfunction that does this? returning the derivedFinal witouth we caring if its in edit mode or not?
DerivedMesh *object_get_derived_final(struct Scene *scene, Object *ob, CustomDataMask dataMask)
{
Mesh *me= ob->data;
EditMesh *em = BKE_mesh_get_editmesh(me);
if (em)
{
DerivedMesh *final = NULL;
editmesh_get_derived_cage_and_final(scene, ob, em, &final, dataMask);
BKE_mesh_end_editmesh(me, em);
return final;
}
else
return mesh_get_derived_final(scene, ob, dataMask);
}
/* Space transform */
void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
{
float itarget[4][4];
invert_m4_m4(itarget, target);
mul_serie_m4(data->local2target, itarget, local, 0, 0, 0, 0, 0, 0);
invert_m4_m4(data->target2local, data->local2target);
}
void space_transform_apply(const SpaceTransform *data, float *co)
{
mul_v3_m4v3(co, ((SpaceTransform*)data)->local2target, co);
}
void space_transform_invert(const SpaceTransform *data, float *co)
{
mul_v3_m4v3(co, ((SpaceTransform*)data)->target2local, co);
}
static void space_transform_apply_normal(const SpaceTransform *data, float *no)
{
mul_mat3_m4_v3( ((SpaceTransform*)data)->local2target, no);
normalize_v3(no); // TODO: could we just determine de scale value from the matrix?
}
static void space_transform_invert_normal(const SpaceTransform *data, float *no)
{
mul_mat3_m4_v3(((SpaceTransform*)data)->target2local, no);
normalize_v3(no); // TODO: could we just determine de scale value from the matrix?
}
/*
* Returns the squared distance between two given points
*/
static float squared_dist(const float *a, const float *b)
{
float tmp[3];
VECSUB(tmp, a, b);
return INPR(tmp, tmp);
}
/*
* Shrinkwrap to the nearest vertex
*
* it builds a kdtree of vertexs we can attach to and then
* for each vertex performs a nearest vertex search on the tree
*/
static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6));
if(treeData.tree == NULL)
{
OUT_OF_MEMORY();
return;
}
//Setup nearest
nearest.index = -1;
nearest.dist = FLT_MAX;
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static)
#endif
for(i = 0; i<calc->numVerts; ++i)
{
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if(weight == 0.0f) continue;
//Convert the vertex to tree coordinates
if(calc->vert)
{
VECCOPY(tmp_co, calc->vert[i].co);
}
else
{
VECCOPY(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
//Use local proximity heuristics (to reduce the nearest search)
//
//If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
//so we can initiate the "nearest.dist" with the expected value to that last hit.
//This will lead in prunning of the search tree.
if(nearest.index != -1)
nearest.dist = squared_dist(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
//Found the nearest vertex
if(nearest.index != -1)
{
//Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
float dist = sasqrt(nearest.dist);
if(dist > FLT_EPSILON) weight *= (dist - calc->keepDist)/dist;
//Convert the coordinates back to mesh coordinates
VECCOPY(tmp_co, nearest.co);
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
}
}
free_bvhtree_from_mesh(&treeData);
}
/*
* This function raycast a single vertex and updates the hit if the "hit" is considered valid.
* Returns TRUE if "hit" was updated.
* Opts control whether an hit is valid or not
* Supported options are:
* MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
* MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
*/
int normal_projection_project_vertex(char options, const float *vert, const float *dir, const SpaceTransform *transf, BVHTree *tree, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
{
float tmp_co[3], tmp_no[3];
const float *co, *no;
BVHTreeRayHit hit_tmp;
//Copy from hit (we need to convert hit rays from one space coordinates to the other
memcpy( &hit_tmp, hit, sizeof(hit_tmp) );
//Apply space transform (TODO readjust dist)
if(transf)
{
VECCOPY( tmp_co, vert );
space_transform_apply( transf, tmp_co );
co = tmp_co;
VECCOPY( tmp_no, dir );
space_transform_apply_normal( transf, tmp_no );
no = tmp_no;
hit_tmp.dist *= mat4_to_scale( ((SpaceTransform*)transf)->local2target );
}
else
{
co = vert;
no = dir;
}
hit_tmp.index = -1;
BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
if(hit_tmp.index != -1)
{
float dot = INPR( dir, hit_tmp.no);
if(((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f)
|| ((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
return FALSE; //Ignore hit
//Inverting space transform (TODO make coeherent with the initial dist readjust)
if(transf)
{
space_transform_invert( transf, hit_tmp.co );
space_transform_invert_normal( transf, hit_tmp.no );
hit_tmp.dist = len_v3v3( (float*)vert, hit_tmp.co );
}
memcpy(hit, &hit_tmp, sizeof(hit_tmp) );
return TRUE;
}
return FALSE;
}
static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc, struct Scene *scene)
{
int i;
//Options about projection direction
const char use_normal = calc->smd->shrinkOpts;
float proj_axis[3] = {0.0f, 0.0f, 0.0f};
//Raycast and tree stuff
BVHTreeRayHit hit;
BVHTreeFromMesh treeData= NULL_BVHTreeFromMesh;
//auxiliar target
DerivedMesh *auxMesh = NULL;
BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
SpaceTransform local2aux;
//If the user doesn't allows to project in any direction of projection axis
//then theres nothing todo.
if((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
return;
//Prepare data to retrieve the direction in which we should project each vertex
if(calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL)
{
if(calc->vert == NULL) return;
}
else
{
//The code supports any axis that is a combination of X,Y,Z
//altought currently UI only allows to set the 3 diferent axis
if(calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
if(calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
if(calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
normalize_v3(proj_axis);
//Invalid projection direction
if(INPR(proj_axis, proj_axis) < FLT_EPSILON)
return;
}
if(calc->smd->auxTarget)
{
auxMesh = object_get_derived_final(scene, calc->smd->auxTarget, CD_MASK_BAREMESH);
space_transform_setup( &local2aux, calc->ob, calc->smd->auxTarget);
}
//After sucessufuly build the trees, start projection vertexs
if( bvhtree_from_mesh_faces(&treeData, calc->target, calc->keepDist, 4, 6)
&& (auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
{
#ifndef __APPLE__
#pragma omp parallel for private(i,hit) schedule(static)
#endif
for(i = 0; i<calc->numVerts; ++i)
{
float *co = calc->vertexCos[i];
float tmp_co[3], tmp_no[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if(weight == 0.0f) continue;
if(calc->vert)
{
/* calc->vert contains verts from derivedMesh */
/* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
/* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
if(calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
VECCOPY(tmp_co, calc->vert[i].co);
normal_short_to_float_v3(tmp_no, calc->vert[i].no);
} else {
VECCOPY(tmp_co, co);
VECCOPY(tmp_no, proj_axis);
}
}
else
{
VECCOPY(tmp_co, co);
VECCOPY(tmp_no, proj_axis);
}
hit.index = -1;
hit.dist = 10000.0f; //TODO: we should use FLT_MAX here, but sweepsphere code isnt prepared for that
//Project over positive direction of axis
if(use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR)
{
if(auxData.tree)
normal_projection_project_vertex(0, tmp_co, tmp_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, tmp_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
}
//Project over negative direction of axis
if(use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)
{
float inv_no[3] = { -tmp_no[0], -tmp_no[1], -tmp_no[2] };
if(auxData.tree)
normal_projection_project_vertex(0, tmp_co, inv_no, &local2aux, auxData.tree, &hit, auxData.raycast_callback, &auxData);
normal_projection_project_vertex(calc->smd->shrinkOpts, tmp_co, inv_no, &calc->local2target, treeData.tree, &hit, treeData.raycast_callback, &treeData);
}
if(hit.index != -1)
{
interp_v3_v3v3(co, co, hit.co, weight);
}
}
}
//free data structures
free_bvhtree_from_mesh(&treeData);
free_bvhtree_from_mesh(&auxData);
}
/*
* Shrinkwrap moving vertexs to the nearest surface point on the target
*
* it builds a BVHTree from the target mesh and then performs a
* NN matchs for each vertex
*/
static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
//Create a bvh-tree of the given target
BENCH(bvhtree_from_mesh_faces( &treeData, calc->target, 0.0, 2, 6));
if(treeData.tree == NULL)
{
OUT_OF_MEMORY();
return;
}
//Setup nearest
nearest.index = -1;
nearest.dist = FLT_MAX;
//Find the nearest vertex
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static)
#endif
for(i = 0; i<calc->numVerts; ++i)
{
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if(weight == 0.0f) continue;
//Convert the vertex to tree coordinates
if(calc->vert)
{
VECCOPY(tmp_co, calc->vert[i].co);
}
else
{
VECCOPY(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
//Use local proximity heuristics (to reduce the nearest search)
//
//If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
//so we can initiate the "nearest.dist" with the expected value to that last hit.
//This will lead in prunning of the search tree.
if(nearest.index != -1)
nearest.dist = squared_dist(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
//Found the nearest vertex
if(nearest.index != -1)
{
if(calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE)
{
//Make the vertex stay on the front side of the face
VECADDFAC(tmp_co, nearest.co, nearest.no, calc->keepDist);
}
else
{
//Adjusting the vertex weight, so that after interpolating it keeps a certain distance from the nearest position
float dist = sasqrt( nearest.dist );
if(dist > FLT_EPSILON)
interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist)/dist); //linear interpolation
else
VECCOPY( tmp_co, nearest.co );
}
//Convert the coordinates back to mesh coordinates
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); //linear interpolation
}
}
free_bvhtree_from_mesh(&treeData);
}
/* Main shrinkwrap function */
void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Scene *scene, Object *ob, DerivedMesh *dm, float (*vertexCos)[3], int numVerts)
{
DerivedMesh *ss_mesh = NULL;
ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
//remove loop dependencies on derived meshs (TODO should this be done elsewhere?)
if(smd->target == ob) smd->target = NULL;
if(smd->auxTarget == ob) smd->auxTarget = NULL;
//Configure Shrinkwrap calc data
calc.smd = smd;
calc.ob = ob;
calc.numVerts = numVerts;
calc.vertexCos = vertexCos;
//DeformVertex
calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
if(dm)
{
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
}
else if(calc.ob->type == OB_LATTICE)
{
calc.dvert = lattice_get_deform_verts(calc.ob);
}
if(smd->target)
{
calc.target = object_get_derived_final(scene, smd->target, CD_MASK_BAREMESH);
//TODO there might be several "bugs" on non-uniform scales matrixs
//because it will no longer be nearest surface, not sphere projection
//because space has been deformed
space_transform_setup(&calc.local2target, ob, smd->target);
//TODO: smd->keepDist is in global units.. must change to local
calc.keepDist = smd->keepDist;
}
calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
if(dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT)
{
//Setup arrays to get vertexs positions, normals and deform weights
calc.vert = dm->getVertDataArray(dm, CD_MVERT);
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
//Using vertexs positions/normals as if a subsurface was applied
if(smd->subsurfLevels)
{
SubsurfModifierData ssmd;
memset(&ssmd, 0, sizeof(ssmd));
ssmd.subdivType = ME_CC_SUBSURF; //catmull clark
ssmd.levels = smd->subsurfLevels; //levels
ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, FALSE, NULL, 0, 0);
if(ss_mesh)
{
calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
if(calc.vert)
{
//TRICKY: this code assumes subsurface will have the transformed original vertices
//in their original order at the end of the vert array.
calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
}
}
//Just to make sure we are not leaving any memory behind
assert(ssmd.emCache == NULL);
assert(ssmd.mCache == NULL);
}
}
//Projecting target defined - lets work!
if(calc.target)
{
switch(smd->shrinkType)
{
case MOD_SHRINKWRAP_NEAREST_SURFACE:
BENCH(shrinkwrap_calc_nearest_surface_point(&calc));
break;
case MOD_SHRINKWRAP_PROJECT:
BENCH(shrinkwrap_calc_normal_projection(&calc, scene));
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:
BENCH(shrinkwrap_calc_nearest_vertex(&calc));
break;
}
}
//free memory
if(ss_mesh)
ss_mesh->release(ss_mesh);
}