Files
test2/intern/cycles/kernel/kernel_object.h
Brecht Van Lommel fedc8e1722 Cycles: add "From Dupli" option for texture coordinate node. This gets the
Generated and UV coordinates from the duplicator of instance instead of the
object itself.

This was used in e.g. Big Buck Bunny for texturing instanced feathers with
a UV map on the bird. Many files changed, mainly to do some refactoring to
get rid of G.rendering global in duplilist code.
2012-10-04 21:40:39 +00:00

255 lines
7.1 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
enum ObjectTransform {
OBJECT_TRANSFORM = 0,
OBJECT_INVERSE_TRANSFORM = 3,
OBJECT_PROPERTIES = 6,
OBJECT_TRANSFORM_MOTION_PRE = 8,
OBJECT_TRANSFORM_MOTION_POST = 12,
OBJECT_DUPLI = 16
};
__device_inline Transform object_fetch_transform(KernelGlobals *kg, int object, float time, enum ObjectTransform type)
{
Transform tfm;
#ifdef __MOTION__
/* if we do motion blur */
if(sd->flag & SD_OBJECT_MOTION) {
/* fetch motion transforms */
MotionTransform motion;
motion.pre.x = have_motion;
motion.pre.y = kernel_tex_fetch(__objects, offset + 1);
motion.pre.z = kernel_tex_fetch(__objects, offset + 2);
motion.pre.w = kernel_tex_fetch(__objects, offset + 3);
motion.post.x = kernel_tex_fetch(__objects, offset + 4);
motion.post.y = kernel_tex_fetch(__objects, offset + 5);
motion.post.z = kernel_tex_fetch(__objects, offset + 6);
motion.post.w = kernel_tex_fetch(__objects, offset + 7);
/* interpolate (todo: do only once per object) */
transform_motion_interpolate(&tfm, &motion, time);
/* invert */
if(type == OBJECT_INVERSE_TRANSFORM)
tfm = transform_quick_inverse(tfm);
return tfm;
}
#endif
int offset = object*OBJECT_SIZE + (int)type;
tfm.x = kernel_tex_fetch(__objects, offset + 0);
tfm.y = kernel_tex_fetch(__objects, offset + 1);
tfm.z = kernel_tex_fetch(__objects, offset + 2);
tfm.w = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
return tfm;
}
__device_inline void object_position_transform(KernelGlobals *kg, ShaderData *sd, float3 *P)
{
#ifdef __MOTION__
*P = transform_point(&sd->ob_tfm, *P);
#else
Transform tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_TRANSFORM);
*P = transform_point(&tfm, *P);
#endif
}
__device_inline void object_inverse_position_transform(KernelGlobals *kg, ShaderData *sd, float3 *P)
{
#ifdef __MOTION__
*P = transform_point(&sd->ob_itfm, *P);
#else
Transform tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, *P);
#endif
}
__device_inline void object_inverse_normal_transform(KernelGlobals *kg, ShaderData *sd, float3 *N)
{
#ifdef __MOTION__
*N = normalize(transform_direction_transposed(&sd->ob_tfm, *N));
#else
Transform tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
#endif
}
__device_inline void object_normal_transform(KernelGlobals *kg, ShaderData *sd, float3 *N)
{
#ifdef __MOTION__
*N = normalize(transform_direction_transposed(&sd->ob_itfm, *N));
#else
Transform tfm = object_fetch_transform(kg, sd->object, TIME_INVALID, OBJECT_INVERSE_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
#endif
}
__device_inline void object_dir_transform(KernelGlobals *kg, ShaderData *sd, float3 *D)
{
#ifdef __MOTION__
*D = transform_direction(&sd->ob_tfm, *D);
#else
Transform tfm = object_fetch_transform(kg, sd->object, 0.0f, OBJECT_TRANSFORM);
*D = transform_direction(&tfm, *D);
#endif
}
__device_inline float3 object_location(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MOTION__
return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w);
#else
Transform tfm = object_fetch_transform(kg, sd->object, 0.0f, OBJECT_TRANSFORM);
return make_float3(tfm.x.w, tfm.y.w, tfm.z.w);
#endif
}
__device_inline float object_surface_area(KernelGlobals *kg, int object)
{
int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES;
float4 f = kernel_tex_fetch(__objects, offset);
return f.x;
}
__device_inline float object_pass_id(KernelGlobals *kg, int object)
{
if(object == ~0)
return 0.0f;
int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES;
float4 f = kernel_tex_fetch(__objects, offset);
return f.y;
}
__device_inline float object_random_number(KernelGlobals *kg, int object)
{
if(object == ~0)
return 0.0f;
int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES;
float4 f = kernel_tex_fetch(__objects, offset);
return f.z;
}
__device_inline uint object_particle_id(KernelGlobals *kg, int object)
{
if(object == ~0)
return 0.0f;
int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES;
float4 f = kernel_tex_fetch(__objects, offset);
return __float_as_int(f.w);
}
__device_inline float3 object_dupli_generated(KernelGlobals *kg, int object)
{
if(object == ~0)
return make_float3(0.0f, 0.0f, 0.0f);
int offset = object*OBJECT_SIZE + OBJECT_DUPLI;
float4 f = kernel_tex_fetch(__objects, offset);
return make_float3(f.x, f.y, f.z);
}
__device_inline float3 object_dupli_uv(KernelGlobals *kg, int object)
{
if(object == ~0)
return make_float3(0.0f, 0.0f, 0.0f);
int offset = object*OBJECT_SIZE + OBJECT_DUPLI;
float4 f = kernel_tex_fetch(__objects, offset + 1);
return make_float3(f.x, f.y, 0.0f);
}
__device int shader_pass_id(KernelGlobals *kg, ShaderData *sd)
{
return kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2 + 1);
}
__device_inline float particle_index(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 0);
return f.x;
}
__device float particle_age(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 0);
return f.y;
}
__device float particle_lifetime(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 0);
return f.z;
}
__device float particle_size(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 0);
return f.w;
}
__device float4 particle_rotation(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 1);
return f;
}
__device float3 particle_location(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f = kernel_tex_fetch(__particles, offset + 2);
return make_float3(f.x, f.y, f.z);
}
__device float3 particle_velocity(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f2 = kernel_tex_fetch(__particles, offset + 2);
float4 f3 = kernel_tex_fetch(__particles, offset + 3);
return make_float3(f2.w, f3.x, f3.y);
}
__device float3 particle_angular_velocity(KernelGlobals *kg, int particle)
{
int offset = particle*PARTICLE_SIZE;
float4 f3 = kernel_tex_fetch(__particles, offset + 3);
float4 f4 = kernel_tex_fetch(__particles, offset + 4);
return make_float3(f3.z, f3.w, f4.x);
}
CCL_NAMESPACE_END