Files
test2/intern/cycles/device/cpu/device_impl.cpp
Brecht Van Lommel 0803119725 Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.

Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.

Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles
https://wiki.blender.org/wiki/Source/Render/Cycles

Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)

For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.

Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
2021-09-21 14:55:54 +02:00

482 lines
12 KiB
C++

/*
* Copyright 2011-2021 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/cpu/device_impl.h"
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util/util_windows.h"
# include <OSL/oslexec.h>
#endif
#ifdef WITH_EMBREE
# include <embree3/rtcore.h>
#endif
#include "device/cpu/kernel.h"
#include "device/cpu/kernel_thread_globals.h"
#include "device/device.h"
// clang-format off
#include "kernel/device/cpu/compat.h"
#include "kernel/device/cpu/globals.h"
#include "kernel/device/cpu/kernel.h"
#include "kernel/kernel_types.h"
#include "kernel/osl/osl_shader.h"
#include "kernel/osl/osl_globals.h"
// clang-format on
#include "bvh/bvh_embree.h"
#include "render/buffers.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_function.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_opengl.h"
#include "util/util_openimagedenoise.h"
#include "util/util_optimization.h"
#include "util/util_progress.h"
#include "util/util_system.h"
#include "util/util_task.h"
#include "util/util_thread.h"
CCL_NAMESPACE_BEGIN
CPUDevice::CPUDevice(const DeviceInfo &info_, Stats &stats_, Profiler &profiler_)
: Device(info_, stats_, profiler_), texture_info(this, "__texture_info", MEM_GLOBAL)
{
/* Pick any kernel, all of them are supposed to have same level of microarchitecture
* optimization. */
VLOG(1) << "Will be using " << kernels.integrator_init_from_camera.get_uarch_name()
<< " kernels.";
if (info.cpu_threads == 0) {
info.cpu_threads = TaskScheduler::num_threads();
}
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
#ifdef WITH_EMBREE
embree_device = rtcNewDevice("verbose=0");
#endif
need_texture_info = false;
}
CPUDevice::~CPUDevice()
{
#ifdef WITH_EMBREE
rtcReleaseDevice(embree_device);
#endif
texture_info.free();
}
bool CPUDevice::show_samples() const
{
return (info.cpu_threads == 1);
}
BVHLayoutMask CPUDevice::get_bvh_layout_mask() const
{
BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_BVH2;
#ifdef WITH_EMBREE
bvh_layout_mask |= BVH_LAYOUT_EMBREE;
#endif /* WITH_EMBREE */
return bvh_layout_mask;
}
bool CPUDevice::load_texture_info()
{
if (!need_texture_info) {
return false;
}
texture_info.copy_to_device();
need_texture_info = false;
return true;
}
void CPUDevice::mem_alloc(device_memory &mem)
{
if (mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else if (mem.type == MEM_GLOBAL) {
assert(!"mem_alloc not supported for global memory.");
}
else {
if (mem.name) {
VLOG(1) << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
}
if (mem.type == MEM_DEVICE_ONLY) {
assert(!mem.host_pointer);
size_t alignment = MIN_ALIGNMENT_CPU_DATA_TYPES;
void *data = util_aligned_malloc(mem.memory_size(), alignment);
mem.device_pointer = (device_ptr)data;
}
else {
mem.device_pointer = (device_ptr)mem.host_pointer;
}
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
}
void CPUDevice::mem_copy_to(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
global_alloc(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
tex_alloc((device_texture &)mem);
}
else {
if (!mem.device_pointer) {
mem_alloc(mem);
}
/* copy is no-op */
}
}
void CPUDevice::mem_copy_from(
device_memory & /*mem*/, int /*y*/, int /*w*/, int /*h*/, int /*elem*/)
{
/* no-op */
}
void CPUDevice::mem_zero(device_memory &mem)
{
if (!mem.device_pointer) {
mem_alloc(mem);
}
if (mem.device_pointer) {
memset((void *)mem.device_pointer, 0, mem.memory_size());
}
}
void CPUDevice::mem_free(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
}
else if (mem.device_pointer) {
if (mem.type == MEM_DEVICE_ONLY) {
util_aligned_free((void *)mem.device_pointer);
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
device_ptr CPUDevice::mem_alloc_sub_ptr(device_memory &mem, int offset, int /*size*/)
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void CPUDevice::const_copy_to(const char *name, void *host, size_t size)
{
#if WITH_EMBREE
if (strcmp(name, "__data") == 0) {
assert(size <= sizeof(KernelData));
// Update scene handle (since it is different for each device on multi devices)
KernelData *const data = (KernelData *)host;
data->bvh.scene = embree_scene;
}
#endif
kernel_const_copy(&kernel_globals, name, host, size);
}
void CPUDevice::global_alloc(device_memory &mem)
{
VLOG(1) << "Global memory allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
kernel_global_memory_copy(&kernel_globals, mem.name, mem.host_pointer, mem.data_size);
mem.device_pointer = (device_ptr)mem.host_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void CPUDevice::global_free(device_memory &mem)
{
if (mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void CPUDevice::tex_alloc(device_texture &mem)
{
VLOG(1) << "Texture allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
mem.device_pointer = (device_ptr)mem.host_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
const uint slot = mem.slot;
if (slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount of re-allocations. */
texture_info.resize(slot + 128);
}
texture_info[slot] = mem.info;
texture_info[slot].data = (uint64_t)mem.host_pointer;
need_texture_info = true;
}
void CPUDevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
need_texture_info = true;
}
}
void CPUDevice::build_bvh(BVH *bvh, Progress &progress, bool refit)
{
#ifdef WITH_EMBREE
if (bvh->params.bvh_layout == BVH_LAYOUT_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE) {
BVHEmbree *const bvh_embree = static_cast<BVHEmbree *>(bvh);
if (refit) {
bvh_embree->refit(progress);
}
else {
bvh_embree->build(progress, &stats, embree_device);
}
if (bvh->params.top_level) {
embree_scene = bvh_embree->scene;
}
}
else
#endif
Device::build_bvh(bvh, progress, refit);
}
#if 0
void CPUDevice::render(DeviceTask &task, RenderTile &tile, KernelGlobals *kg)
{
const bool use_coverage = kernel_data.film.cryptomatte_passes & CRYPT_ACCURATE;
scoped_timer timer(&tile.buffers->render_time);
Coverage coverage(kg, tile);
if (use_coverage) {
coverage.init_path_trace();
}
float *render_buffer = (float *)tile.buffer;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
/* Needed for Embree. */
SIMD_SET_FLUSH_TO_ZERO;
for (int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || TaskPool::canceled()) {
if (task.need_finish_queue == false)
break;
}
if (tile.stealing_state == RenderTile::CAN_BE_STOLEN && task.get_tile_stolen()) {
tile.stealing_state = RenderTile::WAS_STOLEN;
break;
}
if (tile.task == RenderTile::PATH_TRACE) {
for (int y = tile.y; y < tile.y + tile.h; y++) {
for (int x = tile.x; x < tile.x + tile.w; x++) {
if (use_coverage) {
coverage.init_pixel(x, y);
}
kernels.path_trace(kg, render_buffer, sample, x, y, tile.offset, tile.stride);
}
}
}
else {
for (int y = tile.y; y < tile.y + tile.h; y++) {
for (int x = tile.x; x < tile.x + tile.w; x++) {
kernels.bake(kg, render_buffer, sample, x, y, tile.offset, tile.stride);
}
}
}
tile.sample = sample + 1;
if (task.adaptive_sampling.use && task.adaptive_sampling.need_filter(sample)) {
const bool stop = adaptive_sampling_filter(kg, tile, sample);
if (stop) {
const int num_progress_samples = end_sample - sample;
tile.sample = end_sample;
task.update_progress(&tile, tile.w * tile.h * num_progress_samples);
break;
}
}
task.update_progress(&tile, tile.w * tile.h);
}
if (use_coverage) {
coverage.finalize();
}
if (task.adaptive_sampling.use && (tile.stealing_state != RenderTile::WAS_STOLEN)) {
adaptive_sampling_post(tile, kg);
}
}
void CPUDevice::thread_render(DeviceTask &task)
{
if (TaskPool::canceled()) {
if (task.need_finish_queue == false)
return;
}
/* allocate buffer for kernel globals */
CPUKernelThreadGlobals kg(kernel_globals, get_cpu_osl_memory());
profiler.add_state(&kg.profiler);
/* NLM denoiser. */
DenoisingTask *denoising = NULL;
/* OpenImageDenoise: we can only denoise with one thread at a time, so to
* avoid waiting with mutex locks in the denoiser, we let only a single
* thread acquire denoising tiles. */
uint tile_types = task.tile_types;
bool hold_denoise_lock = false;
if ((tile_types & RenderTile::DENOISE) && task.denoising.type == DENOISER_OPENIMAGEDENOISE) {
if (!oidn_task_lock.try_lock()) {
tile_types &= ~RenderTile::DENOISE;
hold_denoise_lock = true;
}
}
RenderTile tile;
while (task.acquire_tile(this, tile, tile_types)) {
if (tile.task == RenderTile::PATH_TRACE) {
render(task, tile, &kg);
}
else if (tile.task == RenderTile::BAKE) {
render(task, tile, &kg);
}
else if (tile.task == RenderTile::DENOISE) {
denoise_openimagedenoise(task, tile);
task.update_progress(&tile, tile.w * tile.h);
}
task.release_tile(tile);
if (TaskPool::canceled()) {
if (task.need_finish_queue == false)
break;
}
}
if (hold_denoise_lock) {
oidn_task_lock.unlock();
}
profiler.remove_state(&kg.profiler);
delete denoising;
}
void CPUDevice::thread_denoise(DeviceTask &task)
{
RenderTile tile;
tile.x = task.x;
tile.y = task.y;
tile.w = task.w;
tile.h = task.h;
tile.buffer = task.buffer;
tile.sample = task.sample + task.num_samples;
tile.num_samples = task.num_samples;
tile.start_sample = task.sample;
tile.offset = task.offset;
tile.stride = task.stride;
tile.buffers = task.buffers;
denoise_openimagedenoise(task, tile);
task.update_progress(&tile, tile.w * tile.h);
}
#endif
const CPUKernels *CPUDevice::get_cpu_kernels() const
{
return &kernels;
}
void CPUDevice::get_cpu_kernel_thread_globals(
vector<CPUKernelThreadGlobals> &kernel_thread_globals)
{
/* Ensure latest texture info is loaded into kernel globals before returning. */
load_texture_info();
kernel_thread_globals.clear();
void *osl_memory = get_cpu_osl_memory();
for (int i = 0; i < info.cpu_threads; i++) {
kernel_thread_globals.emplace_back(kernel_globals, osl_memory, profiler);
}
}
void *CPUDevice::get_cpu_osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
bool CPUDevice::load_kernels(const uint /*kernel_features*/)
{
return true;
}
CCL_NAMESPACE_END