Files
test2/tests/python/bl_usd_export_test.py
Jesse Yurkovich 15d79cf2b9 USD: Validate displayColor primvars in the tests
The USD test data files were recently updated to output a `displayColor`
attribute. This adds the relevant test verification for it.

Pull Request: https://projects.blender.org/blender/blender/pulls/129237
2024-10-19 20:59:25 +02:00

888 lines
43 KiB
Python

# SPDX-FileCopyrightText: 2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
import math
import pathlib
import pprint
import sys
import tempfile
import unittest
from pxr import Gf, Sdf, Usd, UsdGeom, UsdShade, UsdSkel, UsdUtils
import bpy
args = None
class AbstractUSDTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._tempdir = tempfile.TemporaryDirectory()
cls.testdir = args.testdir
cls.tempdir = pathlib.Path(cls._tempdir.name)
return cls
def setUp(self):
self.assertTrue(
self.testdir.exists(), "Test dir {0} should exist".format(self.testdir)
)
def tearDown(self):
self._tempdir.cleanup()
def export_and_validate(self, **kwargs):
"""Export and validate the resulting USD file."""
export_path = kwargs["filepath"]
# Do the actual export
res = bpy.ops.wm.usd_export(**kwargs)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# Validate resulting file
checker = UsdUtils.ComplianceChecker(
arkit=False,
skipARKitRootLayerCheck=False,
rootPackageOnly=False,
skipVariants=False,
verbose=False,
)
checker.CheckCompliance(export_path)
failed_checks = {}
# The ComplianceChecker does not know how to resolve <UDIM> tags, so
# it will flag "textures/test_grid_<UDIM>.png" as a missing reference.
# That reference is in fact OK, so we skip the rule for this test.
to_skip = ("MissingReferenceChecker",)
for rule in checker._rules:
name = rule.__class__.__name__
if name in to_skip:
continue
issues = rule.GetFailedChecks() + rule.GetWarnings() + rule.GetErrors()
if not issues:
continue
failed_checks[name] = issues
self.assertFalse(failed_checks, pprint.pformat(failed_checks))
class USDExportTest(AbstractUSDTest):
# Utility function to round each component of a vector to a few digits. The "+ 0" is to
# ensure that any negative zeros (-0.0) are converted to positive zeros (0.0).
@staticmethod
def round_vector(vector):
return [round(c, 4) + 0 for c in vector]
# Utility function to compare two Gf.Vec3d's
def compareVec3d(self, first, second):
places = 5
self.assertAlmostEqual(first[0], second[0], places)
self.assertAlmostEqual(first[1], second[1], places)
self.assertAlmostEqual(first[2], second[2], places)
def test_export_extents(self):
"""Test that exported scenes contain have a properly authored extent attribute on each boundable prim"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_extent_test.blend"))
export_path = self.tempdir / "usd_extent_test.usda"
self.export_and_validate(
filepath=str(export_path),
export_materials=True,
evaluation_mode="RENDER",
convert_world_material=False,
)
# if prims are missing, the exporter must have skipped some objects
stats = UsdUtils.ComputeUsdStageStats(str(export_path))
self.assertEqual(stats["totalPrimCount"], 16, "Unexpected number of prims")
# validate the overall world bounds of the scene
stage = Usd.Stage.Open(str(export_path))
scenePrim = stage.GetPrimAtPath("/root/scene")
bboxcache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), [UsdGeom.Tokens.default_])
bounds = bboxcache.ComputeWorldBound(scenePrim)
bound_min = bounds.GetRange().GetMin()
bound_max = bounds.GetRange().GetMax()
self.compareVec3d(bound_min, Gf.Vec3d(-5.752975881, -1, -2.798513651))
self.compareVec3d(bound_max, Gf.Vec3d(1, 2.9515805244, 2.7985136508))
# validate the locally authored extents
prim = stage.GetPrimAtPath("/root/scene/BigCube/BigCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -2.7985137))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 2.7985137))
prim = stage.GetPrimAtPath("/root/scene/LittleCube/LittleCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -1))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 1))
prim = stage.GetPrimAtPath("/root/scene/Volume/Volume")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(
Gf.Vec3d(extent[0]), Gf.Vec3d(-0.7313742, -0.68043584, -0.5801515)
)
self.compareVec3d(
Gf.Vec3d(extent[1]), Gf.Vec3d(0.7515701, 0.5500924, 0.9027928)
)
def test_material_transforms(self):
"""Validate correct export of image mapping parameters to the UsdTransform2d shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_transforms.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect the UsdTransform2d prim on the "Transforms" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Transforms/Mapping")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdTransform2d")
input_trans = shader.GetInput('translation')
input_rot = shader.GetInput('rotation')
input_scale = shader.GetInput('scale')
self.assertEqual(input_trans.Get(), [0.75, 0.75])
self.assertEqual(input_rot.Get(), 180)
self.assertEqual(input_scale.Get(), [0.5, 0.5])
def test_material_normal_maps(self):
"""Validate correct export of typical normal map setups to the UsdUVTexture shader def.
Namely validate that scale, bias, and ColorSpace settings are correct"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_normalmaps.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect the UsdUVTexture prim on the "typical" "NormalMap" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, 2, 2, 2])
self.assertEqual(input_bias.Get(), [-1, -1, -1, -1])
self.assertEqual(input_colorspace.Get(), 'raw')
# Inspect the UsdUVTexture prim on the "inverted" "NormalMap_Scale_Bias" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap_Scale_Bias/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, -2, 2, 1])
self.assertEqual(input_bias.Get(), [-1, 1, -1, 0])
self.assertEqual(input_colorspace.Get(), 'raw')
def test_material_opacity_threshold(self):
"""Validate correct export of opacity and opacity_threshold parameters to the UsdPreviewSurface shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_opacities.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect and validate the exported USD for the opaque blend case.
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Material/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
self.assertEqual(opacity_input.HasConnectedSource(), False,
"Opacity input should not be connected for opaque material")
self.assertAlmostEqual(opacity_input.Get(), 1.0, 2, "Opacity input should be set to 1")
# Inspect and validate the exported USD for the alpha clip w/Round node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_Round/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.5, 2, "Opacity threshold input should be 0.5")
# Inspect and validate the exported USD for the alpha clip w/LessThan+Invert node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_LessThanInvert/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.2, 2, "Opacity threshold input should be 0.2")
def test_export_material_subsets(self):
"""Validate multiple materials assigned to the same mesh work correctly."""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_multi.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(1, 5):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(1)
export_path = self.tempdir / "usd_materials_multi.usda"
self.export_and_validate(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
# The static mesh should have 4 materials each assigned to 4 faces (16 faces total)
static_mesh_prim = UsdGeom.Mesh(stage.GetPrimAtPath("/root/static_mesh/static_mesh"))
geom_subsets = UsdGeom.Subset.GetGeomSubsets(static_mesh_prim)
self.assertEqual(len(geom_subsets), 4)
unique_face_indices = set()
for subset in geom_subsets:
face_indices = subset.GetIndicesAttr().Get()
self.assertEqual(len(face_indices), 4)
unique_face_indices.update(face_indices)
self.assertEqual(len(unique_face_indices), 16)
# The dynamic mesh varies over time (currently blocked, see #124554 and #118754)
# - Frame 1: 1 face and 1 material [mat2]
# - Frame 2: 2 faces and 2 materials [mat2, mat3]
# - Frame 3: 4 faces and 3 materials [mat2, mat3, mat2, mat1]
# - Frame 4: 4 faces and 2 materials [mat2, mat3, mat2, mat3]
dynamic_mesh_prim = UsdGeom.Mesh(stage.GetPrimAtPath("/root/dynamic_mesh/dynamic_mesh"))
geom_subsets = UsdGeom.Subset.GetGeomSubsets(dynamic_mesh_prim)
self.assertEqual(len(geom_subsets), 0)
def check_primvar(self, prim, pv_name, pv_typeName, pv_interp, elements_len):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertTrue(pv.HasValue())
self.assertEqual(pv.GetTypeName().type.typeName, pv_typeName)
self.assertEqual(pv.GetInterpolation(), pv_interp)
self.assertEqual(len(pv.Get()), elements_len)
def check_primvar_missing(self, prim, pv_name):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertFalse(pv.HasValue())
def test_export_attributes(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_test.blend"))
export_path = self.tempdir / "usd_attribute_test.usda"
self.export_and_validate(filepath=str(export_path), evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
# Validate all expected Mesh attributes. Notice that nothing on
# the Edge domain is supported by USD.
prim = stage.GetPrimAtPath("/root/Mesh/Mesh")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 4)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 4)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 4)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 4)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 4)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 4)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 4)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar_missing(prim, "e_bool")
self.check_primvar_missing(prim, "e_int8")
self.check_primvar_missing(prim, "e_int32")
self.check_primvar_missing(prim, "e_float")
self.check_primvar_missing(prim, "e_color")
self.check_primvar_missing(prim, "e_byte_color")
self.check_primvar_missing(prim, "e_vec2")
self.check_primvar_missing(prim, "e_vec3")
self.check_primvar_missing(prim, "e_quat")
self.check_primvar_missing(prim, "e_mat4x4")
self.check_primvar(prim, "f_bool", "VtArray<bool>", "uniform", 1)
self.check_primvar(prim, "f_int8", "VtArray<unsigned char>", "uniform", 1)
self.check_primvar(prim, "f_int32", "VtArray<int>", "uniform", 1)
self.check_primvar(prim, "f_float", "VtArray<float>", "uniform", 1)
self.check_primvar(prim, "f_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "f_byte_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "displayColor", "VtArray<GfVec3f>", "uniform", 1)
self.check_primvar(prim, "f_vec2", "VtArray<GfVec2f>", "uniform", 1)
self.check_primvar(prim, "f_vec3", "VtArray<GfVec3f>", "uniform", 1)
self.check_primvar(prim, "f_quat", "VtArray<GfQuatf>", "uniform", 1)
self.check_primvar_missing(prim, "f_mat4x4")
self.check_primvar(prim, "fc_bool", "VtArray<bool>", "faceVarying", 4)
self.check_primvar(prim, "fc_int8", "VtArray<unsigned char>", "faceVarying", 4)
self.check_primvar(prim, "fc_int32", "VtArray<int>", "faceVarying", 4)
self.check_primvar(prim, "fc_float", "VtArray<float>", "faceVarying", 4)
self.check_primvar(prim, "fc_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_byte_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec2", "VtArray<GfVec2f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec3", "VtArray<GfVec3f>", "faceVarying", 4)
self.check_primvar(prim, "fc_quat", "VtArray<GfQuatf>", "faceVarying", 4)
self.check_primvar_missing(prim, "fc_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_base/Curves/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 24)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 24)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 24)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 24)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 24)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 24)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 24)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 2)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 2)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 2)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 2)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 2)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 2)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 2)
self.check_primvar_missing(prim, "sp_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_bezier_base/Curves_bezier/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "varying", 10)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "varying", 10)
self.check_primvar(prim, "p_int32", "VtArray<int>", "varying", 10)
self.check_primvar(prim, "p_float", "VtArray<float>", "varying", 10)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "varying", 10)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "varying", 10)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "varying", 10)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 3)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 3)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 3)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 3)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 3)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 3)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 3)
self.check_primvar_missing(prim, "sp_mat4x4")
def test_export_attributes_varying(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_varying_test.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(1, 16):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(1)
export_path = self.tempdir / "usd_attribute_varying_test.usda"
self.export_and_validate(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
sparse_frames = [4.0, 5.0, 8.0, 9.0, 12.0, 13.0]
#
# Validate Mesh data
#
mesh1 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh1/mesh1"))
mesh2 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh2/mesh2"))
mesh3 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh3/mesh3"))
# Positions (should be sparsely written)
self.assertEqual(mesh1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(mesh3.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(mesh1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(mesh2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh3.GetVelocitiesAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(mesh1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh3).GetPrimvar("test").GetTimeSamples(), sparse_frames)
#
# Validate PointCloud data
#
points1 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud1/PointCloud"))
points2 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud2/PointCloud"))
points3 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud3/PointCloud"))
points4 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud4/PointCloud"))
# Positions (should be sparsely written)
self.assertEqual(points1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(points1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points3.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetVelocitiesAttr().GetTimeSamples(), [])
# Radius (should be sparsely written)
self.assertEqual(points1.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetWidthsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points4.GetWidthsAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(points1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points3).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points4).GetPrimvar("test").GetTimeSamples(), sparse_frames)
# Extents of the point cloud (should be sparsely written)
self.assertEqual(UsdGeom.Boundable(points1).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points2).GetExtentAttr().GetTimeSamples(), [])
self.assertEqual(UsdGeom.Boundable(points3).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points4).GetExtentAttr().GetTimeSamples(), [])
def test_export_mesh_subd(self):
"""Test exporting Subdivision Surface attributes and values"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_mesh_subd.blend"))
export_path = self.tempdir / "usd_mesh_subd.usda"
self.export_and_validate(
filepath=str(export_path),
export_subdivision='BEST_MATCH',
evaluation_mode="RENDER",
)
stage = Usd.Stage.Open(str(export_path))
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_none_boundary_smooth_all/mesh1"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'all')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_boundary_smooth_all/mesh2"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersOnly')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_boundary_smooth_all/mesh3"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus1')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_concave_boundary_smooth_all/mesh4"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus2')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_all/mesh5"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_all_boundary_smooth_all/mesh6"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'none')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_keep/mesh7"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeAndCorner')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_verts/crease_verts"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCornerIndicesAttr().Get()), 7)
usd_vert_sharpness = mesh.GetCornerSharpnessesAttr().Get()
self.assertEqual(len(usd_vert_sharpness), 7)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_vert_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp < 1]), 6)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp == 10]), 1)
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_edge/crease_edge"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCreaseIndicesAttr().Get()), 20)
usd_crease_lengths = mesh.GetCreaseLengthsAttr().Get()
self.assertEqual(len(usd_crease_lengths), 10)
self.assertTrue(all([length == 2 for length in usd_crease_lengths]))
usd_crease_sharpness = mesh.GetCreaseSharpnessesAttr().Get()
self.assertEqual(len(usd_crease_sharpness), 10)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_crease_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp < 1]), 9)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp == 10]), 1)
def test_export_mesh_triangulate(self):
"""Test exporting with different triangulation options for meshes."""
# Use the current scene to create simple geometry to triangulate
bpy.ops.mesh.primitive_plane_add(size=1)
bpy.ops.mesh.primitive_circle_add(fill_type='NGON', radius=1, vertices=7)
# We assume that triangulation is thoroughly tested elsewhere. Here we are only interested
# in checking that USD passes its operator properties through correctly. We use a minimal
# combination of quad and ngon methods to test.
tri_export_path1 = self.tempdir / "usd_mesh_tri_setup1.usda"
self.export_and_validate(
filepath=str(tri_export_path1),
triangulate_meshes=True,
quad_method='FIXED',
ngon_method='BEAUTY',
evaluation_mode="RENDER",
)
tri_export_path2 = self.tempdir / "usd_mesh_tri_setup2.usda"
self.export_and_validate(
filepath=str(tri_export_path2),
triangulate_meshes=True,
quad_method='FIXED_ALTERNATE',
ngon_method='CLIP',
evaluation_mode="RENDER",
)
stage1 = Usd.Stage.Open(str(tri_export_path1))
stage2 = Usd.Stage.Open(str(tri_export_path2))
# The Plane should have different vertex ordering because of the quad methods chosen
plane1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Plane/Plane"))
plane2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Plane/Plane"))
indices1 = plane1.GetFaceVertexIndicesAttr().Get()
indices2 = plane2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 6)
self.assertEqual(len(indices2), 6)
self.assertNotEqual(indices1, indices2)
# The Circle should have different vertex ordering because of the ngon methods chosen
circle1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Circle/Circle"))
circle2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Circle/Circle"))
indices1 = circle1.GetFaceVertexIndicesAttr().Get()
indices2 = circle2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 15)
self.assertEqual(len(indices2), 15)
self.assertNotEqual(indices1, indices2)
def test_export_animation(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_anim_test.blend"))
export_path = self.tempdir / "usd_anim_test.usda"
self.export_and_validate(
filepath=str(export_path),
export_animation=True,
evaluation_mode="RENDER",
)
stage = Usd.Stage.Open(str(export_path))
# Validate the simple object animation
prim = stage.GetPrimAtPath("/root/cube_anim_xform")
self.assertEqual(prim.GetTypeName(), "Xform")
loc_samples = UsdGeom.Xformable(prim).GetTranslateOp().GetTimeSamples()
rot_samples = UsdGeom.Xformable(prim).GetRotateXYZOp().GetTimeSamples()
scale_samples = UsdGeom.Xformable(prim).GetScaleOp().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0])
self.assertEqual(rot_samples, [1.0])
self.assertEqual(scale_samples, [1.0])
# Validate the armature animation
prim = stage.GetPrimAtPath("/root/Armature/Armature")
self.assertEqual(prim.GetTypeName(), "Skeleton")
prim_skel = UsdSkel.BindingAPI(prim)
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
self.assertEqual(anim.GetJointsAttr().Get(),
['Bone',
'Bone/Bone_001',
'Bone/Bone_001/Bone_002',
'Bone/Bone_001/Bone_002/Bone_003',
'Bone/Bone_001/Bone_002/Bone_003/Bone_004'])
loc_samples = anim.GetTranslationsAttr().GetTimeSamples()
rot_samples = anim.GetRotationsAttr().GetTimeSamples()
scale_samples = anim.GetScalesAttr().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(rot_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(scale_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
# Validate the shape key animation
prim = stage.GetPrimAtPath("/root/cube_anim_keys")
self.assertEqual(prim.GetTypeName(), "SkelRoot")
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("cube_anim_keys"))
self.assertEqual(prim_skel.GetBlendShapesAttr().Get(), ['Key_1'])
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("Skel"))
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
weight_samples = anim.GetBlendShapeWeightsAttr().GetTimeSamples()
self.assertEqual(weight_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
def test_export_xform_ops(self):
"""Test exporting different xform operation modes."""
# Create a simple scene and export using each of our xform op modes
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
loc = [1, 2, 3]
rot = [math.pi / 4, 0, math.pi / 8]
scale = [1, 2, 3]
bpy.ops.mesh.primitive_plane_add(location=loc, rotation=rot)
bpy.data.objects[0].scale = scale
test_path1 = self.tempdir / "temp_xform_trs_test.usda"
self.export_and_validate(filepath=str(test_path1), xform_op_mode='TRS')
test_path2 = self.tempdir / "temp_xform_tos_test.usda"
self.export_and_validate(filepath=str(test_path2), xform_op_mode='TOS')
test_path3 = self.tempdir / "temp_xform_mat_test.usda"
self.export_and_validate(filepath=str(test_path3), xform_op_mode='MAT')
# Validate relevant details for each case
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
rot_degs = [math.degrees(rot[0]), math.degrees(rot[1]), math.degrees(rot[2])]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:rotateXYZ', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), rot_degs)
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
orient_quat = xf.GetOrientOp().Get()
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:orient', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(round(orient_quat.GetReal(), 4), 0.9061)
self.assertEqual(self.round_vector(orient_quat.GetImaginary()), [0.3753, 0.0747, 0.1802])
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path3))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
mat = xf.GetTransformOp().Get()
mat = [
self.round_vector(mat[0]), self.round_vector(mat[1]), self.round_vector(mat[2]), self.round_vector(mat[3])
]
expected = [
[0.9239, 0.3827, 0.0, 0.0],
[-0.5412, 1.3066, 1.4142, 0.0],
[0.8118, -1.9598, 2.1213, 0.0],
[1.0, 2.0, 3.0, 1.0]
]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:transform'])
self.assertEqual(mat, expected)
def test_export_orientation(self):
"""Test exporting different orientation configurations."""
# Using the empty scene is fine for this
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
test_path1 = self.tempdir / "temp_orientation_yup.usda"
self.export_and_validate(
filepath=str(test_path1),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Z',
export_global_up_selection='Y')
test_path2 = self.tempdir / "temp_orientation_zup_rev.usda"
self.export_and_validate(
filepath=str(test_path2),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Y',
export_global_up_selection='Z')
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [-90, 0, 0])
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [0, 0, 180])
def test_materialx_network(self):
"""Test exporting that a MaterialX export makes it out alright"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "materialx.usda"
# USD currently has an issue where embedded MaterialX graphs cause validation to fail.
# Skip validation and just run a regular export until this is fixed.
# See: https://github.com/PixarAnimationStudios/OpenUSD/pull/3243
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_materials=True,
generate_materialx_network=True,
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
material_prim = stage.GetPrimAtPath("/root/_materials/Material")
self.assertTrue(material_prim, "Could not find Material prim")
material = UsdShade.Material(material_prim)
mtlx_output = material.GetOutput("mtlx:surface")
self.assertTrue(mtlx_output, "Could not find mtlx output")
connection, source_name, _ = UsdShade.ConnectableAPI.GetConnectedSource(
mtlx_output
) or [None, None, None]
self.assertTrue((connection and source_name), "Could not find mtlx output source")
shader = UsdShade.Shader(connection.GetPrim())
self.assertTrue(shader, "Connected prim is not a shader")
shader_id = shader.GetIdAttr().Get()
self.assertEqual(shader_id, "ND_standard_surface_surfaceshader", "Shader is not a Standard Surface")
def test_hooks(self):
"""Validate USD Hook integration for both import and export"""
# Create a simple scene with 1 object and 1 material
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
material = bpy.data.materials.new(name="test_material")
material.use_nodes = True
bpy.ops.mesh.primitive_plane_add()
bpy.data.objects[0].data.materials.append(material)
# Register both USD hooks
bpy.utils.register_class(USDHook1)
bpy.utils.register_class(USDHook2)
# Instruct them to do various actions inside their implementation
USDHookBase.instructions = {
"on_material_export": ["return False", "return True"],
"on_export": ["throw", "return True"],
"on_import": ["throw", "return True"],
}
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
test_path = self.tempdir / "hook.usda"
try:
self.export_and_validate(filepath=str(test_path))
except:
pass
try:
bpy.ops.wm.usd_import(filepath=str(test_path))
except:
pass
# Unregister the hooks. We do this here in case the following asserts fail.
bpy.utils.unregister_class(USDHook1)
bpy.utils.unregister_class(USDHook2)
# Validate that the Hooks executed and responded accordingly...
self.assertEqual(USDHookBase.responses["on_material_export"], ["returned False", "returned True"])
self.assertEqual(USDHookBase.responses["on_export"], ["threw exception", "returned True"])
self.assertEqual(USDHookBase.responses["on_import"], ["threw exception", "returned True"])
# Now that the hooks are unregistered they should not be executed for import and export.
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
self.export_and_validate(filepath=str(test_path))
self.export_and_validate(filepath=str(test_path))
self.assertEqual(USDHookBase.responses["on_material_export"], [])
self.assertEqual(USDHookBase.responses["on_export"], [])
self.assertEqual(USDHookBase.responses["on_import"], [])
class USDHookBase():
instructions = {}
responses = {}
@staticmethod
def follow_instructions(name, operation):
instruction = USDHookBase.instructions[operation].pop(0)
if instruction == "throw":
USDHookBase.responses[operation].append("threw exception")
raise RuntimeError(f"** {name} failing {operation} **")
elif instruction == "return False":
USDHookBase.responses[operation].append("returned False")
return False
USDHookBase.responses[operation].append("returned True")
return True
@staticmethod
def do_on_export(name, export_context):
stage = export_context.get_stage()
depsgraph = export_context.get_depsgraph()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
if len(depsgraph.ids) == 0:
raise RuntimeError("Unexpected failure: bad depsgraph")
return USDHookBase.follow_instructions(name, "on_export")
@staticmethod
def do_on_material_export(name, export_context, bl_material, usd_material):
stage = export_context.get_stage()
if stage.expired:
raise RuntimeError("Unexpected failure: bad stage")
if not usd_material.GetPrim().IsValid():
raise RuntimeError("Unexpected failure: bad usd_material")
if bl_material is None:
raise RuntimeError("Unexpected failure: bad bl_material")
return USDHookBase.follow_instructions(name, "on_material_export")
@staticmethod
def do_on_import(name, import_context):
stage = import_context.get_stage()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
return USDHookBase.follow_instructions(name, "on_import")
class USDHook1(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_1"
bl_label = "Hook 1"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook1.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook1.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook1.bl_label, import_context)
class USDHook2(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_2"
bl_label = "Hook 2"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook2.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook2.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook2.bl_label, import_context)
def main():
global args
import argparse
if "--" in sys.argv:
argv = [sys.argv[0]] + sys.argv[sys.argv.index("--") + 1:]
else:
argv = sys.argv
parser = argparse.ArgumentParser()
parser.add_argument("--testdir", required=True, type=pathlib.Path)
args, remaining = parser.parse_known_args(argv)
unittest.main(argv=remaining)
if __name__ == "__main__":
main()