Files
test2/intern/cycles/scene/scene.cpp
Sergey Sharybin 0d73d5c1a2 Fix frozen image editor when Cycles compiles kernels
It is possible that the image editor redraw happens prior to the
"Loading render kernels" status is reported from status but after
the display driver is created. This will make the image editor to
wait on the scene mutex to update the display pass in the film.
If it happens to be that the kernels are actually to be compiled
then the Blender interface appears to be completely frozen, without
any information line in the image editor.

This change makes it so the amount of time the scene mutex is held
during the kernel compilation is minimal.

It is a bit unideal to unlock and re-lock the scene mutex in the
middle of update, while nested reset mutex is held, but this is
already what is needed for the OptiX denoiser optimization some
lines below. We can probably reduce the lifetime of some locks,
avoiding such potential out-of-order re-locking. Doing so is
outside of the scope of this patch.

The scene update only happens from the single place in the session,
which makes it easy to ensure the kernels are loaded prior the rest
of the scene update.

Not only this change makes it so that the "Loading render kernels"
status appears in the image editor, but also allows to pan and zoom
in the image editor, potentially allowing artists to re-adjust their
point of interest.

Differential Revision: https://developer.blender.org/D16581
2022-11-23 10:23:05 +01:00

1007 lines
30 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#include <stdlib.h>
#include "bvh/bvh.h"
#include "device/device.h"
#include "scene/alembic.h"
#include "scene/background.h"
#include "scene/bake.h"
#include "scene/camera.h"
#include "scene/curves.h"
#include "scene/film.h"
#include "scene/integrator.h"
#include "scene/light.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/osl.h"
#include "scene/particles.h"
#include "scene/pointcloud.h"
#include "scene/procedural.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/svm.h"
#include "scene/tables.h"
#include "scene/volume.h"
#include "session/session.h"
#include "util/foreach.h"
#include "util/guarded_allocator.h"
#include "util/log.h"
#include "util/progress.h"
CCL_NAMESPACE_BEGIN
DeviceScene::DeviceScene(Device *device)
: bvh_nodes(device, "bvh_nodes", MEM_GLOBAL),
bvh_leaf_nodes(device, "bvh_leaf_nodes", MEM_GLOBAL),
object_node(device, "object_node", MEM_GLOBAL),
prim_type(device, "prim_type", MEM_GLOBAL),
prim_visibility(device, "prim_visibility", MEM_GLOBAL),
prim_index(device, "prim_index", MEM_GLOBAL),
prim_object(device, "prim_object", MEM_GLOBAL),
prim_time(device, "prim_time", MEM_GLOBAL),
tri_verts(device, "tri_verts", MEM_GLOBAL),
tri_shader(device, "tri_shader", MEM_GLOBAL),
tri_vnormal(device, "tri_vnormal", MEM_GLOBAL),
tri_vindex(device, "tri_vindex", MEM_GLOBAL),
tri_patch(device, "tri_patch", MEM_GLOBAL),
tri_patch_uv(device, "tri_patch_uv", MEM_GLOBAL),
curves(device, "curves", MEM_GLOBAL),
curve_keys(device, "curve_keys", MEM_GLOBAL),
curve_segments(device, "curve_segments", MEM_GLOBAL),
patches(device, "patches", MEM_GLOBAL),
points(device, "points", MEM_GLOBAL),
points_shader(device, "points_shader", MEM_GLOBAL),
objects(device, "objects", MEM_GLOBAL),
object_motion_pass(device, "object_motion_pass", MEM_GLOBAL),
object_motion(device, "object_motion", MEM_GLOBAL),
object_flag(device, "object_flag", MEM_GLOBAL),
object_volume_step(device, "object_volume_step", MEM_GLOBAL),
object_prim_offset(device, "object_prim_offset", MEM_GLOBAL),
camera_motion(device, "camera_motion", MEM_GLOBAL),
attributes_map(device, "attributes_map", MEM_GLOBAL),
attributes_float(device, "attributes_float", MEM_GLOBAL),
attributes_float2(device, "attributes_float2", MEM_GLOBAL),
attributes_float3(device, "attributes_float3", MEM_GLOBAL),
attributes_float4(device, "attributes_float4", MEM_GLOBAL),
attributes_uchar4(device, "attributes_uchar4", MEM_GLOBAL),
light_distribution(device, "light_distribution", MEM_GLOBAL),
lights(device, "lights", MEM_GLOBAL),
light_background_marginal_cdf(device, "light_background_marginal_cdf", MEM_GLOBAL),
light_background_conditional_cdf(device, "light_background_conditional_cdf", MEM_GLOBAL),
particles(device, "particles", MEM_GLOBAL),
svm_nodes(device, "svm_nodes", MEM_GLOBAL),
shaders(device, "shaders", MEM_GLOBAL),
lookup_table(device, "lookup_table", MEM_GLOBAL),
sample_pattern_lut(device, "sample_pattern_lut", MEM_GLOBAL),
ies_lights(device, "ies", MEM_GLOBAL)
{
memset((void *)&data, 0, sizeof(data));
}
Scene::Scene(const SceneParams &params_, Device *device)
: name("Scene"),
bvh(NULL),
default_surface(NULL),
default_volume(NULL),
default_light(NULL),
default_background(NULL),
default_empty(NULL),
device(device),
dscene(device),
params(params_),
update_stats(NULL),
kernels_loaded(false),
/* TODO(sergey): Check if it's indeed optimal value for the split kernel. */
max_closure_global(1)
{
memset((void *)&dscene.data, 0, sizeof(dscene.data));
/* OSL only works on the CPU */
if (device->info.has_osl)
shader_manager = ShaderManager::create(params.shadingsystem);
else
shader_manager = ShaderManager::create(SHADINGSYSTEM_SVM);
light_manager = new LightManager();
geometry_manager = new GeometryManager();
object_manager = new ObjectManager();
image_manager = new ImageManager(device->info);
particle_system_manager = new ParticleSystemManager();
bake_manager = new BakeManager();
procedural_manager = new ProceduralManager();
/* Create nodes after managers, since create_node() can tag the managers. */
camera = create_node<Camera>();
dicing_camera = create_node<Camera>();
lookup_tables = new LookupTables();
film = create_node<Film>();
background = create_node<Background>();
integrator = create_node<Integrator>();
film->add_default(this);
shader_manager->add_default(this);
}
Scene::~Scene()
{
free_memory(true);
}
void Scene::free_memory(bool final)
{
delete bvh;
bvh = NULL;
/* The order of deletion is important to make sure data is freed based on possible dependencies
* as the Nodes' reference counts are decremented in the destructors:
*
* - Procedurals can create and hold pointers to any other types.
* - Objects can hold pointers to Geometries and ParticleSystems
* - Lights and Geometries can hold pointers to Shaders.
*
* Similarly, we first delete all nodes and their associated device data, and then the managers
* and their associated device data.
*/
foreach (Procedural *p, procedurals)
delete p;
foreach (Object *o, objects)
delete o;
foreach (Geometry *g, geometry)
delete g;
foreach (ParticleSystem *p, particle_systems)
delete p;
foreach (Light *l, lights)
delete l;
foreach (Pass *p, passes)
delete p;
geometry.clear();
objects.clear();
lights.clear();
particle_systems.clear();
procedurals.clear();
passes.clear();
if (device) {
camera->device_free(device, &dscene, this);
film->device_free(device, &dscene, this);
background->device_free(device, &dscene);
integrator->device_free(device, &dscene, true);
}
if (final) {
delete camera;
delete dicing_camera;
delete film;
delete background;
delete integrator;
}
/* Delete Shaders after every other nodes to ensure that we do not try to decrement the reference
* count on some dangling pointer. */
foreach (Shader *s, shaders)
delete s;
shaders.clear();
/* Now that all nodes have been deleted, we can safely delete managers and device data. */
if (device) {
object_manager->device_free(device, &dscene, true);
geometry_manager->device_free(device, &dscene, true);
shader_manager->device_free(device, &dscene, this);
light_manager->device_free(device, &dscene);
particle_system_manager->device_free(device, &dscene);
bake_manager->device_free(device, &dscene);
if (final)
image_manager->device_free(device);
else
image_manager->device_free_builtin(device);
lookup_tables->device_free(device, &dscene);
}
if (final) {
delete lookup_tables;
delete object_manager;
delete geometry_manager;
delete shader_manager;
delete light_manager;
delete particle_system_manager;
delete image_manager;
delete bake_manager;
delete update_stats;
delete procedural_manager;
}
}
void Scene::device_update(Device *device_, Progress &progress)
{
if (!device)
device = device_;
bool print_stats = need_data_update();
if (update_stats) {
update_stats->clear();
}
scoped_callback_timer timer([this, print_stats](double time) {
if (update_stats) {
update_stats->scene.times.add_entry({"device_update", time});
if (print_stats) {
printf("Update statistics:\n%s\n", update_stats->full_report().c_str());
}
}
});
/* The order of updates is important, because there's dependencies between
* the different managers, using data computed by previous managers.
*
* - Image manager uploads images used by shaders.
* - Camera may be used for adaptive subdivision.
* - Displacement shader must have all shader data available.
* - Light manager needs lookup tables and final mesh data to compute emission CDF.
* - Lookup tables are done a second time to handle film tables
*/
if (film->update_lightgroups(this)) {
light_manager->tag_update(this, ccl::LightManager::LIGHT_MODIFIED);
object_manager->tag_update(this, ccl::ObjectManager::OBJECT_MODIFIED);
}
progress.set_status("Updating Shaders");
shader_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
procedural_manager->update(this, progress);
if (progress.get_cancel())
return;
progress.set_status("Updating Background");
background->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera");
camera->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
geometry_manager->device_update_preprocess(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects");
object_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Particle Systems");
particle_system_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Meshes");
geometry_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects Flags");
object_manager->device_update_flags(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Primitive Offsets");
object_manager->device_update_prim_offsets(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Images");
image_manager->device_update(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera Volume");
camera->device_update_volume(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lights");
light_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Integrator");
integrator->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Film");
film->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Baking");
bake_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
if (device->have_error() == false) {
dscene.data.volume_stack_size = get_volume_stack_size();
progress.set_status("Updating Device", "Writing constant memory");
device->const_copy_to("data", &dscene.data, sizeof(dscene.data));
}
device->optimize_for_scene(this);
if (print_stats) {
size_t mem_used = util_guarded_get_mem_used();
size_t mem_peak = util_guarded_get_mem_peak();
VLOG_INFO << "System memory statistics after full device sync:\n"
<< " Usage: " << string_human_readable_number(mem_used) << " ("
<< string_human_readable_size(mem_used) << ")\n"
<< " Peak: " << string_human_readable_number(mem_peak) << " ("
<< string_human_readable_size(mem_peak) << ")";
}
}
Scene::MotionType Scene::need_motion() const
{
if (integrator->get_motion_blur())
return MOTION_BLUR;
else if (Pass::contains(passes, PASS_MOTION))
return MOTION_PASS;
else
return MOTION_NONE;
}
float Scene::motion_shutter_time()
{
if (need_motion() == Scene::MOTION_PASS)
return 2.0f;
else
return camera->get_shuttertime();
}
bool Scene::need_global_attribute(AttributeStandard std)
{
if (std == ATTR_STD_UV)
return Pass::contains(passes, PASS_UV);
else if (std == ATTR_STD_MOTION_VERTEX_POSITION)
return need_motion() != MOTION_NONE;
else if (std == ATTR_STD_MOTION_VERTEX_NORMAL)
return need_motion() == MOTION_BLUR;
else if (std == ATTR_STD_VOLUME_VELOCITY || std == ATTR_STD_VOLUME_VELOCITY_X ||
std == ATTR_STD_VOLUME_VELOCITY_Y || std == ATTR_STD_VOLUME_VELOCITY_Z) {
return need_motion() != MOTION_NONE;
}
return false;
}
void Scene::need_global_attributes(AttributeRequestSet &attributes)
{
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++)
if (need_global_attribute((AttributeStandard)std))
attributes.add((AttributeStandard)std);
}
bool Scene::need_update()
{
return (need_reset() || film->is_modified());
}
bool Scene::need_data_update()
{
return (background->is_modified() || image_manager->need_update() ||
object_manager->need_update() || geometry_manager->need_update() ||
light_manager->need_update() || lookup_tables->need_update() ||
integrator->is_modified() || shader_manager->need_update() ||
particle_system_manager->need_update() || bake_manager->need_update() ||
film->is_modified() || procedural_manager->need_update());
}
bool Scene::need_reset(const bool check_camera)
{
return need_data_update() || (check_camera && camera->is_modified());
}
void Scene::reset()
{
shader_manager->reset(this);
shader_manager->add_default(this);
/* ensure all objects are updated */
camera->tag_modified();
dicing_camera->tag_modified();
film->tag_modified();
background->tag_modified();
background->tag_update(this);
integrator->tag_update(this, Integrator::UPDATE_ALL);
object_manager->tag_update(this, ObjectManager::UPDATE_ALL);
geometry_manager->tag_update(this, GeometryManager::UPDATE_ALL);
light_manager->tag_update(this, LightManager::UPDATE_ALL);
particle_system_manager->tag_update(this);
procedural_manager->tag_update();
}
void Scene::device_free()
{
free_memory(false);
}
void Scene::collect_statistics(RenderStats *stats)
{
geometry_manager->collect_statistics(this, stats);
image_manager->collect_statistics(stats);
}
void Scene::enable_update_stats()
{
if (!update_stats) {
update_stats = new SceneUpdateStats();
}
}
void Scene::update_kernel_features()
{
if (!need_update()) {
return;
}
thread_scoped_lock scene_lock(mutex);
/* These features are not being tweaked as often as shaders,
* so could be done selective magic for the viewport as well. */
uint kernel_features = shader_manager->get_kernel_features(this);
bool use_motion = need_motion() == Scene::MotionType::MOTION_BLUR;
kernel_features |= KERNEL_FEATURE_PATH_TRACING;
if (params.hair_shape == CURVE_THICK) {
kernel_features |= KERNEL_FEATURE_HAIR_THICK;
}
/* Figure out whether the scene will use shader ray-trace we need at least
* one caustic light, one caustic caster and one caustic receiver to use
* and enable the MNEE code path. */
bool has_caustics_receiver = false;
bool has_caustics_caster = false;
bool has_caustics_light = false;
foreach (Object *object, objects) {
if (object->get_is_caustics_caster()) {
has_caustics_caster = true;
}
else if (object->get_is_caustics_receiver()) {
has_caustics_receiver = true;
}
Geometry *geom = object->get_geometry();
if (use_motion) {
if (object->use_motion() || geom->get_use_motion_blur()) {
kernel_features |= KERNEL_FEATURE_OBJECT_MOTION;
}
}
if (object->get_is_shadow_catcher()) {
kernel_features |= KERNEL_FEATURE_SHADOW_CATCHER;
}
if (geom->is_mesh()) {
#ifdef WITH_OPENSUBDIV
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->get_subdivision_type() != Mesh::SUBDIVISION_NONE) {
kernel_features |= KERNEL_FEATURE_PATCH_EVALUATION;
}
#endif
}
else if (geom->is_hair()) {
kernel_features |= KERNEL_FEATURE_HAIR;
}
else if (geom->is_pointcloud()) {
kernel_features |= KERNEL_FEATURE_POINTCLOUD;
}
}
foreach (Light *light, lights) {
if (light->get_use_caustics()) {
has_caustics_light = true;
}
}
dscene.data.integrator.use_caustics = false;
if (has_caustics_caster && has_caustics_receiver && has_caustics_light) {
dscene.data.integrator.use_caustics = true;
kernel_features |= KERNEL_FEATURE_MNEE;
}
if (integrator->get_guiding_params(device).use) {
kernel_features |= KERNEL_FEATURE_PATH_GUIDING;
}
if (bake_manager->get_baking()) {
kernel_features |= KERNEL_FEATURE_BAKING;
}
kernel_features |= film->get_kernel_features(this);
kernel_features |= integrator->get_kernel_features();
dscene.data.kernel_features = kernel_features;
/* Currently viewport render is faster with higher max_closures, needs investigating. */
const uint max_closures = (params.background) ? get_max_closure_count() : MAX_CLOSURE;
dscene.data.max_closures = max_closures;
dscene.data.max_shaders = shaders.size();
}
bool Scene::update(Progress &progress)
{
if (!need_update()) {
return false;
}
/* Upload scene data to the GPU. */
progress.set_status("Updating Scene");
MEM_GUARDED_CALL(&progress, device_update, device, progress);
return true;
}
static void log_kernel_features(const uint features)
{
VLOG_INFO << "Requested features:\n";
VLOG_INFO << "Use BSDF " << string_from_bool(features & KERNEL_FEATURE_NODE_BSDF) << "\n";
VLOG_INFO << "Use Emission " << string_from_bool(features & KERNEL_FEATURE_NODE_EMISSION)
<< "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_NODE_VOLUME) << "\n";
VLOG_INFO << "Use Bump " << string_from_bool(features & KERNEL_FEATURE_NODE_BUMP) << "\n";
VLOG_INFO << "Use Voronoi " << string_from_bool(features & KERNEL_FEATURE_NODE_VORONOI_EXTRA)
<< "\n";
VLOG_INFO << "Use Shader Raytrace " << string_from_bool(features & KERNEL_FEATURE_NODE_RAYTRACE)
<< "\n";
VLOG_INFO << "Use MNEE" << string_from_bool(features & KERNEL_FEATURE_MNEE) << "\n";
VLOG_INFO << "Use Transparent " << string_from_bool(features & KERNEL_FEATURE_TRANSPARENT)
<< "\n";
VLOG_INFO << "Use Denoising " << string_from_bool(features & KERNEL_FEATURE_DENOISING) << "\n";
VLOG_INFO << "Use Path Tracing " << string_from_bool(features & KERNEL_FEATURE_PATH_TRACING)
<< "\n";
VLOG_INFO << "Use Hair " << string_from_bool(features & KERNEL_FEATURE_HAIR) << "\n";
VLOG_INFO << "Use Pointclouds " << string_from_bool(features & KERNEL_FEATURE_POINTCLOUD)
<< "\n";
VLOG_INFO << "Use Object Motion " << string_from_bool(features & KERNEL_FEATURE_OBJECT_MOTION)
<< "\n";
VLOG_INFO << "Use Baking " << string_from_bool(features & KERNEL_FEATURE_BAKING) << "\n";
VLOG_INFO << "Use Subsurface " << string_from_bool(features & KERNEL_FEATURE_SUBSURFACE) << "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_VOLUME) << "\n";
VLOG_INFO << "Use Patch Evaluation "
<< string_from_bool(features & KERNEL_FEATURE_PATCH_EVALUATION) << "\n";
VLOG_INFO << "Use Shadow Catcher " << string_from_bool(features & KERNEL_FEATURE_SHADOW_CATCHER)
<< "\n";
}
bool Scene::load_kernels(Progress &progress)
{
update_kernel_features();
const uint kernel_features = dscene.data.kernel_features;
if (!kernels_loaded || loaded_kernel_features != kernel_features) {
progress.set_status("Loading render kernels (may take a few minutes the first time)");
scoped_timer timer;
log_kernel_features(kernel_features);
if (!device->load_kernels(kernel_features)) {
string message = device->error_message();
if (message.empty())
message = "Failed loading render kernel, see console for errors";
progress.set_error(message);
progress.set_status(message);
progress.set_update();
return false;
}
kernels_loaded = true;
loaded_kernel_features = kernel_features;
return true;
}
return false;
}
int Scene::get_max_closure_count()
{
if (shader_manager->use_osl()) {
/* OSL always needs the maximum as we can't predict the
* number of closures a shader might generate. */
return MAX_CLOSURE;
}
int max_closures = 0;
for (int i = 0; i < shaders.size(); i++) {
Shader *shader = shaders[i];
if (shader->reference_count()) {
int num_closures = shader->graph->get_num_closures();
max_closures = max(max_closures, num_closures);
}
}
max_closure_global = max(max_closure_global, max_closures);
if (max_closure_global > MAX_CLOSURE) {
/* This is usually harmless as more complex shader tend to get many
* closures discarded due to mixing or low weights. We need to limit
* to MAX_CLOSURE as this is hardcoded in CPU/mega kernels, and it
* avoids excessive memory usage for split kernels. */
VLOG_WARNING << "Maximum number of closures exceeded: " << max_closure_global << " > "
<< MAX_CLOSURE;
max_closure_global = MAX_CLOSURE;
}
return max_closure_global;
}
int Scene::get_volume_stack_size() const
{
int volume_stack_size = 0;
/* Space for background volume and terminator.
* Don't do optional here because camera ray initialization expects that there is space for
* at least those elements (avoiding extra condition to check if there is actual volume or not).
*/
volume_stack_size += 2;
/* Quick non-expensive check. Can over-estimate maximum possible nested level, but does not
* require expensive calculation during pre-processing. */
bool has_volume_object = false;
for (const Object *object : objects) {
if (!object->get_geometry()->has_volume) {
continue;
}
if (object->intersects_volume) {
/* Object intersects another volume, assume it's possible to go deeper in the stack. */
/* TODO(sergey): This might count nesting twice (A intersects B and B intersects A), but
* can't think of a computationally cheap algorithm. Dividing my 2 doesn't work because of
* Venn diagram example with 3 circles. */
++volume_stack_size;
}
else if (!has_volume_object) {
/* Allocate space for at least one volume object. */
++volume_stack_size;
}
has_volume_object = true;
if (volume_stack_size == MAX_VOLUME_STACK_SIZE) {
break;
}
}
volume_stack_size = min(volume_stack_size, MAX_VOLUME_STACK_SIZE);
VLOG_WORK << "Detected required volume stack size " << volume_stack_size;
return volume_stack_size;
}
bool Scene::has_shadow_catcher()
{
if (shadow_catcher_modified_) {
has_shadow_catcher_ = false;
for (Object *object : objects) {
if (object->get_is_shadow_catcher()) {
has_shadow_catcher_ = true;
break;
}
}
shadow_catcher_modified_ = false;
}
return has_shadow_catcher_;
}
void Scene::tag_shadow_catcher_modified()
{
shadow_catcher_modified_ = true;
}
template<> Light *Scene::create_node<Light>()
{
Light *node = new Light();
node->set_owner(this);
lights.push_back(node);
light_manager->tag_update(this, LightManager::LIGHT_ADDED);
return node;
}
template<> Mesh *Scene::create_node<Mesh>()
{
Mesh *node = new Mesh();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Hair *Scene::create_node<Hair>()
{
Hair *node = new Hair();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::HAIR_ADDED);
return node;
}
template<> Volume *Scene::create_node<Volume>()
{
Volume *node = new Volume();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> PointCloud *Scene::create_node<PointCloud>()
{
PointCloud *node = new PointCloud();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::POINT_ADDED);
return node;
}
template<> Object *Scene::create_node<Object>()
{
Object *node = new Object();
node->set_owner(this);
objects.push_back(node);
object_manager->tag_update(this, ObjectManager::OBJECT_ADDED);
return node;
}
template<> ParticleSystem *Scene::create_node<ParticleSystem>()
{
ParticleSystem *node = new ParticleSystem();
node->set_owner(this);
particle_systems.push_back(node);
particle_system_manager->tag_update(this);
return node;
}
template<> Shader *Scene::create_node<Shader>()
{
Shader *node = new Shader();
node->set_owner(this);
shaders.push_back(node);
shader_manager->tag_update(this, ShaderManager::SHADER_ADDED);
return node;
}
template<> AlembicProcedural *Scene::create_node<AlembicProcedural>()
{
#ifdef WITH_ALEMBIC
AlembicProcedural *node = new AlembicProcedural();
node->set_owner(this);
procedurals.push_back(node);
procedural_manager->tag_update();
return node;
#else
return nullptr;
#endif
}
template<> Pass *Scene::create_node<Pass>()
{
Pass *node = new Pass();
node->set_owner(this);
passes.push_back(node);
film->tag_modified();
return node;
}
template<typename T> void delete_node_from_array(vector<T> &nodes, T node)
{
for (size_t i = 0; i < nodes.size(); ++i) {
if (nodes[i] == node) {
std::swap(nodes[i], nodes[nodes.size() - 1]);
break;
}
}
nodes.resize(nodes.size() - 1);
delete node;
}
template<> void Scene::delete_node_impl(Light *node)
{
delete_node_from_array(lights, node);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_node_impl(Mesh *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Hair *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::HAIR_REMOVED);
}
template<> void Scene::delete_node_impl(Volume *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(PointCloud *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::POINT_REMOVED);
}
template<> void Scene::delete_node_impl(Geometry *node)
{
uint flag;
if (node->is_hair()) {
flag = GeometryManager::HAIR_REMOVED;
}
else {
flag = GeometryManager::MESH_REMOVED;
}
delete_node_from_array(geometry, node);
geometry_manager->tag_update(this, flag);
}
template<> void Scene::delete_node_impl(Object *node)
{
delete_node_from_array(objects, node);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_node_impl(ParticleSystem *node)
{
delete_node_from_array(particle_systems, node);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_node_impl(Shader *shader)
{
/* don't delete unused shaders, not supported */
shader->clear_reference_count();
}
template<> void Scene::delete_node_impl(Procedural *node)
{
delete_node_from_array(procedurals, node);
procedural_manager->tag_update();
}
template<> void Scene::delete_node_impl(AlembicProcedural *node)
{
#ifdef WITH_ALEMBIC
delete_node_impl(static_cast<Procedural *>(node));
#else
(void)node;
#endif
}
template<> void Scene::delete_node_impl(Pass *node)
{
delete_node_from_array(passes, node);
film->tag_modified();
}
template<typename T>
static void remove_nodes_in_set(const set<T *> &nodes_set,
vector<T *> &nodes_array,
const NodeOwner *owner)
{
size_t new_size = nodes_array.size();
for (size_t i = 0; i < new_size; ++i) {
T *node = nodes_array[i];
if (nodes_set.find(node) != nodes_set.end()) {
std::swap(nodes_array[i], nodes_array[new_size - 1]);
assert(node->get_owner() == owner);
delete node;
i -= 1;
new_size -= 1;
}
}
nodes_array.resize(new_size);
(void)owner;
}
template<> void Scene::delete_nodes(const set<Light *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, lights, owner);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_nodes(const set<Geometry *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, geometry, owner);
geometry_manager->tag_update(this, GeometryManager::GEOMETRY_REMOVED);
}
template<> void Scene::delete_nodes(const set<Object *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, objects, owner);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_nodes(const set<ParticleSystem *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, particle_systems, owner);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_nodes(const set<Shader *> &nodes, const NodeOwner * /*owner*/)
{
/* don't delete unused shaders, not supported */
for (Shader *shader : nodes) {
shader->clear_reference_count();
}
}
template<> void Scene::delete_nodes(const set<Procedural *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, procedurals, owner);
procedural_manager->tag_update();
}
template<> void Scene::delete_nodes(const set<Pass *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, passes, owner);
film->tag_modified();
}
CCL_NAMESPACE_END