Files
test2/intern/libmv/libmv/multiview/fundamental.cc
Sergey Sharybin 0dd9a4a576 Cleanup: Libmv, clang-format
Is based on Google style which was used in the Libmv project before,
but is now consistently applied for the sources of the library itself
and to C-API. With some time C-API will likely be removed, and it
makes it easier to make it follow Libmv style, hence the diversion
from Blender's style.

There are quite some exceptions (clang-format off) in the code around
Eigen matrix initialization. It is rather annoying, and there could be
some neat way to make initialization readable without such exception.

Could be some places where loss of readability in matrix initialization
got lost as the change is quite big. If this has happened it is easier
to address readability once actually working on the code.

This change allowed to spot some missing header guards, so that's nice.

Doing it in bundled version, as the upstream library needs to have some
of the recent development ported over from bundle to upstream.

There should be no functional changes.
2021-03-05 15:05:08 +01:00

542 lines
17 KiB
C++

// Copyright (c) 2007, 2008 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
#include "libmv/multiview/fundamental.h"
#include "ceres/ceres.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/conditioning.h"
#include "libmv/multiview/projection.h"
#include "libmv/multiview/triangulation.h"
#include "libmv/numeric/numeric.h"
#include "libmv/numeric/poly.h"
namespace libmv {
static void EliminateRow(const Mat34& P, int row, Mat* X) {
X->resize(2, 4);
int first_row = (row + 1) % 3;
int second_row = (row + 2) % 3;
for (int i = 0; i < 4; ++i) {
(*X)(0, i) = P(first_row, i);
(*X)(1, i) = P(second_row, i);
}
}
void ProjectionsFromFundamental(const Mat3& F, Mat34* P1, Mat34* P2) {
*P1 << Mat3::Identity(), Vec3::Zero();
Vec3 e2;
Mat3 Ft = F.transpose();
Nullspace(&Ft, &e2);
*P2 << CrossProductMatrix(e2) * F, e2;
}
// Addapted from vgg_F_from_P.
void FundamentalFromProjections(const Mat34& P1, const Mat34& P2, Mat3* F) {
Mat X[3];
Mat Y[3];
Mat XY;
for (int i = 0; i < 3; ++i) {
EliminateRow(P1, i, X + i);
EliminateRow(P2, i, Y + i);
}
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
VerticalStack(X[j], Y[i], &XY);
(*F)(i, j) = XY.determinant();
}
}
}
// HZ 11.1 pag.279 (x1 = x, x2 = x')
// http://www.cs.unc.edu/~marc/tutorial/node54.html
static double EightPointSolver(const Mat& x1, const Mat& x2, Mat3* F) {
DCHECK_EQ(x1.rows(), 2);
DCHECK_GE(x1.cols(), 8);
DCHECK_EQ(x1.rows(), x2.rows());
DCHECK_EQ(x1.cols(), x2.cols());
int n = x1.cols();
Mat A(n, 9);
for (int i = 0; i < n; ++i) {
A(i, 0) = x2(0, i) * x1(0, i);
A(i, 1) = x2(0, i) * x1(1, i);
A(i, 2) = x2(0, i);
A(i, 3) = x2(1, i) * x1(0, i);
A(i, 4) = x2(1, i) * x1(1, i);
A(i, 5) = x2(1, i);
A(i, 6) = x1(0, i);
A(i, 7) = x1(1, i);
A(i, 8) = 1;
}
Vec9 f;
double smaller_singular_value = Nullspace(&A, &f);
*F = Map<RMat3>(f.data());
return smaller_singular_value;
}
// HZ 11.1.1 pag.280
void EnforceFundamentalRank2Constraint(Mat3* F) {
Eigen::JacobiSVD<Mat3> USV(*F, Eigen::ComputeFullU | Eigen::ComputeFullV);
Vec3 d = USV.singularValues();
d(2) = 0.0;
*F = USV.matrixU() * d.asDiagonal() * USV.matrixV().transpose();
}
// HZ 11.2 pag.281 (x1 = x, x2 = x')
double NormalizedEightPointSolver(const Mat& x1, const Mat& x2, Mat3* F) {
DCHECK_EQ(x1.rows(), 2);
DCHECK_GE(x1.cols(), 8);
DCHECK_EQ(x1.rows(), x2.rows());
DCHECK_EQ(x1.cols(), x2.cols());
// Normalize the data.
Mat3 T1, T2;
PreconditionerFromPoints(x1, &T1);
PreconditionerFromPoints(x2, &T2);
Mat x1_normalized, x2_normalized;
ApplyTransformationToPoints(x1, T1, &x1_normalized);
ApplyTransformationToPoints(x2, T2, &x2_normalized);
// Estimate the fundamental matrix.
double smaller_singular_value =
EightPointSolver(x1_normalized, x2_normalized, F);
EnforceFundamentalRank2Constraint(F);
// Denormalize the fundamental matrix.
*F = T2.transpose() * (*F) * T1;
return smaller_singular_value;
}
// Seven-point algorithm.
// http://www.cs.unc.edu/~marc/tutorial/node55.html
double FundamentalFrom7CorrespondencesLinear(const Mat& x1,
const Mat& x2,
std::vector<Mat3>* F) {
DCHECK_EQ(x1.rows(), 2);
DCHECK_EQ(x1.cols(), 7);
DCHECK_EQ(x1.rows(), x2.rows());
DCHECK_EQ(x2.cols(), x2.cols());
// Build a 9 x n matrix from point matches, where each row is equivalent to
// the equation x'T*F*x = 0 for a single correspondence pair (x', x). The
// domain of the matrix is a 9 element vector corresponding to F. The
// nullspace should be rank two; the two dimensions correspond to the set of
// F matrices satisfying the epipolar geometry.
Matrix<double, 7, 9> A;
for (int ii = 0; ii < 7; ++ii) {
A(ii, 0) = x1(0, ii) * x2(0, ii); // 0 represents x coords,
A(ii, 1) = x1(1, ii) * x2(0, ii); // 1 represents y coords.
A(ii, 2) = x2(0, ii);
A(ii, 3) = x1(0, ii) * x2(1, ii);
A(ii, 4) = x1(1, ii) * x2(1, ii);
A(ii, 5) = x2(1, ii);
A(ii, 6) = x1(0, ii);
A(ii, 7) = x1(1, ii);
A(ii, 8) = 1.0;
}
// Find the two F matrices in the nullspace of A.
Vec9 f1, f2;
double s = Nullspace2(&A, &f1, &f2);
Mat3 F1 = Map<RMat3>(f1.data());
Mat3 F2 = Map<RMat3>(f2.data());
// Then, use the condition det(F) = 0 to determine F. In other words, solve
// det(F1 + a*F2) = 0 for a.
double a = F1(0, 0), j = F2(0, 0);
double b = F1(0, 1), k = F2(0, 1);
double c = F1(0, 2), l = F2(0, 2);
double d = F1(1, 0), m = F2(1, 0);
double e = F1(1, 1), n = F2(1, 1);
double f = F1(1, 2), o = F2(1, 2);
double g = F1(2, 0), p = F2(2, 0);
double h = F1(2, 1), q = F2(2, 1);
double i = F1(2, 2), r = F2(2, 2);
// Run fundamental_7point_coeffs.py to get the below coefficients.
// The coefficients are in ascending powers of alpha, i.e. P[N]*x^N.
double P[4] = {
a * e * i + b * f * g + c * d * h - a * f * h - b * d * i - c * e * g,
a * e * r + a * i * n + b * f * p + b * g * o + c * d * q + c * h * m +
d * h * l + e * i * j + f * g * k - a * f * q - a * h * o -
b * d * r - b * i * m - c * e * p - c * g * n - d * i * k -
e * g * l - f * h * j,
a * n * r + b * o * p + c * m * q + d * l * q + e * j * r + f * k * p +
g * k * o + h * l * m + i * j * n - a * o * q - b * m * r -
c * n * p - d * k * r - e * l * p - f * j * q - g * l * n -
h * j * o - i * k * m,
j * n * r + k * o * p + l * m * q - j * o * q - k * m * r - l * n * p,
};
// Solve for the roots of P[3]*x^3 + P[2]*x^2 + P[1]*x + P[0] = 0.
double roots[3];
int num_roots = SolveCubicPolynomial(P, roots);
// Build the fundamental matrix for each solution.
for (int kk = 0; kk < num_roots; ++kk) {
F->push_back(F1 + roots[kk] * F2);
}
return s;
}
double FundamentalFromCorrespondences7Point(const Mat& x1,
const Mat& x2,
std::vector<Mat3>* F) {
DCHECK_EQ(x1.rows(), 2);
DCHECK_GE(x1.cols(), 7);
DCHECK_EQ(x1.rows(), x2.rows());
DCHECK_EQ(x1.cols(), x2.cols());
// Normalize the data.
Mat3 T1, T2;
PreconditionerFromPoints(x1, &T1);
PreconditionerFromPoints(x2, &T2);
Mat x1_normalized, x2_normalized;
ApplyTransformationToPoints(x1, T1, &x1_normalized);
ApplyTransformationToPoints(x2, T2, &x2_normalized);
// Estimate the fundamental matrix.
double smaller_singular_value = FundamentalFrom7CorrespondencesLinear(
x1_normalized, x2_normalized, &(*F));
for (int k = 0; k < F->size(); ++k) {
Mat3& Fmat = (*F)[k];
// Denormalize the fundamental matrix.
Fmat = T2.transpose() * Fmat * T1;
}
return smaller_singular_value;
}
void NormalizeFundamental(const Mat3& F, Mat3* F_normalized) {
*F_normalized = F / FrobeniusNorm(F);
if ((*F_normalized)(2, 2) < 0) {
*F_normalized *= -1;
}
}
double SampsonDistance(const Mat& F, const Vec2& x1, const Vec2& x2) {
Vec3 x(x1(0), x1(1), 1.0);
Vec3 y(x2(0), x2(1), 1.0);
Vec3 F_x = F * x;
Vec3 Ft_y = F.transpose() * y;
double y_F_x = y.dot(F_x);
return Square(y_F_x) /
(F_x.head<2>().squaredNorm() + Ft_y.head<2>().squaredNorm());
}
double SymmetricEpipolarDistance(const Mat& F, const Vec2& x1, const Vec2& x2) {
Vec3 x(x1(0), x1(1), 1.0);
Vec3 y(x2(0), x2(1), 1.0);
Vec3 F_x = F * x;
Vec3 Ft_y = F.transpose() * y;
double y_F_x = y.dot(F_x);
return Square(y_F_x) *
(1 / F_x.head<2>().squaredNorm() + 1 / Ft_y.head<2>().squaredNorm());
}
// HZ 9.6 pag 257 (formula 9.12)
void EssentialFromFundamental(const Mat3& F,
const Mat3& K1,
const Mat3& K2,
Mat3* E) {
*E = K2.transpose() * F * K1;
}
// HZ 9.6 pag 257 (formula 9.12)
// Or http://ai.stanford.edu/~birch/projective/node20.html
void FundamentalFromEssential(const Mat3& E,
const Mat3& K1,
const Mat3& K2,
Mat3* F) {
*F = K2.inverse().transpose() * E * K1.inverse();
}
void RelativeCameraMotion(const Mat3& R1,
const Vec3& t1,
const Mat3& R2,
const Vec3& t2,
Mat3* R,
Vec3* t) {
*R = R2 * R1.transpose();
*t = t2 - (*R) * t1;
}
// HZ 9.6 pag 257
void EssentialFromRt(
const Mat3& R1, const Vec3& t1, const Mat3& R2, const Vec3& t2, Mat3* E) {
Mat3 R;
Vec3 t;
RelativeCameraMotion(R1, t1, R2, t2, &R, &t);
Mat3 Tx = CrossProductMatrix(t);
*E = Tx * R;
}
// HZ 9.6 pag 259 (Result 9.19)
void MotionFromEssential(const Mat3& E,
std::vector<Mat3>* Rs,
std::vector<Vec3>* ts) {
Eigen::JacobiSVD<Mat3> USV(E, Eigen::ComputeFullU | Eigen::ComputeFullV);
Mat3 U = USV.matrixU();
Mat3 Vt = USV.matrixV().transpose();
// Last column of U is undetermined since d = (a a 0).
if (U.determinant() < 0) {
U.col(2) *= -1;
}
// Last row of Vt is undetermined since d = (a a 0).
if (Vt.determinant() < 0) {
Vt.row(2) *= -1;
}
Mat3 W;
// clang-format off
W << 0, -1, 0,
1, 0, 0,
0, 0, 1;
// clang-format on
Mat3 U_W_Vt = U * W * Vt;
Mat3 U_Wt_Vt = U * W.transpose() * Vt;
Rs->resize(4);
(*Rs)[0] = U_W_Vt;
(*Rs)[1] = U_W_Vt;
(*Rs)[2] = U_Wt_Vt;
(*Rs)[3] = U_Wt_Vt;
ts->resize(4);
(*ts)[0] = U.col(2);
(*ts)[1] = -U.col(2);
(*ts)[2] = U.col(2);
(*ts)[3] = -U.col(2);
}
int MotionFromEssentialChooseSolution(const std::vector<Mat3>& Rs,
const std::vector<Vec3>& ts,
const Mat3& K1,
const Vec2& x1,
const Mat3& K2,
const Vec2& x2) {
DCHECK_EQ(4, Rs.size());
DCHECK_EQ(4, ts.size());
Mat34 P1, P2;
Mat3 R1;
Vec3 t1;
R1.setIdentity();
t1.setZero();
P_From_KRt(K1, R1, t1, &P1);
for (int i = 0; i < 4; ++i) {
const Mat3& R2 = Rs[i];
const Vec3& t2 = ts[i];
P_From_KRt(K2, R2, t2, &P2);
Vec3 X;
TriangulateDLT(P1, x1, P2, x2, &X);
double d1 = Depth(R1, t1, X);
double d2 = Depth(R2, t2, X);
// Test if point is front to the two cameras.
if (d1 > 0 && d2 > 0) {
return i;
}
}
return -1;
}
bool MotionFromEssentialAndCorrespondence(const Mat3& E,
const Mat3& K1,
const Vec2& x1,
const Mat3& K2,
const Vec2& x2,
Mat3* R,
Vec3* t) {
std::vector<Mat3> Rs;
std::vector<Vec3> ts;
MotionFromEssential(E, &Rs, &ts);
int solution = MotionFromEssentialChooseSolution(Rs, ts, K1, x1, K2, x2);
if (solution >= 0) {
*R = Rs[solution];
*t = ts[solution];
return true;
} else {
return false;
}
}
void FundamentalToEssential(const Mat3& F, Mat3* E) {
Eigen::JacobiSVD<Mat3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
// See Hartley & Zisserman page 294, result 11.1, which shows how to get the
// closest essential matrix to a matrix that is "almost" an essential matrix.
double a = svd.singularValues()(0);
double b = svd.singularValues()(1);
double s = (a + b) / 2.0;
LG << "Initial reconstruction's rotation is non-euclidean by "
<< (((a - b) / std::max(a, b)) * 100)
<< "%; singular values:" << svd.singularValues().transpose();
Vec3 diag;
diag << s, s, 0;
*E = svd.matrixU() * diag.asDiagonal() * svd.matrixV().transpose();
}
// Default settings for fundamental estimation which should be suitable
// for a wide range of use cases.
EstimateFundamentalOptions::EstimateFundamentalOptions(void)
: max_num_iterations(50), expected_average_symmetric_distance(1e-16) {
}
namespace {
// Cost functor which computes symmetric epipolar distance
// used for fundamental matrix refinement.
class FundamentalSymmetricEpipolarCostFunctor {
public:
FundamentalSymmetricEpipolarCostFunctor(const Vec2& x, const Vec2& y)
: x_(x), y_(y) {}
template <typename T>
bool operator()(const T* fundamental_parameters, T* residuals) const {
typedef Eigen::Matrix<T, 3, 3> Mat3;
typedef Eigen::Matrix<T, 3, 1> Vec3;
Mat3 F(fundamental_parameters);
Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
Vec3 y(T(y_(0)), T(y_(1)), T(1.0));
Vec3 F_x = F * x;
Vec3 Ft_y = F.transpose() * y;
T y_F_x = y.dot(F_x);
residuals[0] = y_F_x * T(1) / F_x.head(2).norm();
residuals[1] = y_F_x * T(1) / Ft_y.head(2).norm();
return true;
}
const Mat x_;
const Mat y_;
};
// Termination checking callback used for fundamental estimation.
// It finished the minimization as soon as actual average of
// symmetric epipolar distance is less or equal to the expected
// average value.
class TerminationCheckingCallback : public ceres::IterationCallback {
public:
TerminationCheckingCallback(const Mat& x1,
const Mat& x2,
const EstimateFundamentalOptions& options,
Mat3* F)
: options_(options), x1_(x1), x2_(x2), F_(F) {}
virtual ceres::CallbackReturnType operator()(
const ceres::IterationSummary& summary) {
// If the step wasn't successful, there's nothing to do.
if (!summary.step_is_successful) {
return ceres::SOLVER_CONTINUE;
}
// Calculate average of symmetric epipolar distance.
double average_distance = 0.0;
for (int i = 0; i < x1_.cols(); i++) {
average_distance = SymmetricEpipolarDistance(*F_, x1_.col(i), x2_.col(i));
}
average_distance /= x1_.cols();
if (average_distance <= options_.expected_average_symmetric_distance) {
return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
}
return ceres::SOLVER_CONTINUE;
}
private:
const EstimateFundamentalOptions& options_;
const Mat& x1_;
const Mat& x2_;
Mat3* F_;
};
} // namespace
/* Fundamental transformation estimation. */
bool EstimateFundamentalFromCorrespondences(
const Mat& x1,
const Mat& x2,
const EstimateFundamentalOptions& options,
Mat3* F) {
// Step 1: Algebraic fundamental estimation.
// Assume algebraic estiation always succeeds,
NormalizedEightPointSolver(x1, x2, F);
LG << "Estimated matrix after algebraic estimation:\n" << *F;
// Step 2: Refine matrix using Ceres minimizer.
ceres::Problem problem;
for (int i = 0; i < x1.cols(); i++) {
FundamentalSymmetricEpipolarCostFunctor*
fundamental_symmetric_epipolar_cost_function =
new FundamentalSymmetricEpipolarCostFunctor(x1.col(i), x2.col(i));
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<FundamentalSymmetricEpipolarCostFunctor,
2, // num_residuals
9>(
fundamental_symmetric_epipolar_cost_function),
NULL,
F->data());
}
// Configure the solve.
ceres::Solver::Options solver_options;
solver_options.linear_solver_type = ceres::DENSE_QR;
solver_options.max_num_iterations = options.max_num_iterations;
solver_options.update_state_every_iteration = true;
// Terminate if the average symmetric distance is good enough.
TerminationCheckingCallback callback(x1, x2, options, F);
solver_options.callbacks.push_back(&callback);
// Run the solve.
ceres::Solver::Summary summary;
ceres::Solve(solver_options, &problem, &summary);
VLOG(1) << "Summary:\n" << summary.FullReport();
LG << "Final refined matrix:\n" << *F;
return summary.IsSolutionUsable();
}
} // namespace libmv