Files
test2/intern/libmv/libmv/tracking/brute_region_tracker.cc
Sergey Sharybin 0dd9a4a576 Cleanup: Libmv, clang-format
Is based on Google style which was used in the Libmv project before,
but is now consistently applied for the sources of the library itself
and to C-API. With some time C-API will likely be removed, and it
makes it easier to make it follow Libmv style, hence the diversion
from Blender's style.

There are quite some exceptions (clang-format off) in the code around
Eigen matrix initialization. It is rather annoying, and there could be
some neat way to make initialization readable without such exception.

Could be some places where loss of readability in matrix initialization
got lost as the change is quite big. If this has happened it is easier
to address readability once actually working on the code.

This change allowed to spot some missing header guards, so that's nice.

Doing it in bundled version, as the upstream library needs to have some
of the recent development ported over from bundle to upstream.

There should be no functional changes.
2021-03-05 15:05:08 +01:00

373 lines
14 KiB
C++

// Copyright (c) 2011 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
#include "libmv/tracking/brute_region_tracker.h"
#ifdef __SSE2__
# include <emmintrin.h>
#endif
#include "libmv/base/aligned_malloc.h"
#include "libmv/image/convolve.h"
#include "libmv/image/correlation.h"
#include "libmv/image/image.h"
#include "libmv/image/sample.h"
#include "libmv/logging/logging.h"
namespace libmv {
namespace {
bool RegionIsInBounds(const FloatImage& image1,
double x,
double y,
int half_window_size) {
// Check the minimum coordinates.
int min_x = floor(x) - half_window_size - 1;
int min_y = floor(y) - half_window_size - 1;
if (min_x < 0.0 || min_y < 0.0) {
return false;
}
// Check the maximum coordinates.
int max_x = ceil(x) + half_window_size + 1;
int max_y = ceil(y) + half_window_size + 1;
if (max_x > image1.cols() || max_y > image1.rows()) {
return false;
}
// Ok, we're good.
return true;
}
#ifdef __SSE2__
// Compute the sub of absolute differences between the arrays "a" and "b".
// The array "a" is assumed to be 16-byte aligned, while "b" is not. The
// result is returned as the first and third elements of __m128i if
// interpreted as a 4-element 32-bit integer array. The SAD is the sum of the
// elements.
//
// The function requires size % 16 valid extra elements at the end of both "a"
// and "b", since the SSE load instructionst will pull in memory past the end
// of the arrays if their size is not a multiple of 16.
inline static __m128i SumOfAbsoluteDifferencesContiguousSSE(
const unsigned char* a, // aligned
const unsigned char* b, // not aligned
unsigned int size,
__m128i sad) {
// Do the bulk of the work as 16-way integer operations.
for (unsigned int j = 0; j < size / 16; j++) {
sad = _mm_add_epi32(sad,
_mm_sad_epu8(_mm_load_si128((__m128i*)(a + 16 * j)),
_mm_loadu_si128((__m128i*)(b + 16 * j))));
}
// Handle the trailing end.
// TODO(keir): Benchmark to verify that the below SSE is a win compared to a
// hand-rolled loop. It's not clear that the hand rolled loop would be slower
// than the potential cache miss when loading the immediate table below.
//
// An alternative to this version is to take a packet of all 1's then do a
// 128-bit shift. The issue is that the shift instruction needs an immediate
// amount rather than a variable amount, so the branch instruction here must
// remain. See _mm_srli_si128 and _mm_slli_si128.
unsigned int remainder = size % 16u;
if (remainder) {
unsigned int j = size / 16;
__m128i a_trail = _mm_load_si128((__m128i*)(a + 16 * j));
__m128i b_trail = _mm_loadu_si128((__m128i*)(b + 16 * j));
__m128i mask;
switch (remainder) {
# define X 0xff
case 1:
mask = _mm_setr_epi8(X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 2:
mask = _mm_setr_epi8(X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 3:
mask = _mm_setr_epi8(X, X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 4:
mask = _mm_setr_epi8(X, X, X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 5:
mask = _mm_setr_epi8(X, X, X, X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 6:
mask = _mm_setr_epi8(X, X, X, X, X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 7:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, 0, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 8:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, 0, 0, 0, 0, 0, 0, 0, 0);
break;
case 9:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, 0, 0, 0, 0, 0, 0, 0);
break;
case 10:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, 0, 0, 0, 0, 0, 0);
break;
case 11:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, X, 0, 0, 0, 0, 0);
break;
case 12:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, X, X, 0, 0, 0, 0);
break;
case 13:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, X, X, X, 0, 0, 0);
break;
case 14:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, X, X, X, X, 0, 0);
break;
case 15:
mask = _mm_setr_epi8(X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, 0);
break;
// To silence compiler warning.
default: mask = _mm_setzero_si128(); break;
# undef X
}
sad = _mm_add_epi32(sad,
_mm_sad_epu8(_mm_and_si128(mask, a_trail),
_mm_and_si128(mask, b_trail)));
}
return sad;
}
#endif
// Computes the sum of absolute differences between pattern and image. Pattern
// must be 16-byte aligned, and the stride must be a multiple of 16. The image
// does pointer does not have to be aligned.
int SumOfAbsoluteDifferencesContiguousImage(const unsigned char* pattern,
unsigned int pattern_width,
unsigned int pattern_height,
unsigned int pattern_stride,
const unsigned char* image,
unsigned int image_stride) {
#ifdef __SSE2__
// TODO(keir): Add interleaved accumulation, where accumulation is done into
// two or more SSE registers that then get combined at the end. This reduces
// instruction dependency; in Eigen's squared norm code, splitting the
// accumulation produces a ~2x speedup. It's not clear it will help here,
// where the number of SSE instructions in the inner loop is smaller.
__m128i sad = _mm_setzero_si128();
for (int r = 0; r < pattern_height; ++r) {
sad = SumOfAbsoluteDifferencesContiguousSSE(&pattern[pattern_stride * r],
&image[image_stride * r],
pattern_width,
sad);
}
return _mm_cvtsi128_si32(
_mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(3, 0, 1, 2))));
#else
int sad = 0;
for (int r = 0; r < pattern_height; ++r) {
for (int c = 0; c < pattern_width; ++c) {
sad += abs(pattern[pattern_stride * r + c] - image[image_stride * r + c]);
}
}
return sad;
#endif
}
// Sample a region of size width, height centered at x,y in image, converting
// from float to byte in the process. Samples from the first channel. Puts
// result into *pattern.
void SampleRectangularPattern(const FloatImage& image,
double x,
double y,
int width,
int height,
int pattern_stride,
unsigned char* pattern) {
// There are two cases for width and height: even or odd. If it's odd, then
// the bounds [-width / 2, width / 2] works as expected. However, for even,
// this results in one extra access past the end. So use < instead of <= in
// the loops below, but increase the end limit by one in the odd case.
int end_width = (width / 2) + (width % 2);
int end_height = (height / 2) + (height % 2);
for (int r = -height / 2; r < end_height; ++r) {
for (int c = -width / 2; c < end_width; ++c) {
pattern[pattern_stride * (r + height / 2) + c + width / 2] =
SampleLinear(image, y + r, x + c, 0) * 255.0;
}
}
}
// Returns x rounded up to the nearest multiple of alignment.
inline int PadToAlignment(int x, int alignment) {
if (x % alignment != 0) {
x += alignment - (x % alignment);
}
return x;
}
// Sample a region centered at x,y in image with size extending by half_width
// from x. Samples from the first channel. The resulting array is placed in
// *pattern, and the stride, which will be a multiple of 16 if SSE is enabled,
// is returned in *pattern_stride.
//
// NOTE: Caller must free *pattern with aligned_malloc() from above.
void SampleSquarePattern(const FloatImage& image,
double x,
double y,
int half_width,
unsigned char** pattern,
int* pattern_stride) {
int width = 2 * half_width + 1;
// Allocate an aligned block with padding on the end so each row of the
// pattern starts on a 16-byte boundary.
*pattern_stride = PadToAlignment(width, 16);
int pattern_size_bytes = *pattern_stride * width;
*pattern =
static_cast<unsigned char*>(aligned_malloc(pattern_size_bytes, 16));
SampleRectangularPattern(
image, x, y, width, width, *pattern_stride, *pattern);
}
// NOTE: Caller must free *image with aligned_malloc() from above.
void FloatArrayToByteArrayWithPadding(const FloatImage& float_image,
unsigned char** image,
int* image_stride) {
// Allocate enough so that accessing 16 elements past the end is fine.
*image_stride = float_image.Width() + 16;
*image = static_cast<unsigned char*>(
aligned_malloc(*image_stride * float_image.Height(), 16));
for (int i = 0; i < float_image.Height(); ++i) {
for (int j = 0; j < float_image.Width(); ++j) {
(*image)[*image_stride * i + j] =
static_cast<unsigned char>(255.0 * float_image(i, j, 0));
}
}
}
} // namespace
// TODO(keir): Compare the "sharpness" of the peak around the best pixel. It's
// probably worth plotting a few examples to see what the histogram of SAD
// values for every hypothesis looks like.
//
// TODO(keir): Priority queue for multiple hypothesis.
bool BruteRegionTracker::Track(const FloatImage& image1,
const FloatImage& image2,
double x1,
double y1,
double* x2,
double* y2) const {
if (!RegionIsInBounds(image1, x1, y1, half_window_size)) {
LG << "Fell out of image1's window with x1=" << x1 << ", y1=" << y1
<< ", hw=" << half_window_size << ".";
return false;
}
int pattern_width = 2 * half_window_size + 1;
Array3Df image_and_gradient1;
Array3Df image_and_gradient2;
BlurredImageAndDerivativesChannels(image1, 0.9, &image_and_gradient1);
BlurredImageAndDerivativesChannels(image2, 0.9, &image_and_gradient2);
// Sample the pattern to get it aligned to an image grid.
unsigned char* pattern;
int pattern_stride;
SampleSquarePattern(
image_and_gradient1, x1, y1, half_window_size, &pattern, &pattern_stride);
// Convert the search area directly to bytes without sampling.
unsigned char* search_area;
int search_area_stride;
FloatArrayToByteArrayWithPadding(
image_and_gradient2, &search_area, &search_area_stride);
// Try all possible locations inside the search area. Yes, everywhere.
int best_i = -1, best_j = -1, best_sad = INT_MAX;
for (int i = 0; i < image2.Height() - pattern_width; ++i) {
for (int j = 0; j < image2.Width() - pattern_width; ++j) {
int sad = SumOfAbsoluteDifferencesContiguousImage(
pattern,
pattern_width,
pattern_width,
pattern_stride,
search_area + search_area_stride * i + j,
search_area_stride);
if (sad < best_sad) {
best_i = i;
best_j = j;
best_sad = sad;
}
}
}
CHECK_NE(best_i, -1);
CHECK_NE(best_j, -1);
aligned_free(pattern);
aligned_free(search_area);
if (best_sad == INT_MAX) {
LG << "Hit INT_MAX in SAD; failing.";
return false;
}
*x2 = best_j + half_window_size;
*y2 = best_i + half_window_size;
// Calculate the shift done by the fine tracker.
double dx2 = *x2 - x1;
double dy2 = *y2 - y1;
double fine_shift = sqrt(dx2 * dx2 + dy2 * dy2);
LG << "Brute shift: dx=" << dx2 << " dy=" << dy2 << ", d=" << fine_shift;
if (minimum_correlation <= 0) {
// No correlation checking requested; nothing else to do.
LG << "No correlation checking; returning success. best_sad: " << best_sad;
return true;
}
Array3Df image_and_gradient1_sampled, image_and_gradient2_sampled;
SamplePattern(image_and_gradient1,
x1,
y1,
half_window_size,
3,
&image_and_gradient1_sampled);
SamplePattern(image_and_gradient2,
*x2,
*y2,
half_window_size,
3,
&image_and_gradient2_sampled);
// Compute the Pearson product-moment correlation coefficient to check
// for sanity.
double correlation = PearsonProductMomentCorrelation(
image_and_gradient1_sampled, image_and_gradient2_sampled);
LG << "Final correlation: " << correlation;
if (correlation < minimum_correlation) {
LG << "Correlation " << correlation << " greater than "
<< minimum_correlation << "; bailing.";
return false;
}
return true;
}
} // namespace libmv