Files
test2/intern/cycles/kernel/device/hiprt/common.h
2024-09-20 13:14:57 +10:00

718 lines
24 KiB
C

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifdef __HIPRT__
struct RayPayload {
KernelGlobals kg;
RaySelfPrimitives self;
uint visibility;
int prim_type;
float ray_time;
};
struct ShadowPayload {
KernelGlobals kg;
RaySelfPrimitives self;
uint visibility;
int prim_type;
float ray_time;
int in_state;
uint max_hits;
uint num_hits;
uint *r_num_recorded_hits;
float *r_throughput;
};
struct LocalPayload {
KernelGlobals kg;
RaySelfPrimitives self;
int prim_type;
float ray_time;
int local_object;
uint max_hits;
uint *lcg_state;
LocalIntersection *local_isect;
};
# define SET_HIPRT_RAY(RAY_RT, RAY) \
RAY_RT.direction = RAY->D; \
RAY_RT.origin = RAY->P; \
RAY_RT.maxT = RAY->tmax; \
RAY_RT.minT = RAY->tmin;
# if defined(HIPRT_SHARED_STACK)
# define GET_TRAVERSAL_STACK() \
Stack stack(&kg->global_stack_buffer[0], \
HIPRT_THREAD_STACK_SIZE, \
kg->shared_stack, \
HIPRT_SHARED_STACK_SIZE);
# else
# define GET_TRAVERSAL_STACK()
# endif
# ifdef HIPRT_SHARED_STACK
# define GET_TRAVERSAL_ANY_HIT(FUNCTION_TABLE, RAY_TYPE, RAY_TIME) \
hiprtSceneTraversalAnyHitCustomStack<Stack> traversal(kernel_data.device_bvh, \
ray_hip, \
stack, \
visibility, \
hiprtTraversalHintDefault, \
&payload, \
kernel_params.FUNCTION_TABLE, \
RAY_TYPE, \
RAY_TIME);
# define GET_TRAVERSAL_CLOSEST_HIT(FUNCTION_TABLE, RAY_TYPE, RAY_TIME) \
hiprtSceneTraversalClosestCustomStack<Stack> traversal(kernel_data.device_bvh, \
ray_hip, \
stack, \
visibility, \
hiprtTraversalHintDefault, \
&payload, \
kernel_params.FUNCTION_TABLE, \
RAY_TYPE, \
RAY_TIME);
# else
# define GET_TRAVERSAL_ANY_HIT(FUNCTION_TABLE) \
hiprtSceneTraversalAnyHit traversal(kernel_data.device_bvh, \
ray_hip, \
visibility, \
FUNCTION_TABLE, \
hiprtTraversalHintDefault, \
&payload);
# define GET_TRAVERSAL_CLOSEST_HIT(FUNCTION_TABLE) \
hiprtSceneTraversalClosest traversal(kernel_data.device_bvh, \
ray_hip, \
visibility, \
FUNCTION_TABLE, \
hiprtTraversalHintDefault, \
&payload);
# endif
ccl_device_inline void set_intersect_point(KernelGlobals kg,
hiprtHit &hit,
ccl_private Intersection *isect)
{
int prim_offset = 0;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
prim_offset = kernel_data_fetch(object_prim_offset, object_id);
isect->type = kernel_data_fetch(objects, object_id).primitive_type;
isect->t = hit.t;
isect->prim = hit.primID + prim_offset;
isect->object = object_id;
isect->u = hit.uv.x;
isect->v = hit.uv.y;
}
// custom intersection functions
ccl_device_inline bool curve_custom_intersect(const hiprtRay &ray,
const void *userPtr,
void *payload,
hiprtHit &hit)
{
Intersection isect;
RayPayload *local_payload = (RayPayload *)payload;
// could also cast shadow payload to get the elements needed to do the intersection
// no need to write a separate function for shadow intersection
KernelGlobals kg = local_payload->kg;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
// data_offset.x: where the data (prim id, type )for the geometry of the current object begins
// the prim_id that is in hiprtHit hit is local to the partciular geometry so we add the above
// ofstream
// to map prim id in hiprtHit to the one compatible to what next stage expects
// data_offset.y: the offset that has to be added to a local primitive to get the global
// primitive id = kernel_data_fetch(object_prim_offset, object_id);
int prim_offset = data_offset.y;
int curve_index = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
int key_value = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).y;
# ifdef __SHADOW_LINKING__
if (intersection_skip_shadow_link(nullptr, local_payload->self, object_id)) {
/* Ignore hit - continue traversal */
return false;
}
# endif
if (intersection_skip_self_shadow(local_payload->self, object_id, curve_index + prim_offset))
return false;
float ray_time = local_payload->ray_time;
if ((key_value & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) {
int time_offset = kernel_data_fetch(prim_time_offset, object_id);
float2 prims_time = kernel_data_fetch(prims_time, hit.primID + time_offset);
if (ray_time < prims_time.x || ray_time > prims_time.y) {
return false;
}
}
bool b_hit = curve_intersect(kg,
&isect,
ray.origin,
ray.direction,
ray.minT,
ray.maxT,
object_id,
curve_index + prim_offset,
ray_time,
key_value);
if (b_hit) {
hit.uv.x = isect.u;
hit.uv.y = isect.v;
hit.t = isect.t;
hit.primID = isect.prim;
local_payload->prim_type = isect.type; // packed_curve_type;
}
return b_hit;
}
ccl_device_inline bool motion_triangle_custom_intersect(const hiprtRay &ray,
const void *userPtr,
void *payload,
hiprtHit &hit)
{
RayPayload *local_payload = (RayPayload *)payload;
KernelGlobals kg = local_payload->kg;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
int prim_id_global = prim_id_local + prim_offset;
if (intersection_skip_self_shadow(local_payload->self, object_id, prim_id_global))
return false;
Intersection isect;
bool b_hit = motion_triangle_intersect(kg,
&isect,
ray.origin,
ray.direction,
ray.minT,
ray.maxT,
local_payload->ray_time,
local_payload->visibility,
object_id,
prim_id_global,
hit.instanceID);
if (b_hit) {
hit.uv.x = isect.u;
hit.uv.y = isect.v;
hit.t = isect.t;
hit.primID = isect.prim;
local_payload->prim_type = isect.type;
}
return b_hit;
}
ccl_device_inline bool motion_triangle_custom_local_intersect(const hiprtRay &ray,
const void *userPtr,
void *payload,
hiprtHit &hit)
{
# ifdef __OBJECT_MOTION__
LocalPayload *local_payload = (LocalPayload *)payload;
KernelGlobals kg = local_payload->kg;
int object_id = local_payload->local_object;
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
int prim_id_global = prim_id_local + prim_offset;
if (intersection_skip_self_local(local_payload->self, prim_id_global))
return false;
LocalIntersection *local_isect = local_payload->local_isect;
bool b_hit = motion_triangle_intersect_local(kg,
local_isect,
ray.origin,
ray.direction,
local_payload->ray_time,
object_id,
prim_id_global,
prim_id_local,
ray.minT,
ray.maxT,
local_payload->lcg_state,
local_payload->max_hits);
if (b_hit) {
local_payload->prim_type = PRIMITIVE_MOTION_TRIANGLE;
}
return b_hit;
# else
return false;
# endif
}
ccl_device_inline bool motion_triangle_custom_volume_intersect(const hiprtRay &ray,
const void *userPtr,
void *payload,
hiprtHit &hit)
{
# ifdef __OBJECT_MOTION__
RayPayload *local_payload = (RayPayload *)payload;
KernelGlobals kg = local_payload->kg;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int object_flag = kernel_data_fetch(object_flag, object_id);
if (!(object_flag & SD_OBJECT_HAS_VOLUME))
return false;
int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
int prim_id_global = prim_id_local + prim_offset;
if (intersection_skip_self_shadow(local_payload->self, object_id, prim_id_global))
return false;
Intersection isect;
bool b_hit = motion_triangle_intersect(kg,
&isect,
ray.origin,
ray.direction,
ray.minT,
ray.maxT,
local_payload->ray_time,
local_payload->visibility,
object_id,
prim_id_global,
prim_id_local);
if (b_hit) {
hit.uv.x = isect.u;
hit.uv.y = isect.v;
hit.t = isect.t;
hit.primID = isect.prim;
local_payload->prim_type = isect.type;
}
return b_hit;
# else
return false;
# endif
}
ccl_device_inline bool point_custom_intersect(const hiprtRay &ray,
const void *userPtr,
void *payload,
hiprtHit &hit)
{
/* Point cloud intersections are currently disabled to decrease register pressure in the ray
* tracing kernels. This increases the number of in-flight ray traversal waves, and fixes the
* performance regression reported in #127464 */
# if defined(__POINTCLOUD__) && 0
RayPayload *local_payload = (RayPayload *)payload;
KernelGlobals kg = local_payload->kg;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int2 prim_info = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x);
int prim_id_local = prim_info.x;
int prim_id_global = prim_id_local + prim_offset;
int type = prim_info.y;
# ifdef __SHADOW_LINKING__
if (intersection_skip_shadow_link(nullptr, local_payload->self, object_id)) {
/* Ignore hit - continue traversal */
return false;
}
# endif
if (intersection_skip_self_shadow(local_payload->self, object_id, prim_id_global))
return false;
float ray_time = local_payload->ray_time;
if ((type & PRIMITIVE_MOTION_POINT) && kernel_data.bvh.use_bvh_steps) {
int time_offset = kernel_data_fetch(prim_time_offset, object_id);
float2 prims_time = kernel_data_fetch(prims_time, hit.primID + time_offset);
if (ray_time < prims_time.x || ray_time > prims_time.y) {
return false;
}
}
Intersection isect;
bool b_hit = point_intersect(kg,
&isect,
ray.origin,
ray.direction,
ray.minT,
ray.maxT,
object_id,
prim_id_global,
ray_time,
type);
if (b_hit) {
hit.uv.x = isect.u;
hit.uv.y = isect.v;
hit.t = isect.t;
hit.primID = isect.prim;
local_payload->prim_type = isect.type;
}
return b_hit;
# else
return false;
# endif
}
// intersection filters
ccl_device_inline bool closest_intersection_filter(const hiprtRay &ray,
const void *data,
void *user_data,
const hiprtHit &hit)
{
RayPayload *payload = (RayPayload *)user_data;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int prim = hit.primID + prim_offset;
# ifdef __SHADOW_LINKING__
if (intersection_skip_shadow_link(nullptr, payload->self, object_id)) {
/* Ignore hit - continue traversal */
return true;
}
# endif
if (intersection_skip_self_shadow(payload->self, object_id, prim)) {
/* Ignore hit - continue traversal */
return true;
}
return false;
}
ccl_device_inline bool shadow_intersection_filter(const hiprtRay &ray,
const void *data,
void *user_data,
const hiprtHit &hit)
{
ShadowPayload *payload = (ShadowPayload *)user_data;
uint num_hits = payload->num_hits;
uint num_recorded_hits = *(payload->r_num_recorded_hits);
uint max_hits = payload->max_hits;
int state = payload->in_state;
KernelGlobals kg = payload->kg;
RaySelfPrimitives self = payload->self;
int object = kernel_data_fetch(user_instance_id, hit.instanceID);
int prim_offset = kernel_data_fetch(object_prim_offset, object);
int prim = hit.primID + prim_offset;
float ray_tmax = hit.t;
# ifdef __SHADOW_LINKING__
if (intersection_skip_shadow_link(nullptr, self, object)) {
/* Ignore hit - continue traversal */
return true;
}
# endif
# ifdef __VISIBILITY_FLAG__
if ((kernel_data_fetch(objects, object).visibility & payload->visibility) == 0) {
return true; // no hit - continue traversal
}
# endif
if (intersection_skip_self_shadow(self, object, prim)) {
return true; // no hit -continue traversal
}
float u = hit.uv.x;
float v = hit.uv.y;
int type = kernel_data_fetch(objects, object).primitive_type;
# ifndef __TRANSPARENT_SHADOWS__
return false;
# else
if (num_hits >= max_hits ||
!(intersection_get_shader_flags(NULL, prim, type) & SD_HAS_TRANSPARENT_SHADOW))
{
return false;
}
uint record_index = num_recorded_hits;
num_hits += 1;
num_recorded_hits += 1;
payload->num_hits = num_hits;
*(payload->r_num_recorded_hits) = num_recorded_hits;
const uint max_record_hits = min(max_hits, INTEGRATOR_SHADOW_ISECT_SIZE);
if (record_index >= max_record_hits) {
float max_recorded_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, 0, t);
uint max_recorded_hit = 0;
for (int i = 1; i < max_record_hits; i++) {
const float isect_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, t);
if (isect_t > max_recorded_t) {
max_recorded_t = isect_t;
max_recorded_hit = i;
}
}
if (ray_tmax >= max_recorded_t) {
return true;
}
record_index = max_recorded_hit;
}
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, u) = u;
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, v) = v;
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, t) = ray_tmax;
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, prim) = prim;
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, object) = object;
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, type) = type;
return true;
# endif /* __TRANSPARENT_SHADOWS__ */
}
ccl_device_inline bool shadow_intersection_filter_curves(const hiprtRay &ray,
const void *data,
void *user_data,
const hiprtHit &hit)
{
ShadowPayload *payload = (ShadowPayload *)user_data;
uint num_hits = payload->num_hits;
uint num_recorded_hits = *(payload->r_num_recorded_hits);
uint max_hits = payload->max_hits;
KernelGlobals kg = payload->kg;
RaySelfPrimitives self = payload->self;
int object = kernel_data_fetch(user_instance_id, hit.instanceID);
int prim = hit.primID;
float ray_tmax = hit.t;
# ifdef __SHADOW_LINKING__
/* It doesn't seem like this is necessary. */
if (intersection_skip_shadow_link(nullptr, self, object)) {
/* Ignore hit - continue traversal */
return true;
}
# endif
# ifdef __VISIBILITY_FLAG__
if ((kernel_data_fetch(objects, object).visibility & payload->visibility) == 0) {
return true; // no hit - continue traversal
}
# endif
if (intersection_skip_self_shadow(self, object, prim)) {
return true; // no hit -continue traversal
}
float u = hit.uv.x;
float v = hit.uv.y;
if (u == 0.0f || u == 1.0f) {
// continue traversal
return true;
}
int type = payload->prim_type;
# ifndef __TRANSPARENT_SHADOWS__
return false;
# else
if (num_hits >= max_hits ||
!(intersection_get_shader_flags(NULL, prim, type) & SD_HAS_TRANSPARENT_SHADOW))
{
return false;
}
float throughput = *payload->r_throughput;
throughput *= intersection_curve_shadow_transparency(kg, object, prim, type, u);
*payload->r_throughput = throughput;
payload->num_hits += 1;
if (throughput < CURVE_SHADOW_TRANSPARENCY_CUTOFF) {
return false;
}
return true;
# endif /* __TRANSPARENT_SHADOWS__ */
}
ccl_device_inline bool local_intersection_filter(const hiprtRay &ray,
const void *data,
void *user_data,
const hiprtHit &hit)
{
# ifdef __BVH_LOCAL__
LocalPayload *payload = (LocalPayload *)user_data;
KernelGlobals kg = payload->kg;
int object_id = payload->local_object;
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int prim = hit.primID + prim_offset;
# ifndef __RAY_OFFSET__
if (intersection_skip_self_local(payload->self, prim)) {
return true; // continue search
}
# endif
uint max_hits = payload->max_hits;
if (max_hits == 0) {
return false; // stop search
}
int hit_index = 0;
if (payload->lcg_state) {
for (int i = min(max_hits, payload->local_isect->num_hits) - 1; i >= 0; --i) {
if (hit.t == payload->local_isect->hits[i].t) {
return true; // continue search
}
}
hit_index = payload->local_isect->num_hits++;
if (payload->local_isect->num_hits > max_hits) {
hit_index = lcg_step_uint(payload->lcg_state) % payload->local_isect->num_hits;
if (hit_index >= max_hits) {
return true; // continue search
}
}
}
else {
if (payload->local_isect->num_hits && hit.t > payload->local_isect->hits[0].t) {
return true;
}
payload->local_isect->num_hits = 1;
}
Intersection *isect = &payload->local_isect->hits[hit_index];
isect->t = hit.t;
isect->prim = prim;
isect->object = object_id;
isect->type = PRIMITIVE_TRIANGLE; // kernel_data_fetch(__objects, object_id).primitive_type;
isect->u = hit.uv.x;
isect->v = hit.uv.y;
payload->local_isect->Ng[hit_index] = hit.normal;
return true;
# endif
}
ccl_device_inline bool volume_intersection_filter(const hiprtRay &ray,
const void *data,
void *user_data,
const hiprtHit &hit)
{
RayPayload *payload = (RayPayload *)user_data;
int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
int prim = hit.primID + prim_offset;
int object_flag = kernel_data_fetch(object_flag, object_id);
if (intersection_skip_self(payload->self, object_id, prim))
return true;
else if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0)
return true;
else
return false;
}
HIPRT_DEVICE bool intersectFunc(u32 geomType,
u32 rayType,
const hiprtFuncTableHeader &tableHeader,
const hiprtRay &ray,
void *payload,
hiprtHit &hit)
{
const u32 index = tableHeader.numGeomTypes * rayType + geomType;
const void *data = tableHeader.funcDataSets[index].filterFuncData;
switch (index) {
case Curve_Intersect_Function:
case Curve_Intersect_Shadow:
return curve_custom_intersect(ray, data, payload, hit);
case Motion_Triangle_Intersect_Function:
case Motion_Triangle_Intersect_Shadow:
return motion_triangle_custom_intersect(ray, data, payload, hit);
case Motion_Triangle_Intersect_Local:
return motion_triangle_custom_local_intersect(ray, data, payload, hit);
case Motion_Triangle_Intersect_Volume:
return motion_triangle_custom_volume_intersect(ray, data, payload, hit);
case Point_Intersect_Function:
case Point_Intersect_Shadow:
return point_custom_intersect(ray, data, payload, hit);
default:
break;
}
return false;
}
HIPRT_DEVICE bool filterFunc(u32 geomType,
u32 rayType,
const hiprtFuncTableHeader &tableHeader,
const hiprtRay &ray,
void *payload,
const hiprtHit &hit)
{
const u32 index = tableHeader.numGeomTypes * rayType + geomType;
const void *data = tableHeader.funcDataSets[index].intersectFuncData;
switch (index) {
case Triangle_Filter_Closest:
return closest_intersection_filter(ray, data, payload, hit);
case Curve_Filter_Shadow:
return shadow_intersection_filter_curves(ray, data, payload, hit);
case Triangle_Filter_Shadow:
case Motion_Triangle_Filter_Shadow:
case Point_Filter_Shadow:
return shadow_intersection_filter(ray, data, payload, hit);
case Triangle_Filter_Local:
case Motion_Triangle_Filter_Local:
return local_intersection_filter(ray, data, payload, hit);
case Triangle_Filter_Volume:
case Motion_Triangle_Filter_Volume:
return volume_intersection_filter(ray, data, payload, hit);
default:
break;
}
return false;
}
#endif