Files
test2/extern/quadriflow/patches/boykov_kolmogorov_max_flow.hpp
Brecht Van Lommel 0fd360428a Fix #136593, #136641: Quadriflow remesh gets stuck on Windows
This appears to be a pre-existing issue that got exposed by the refactor
for some files, while for others it was already happening.

Pull Request: https://projects.blender.org/blender/blender/pulls/136680
2025-03-28 19:25:56 +01:00

694 lines
24 KiB
C++

// SPDX-FileCopyrightText: 2006 Stephan Diederich
// SPDX-FileCopyrightText: 2024 Blender Authors
// SPDX-License-Identifier: MIT
//
// Adapted from boost::graph
#include <algorithm>
#include <cassert>
#include <list>
#include <queue>
#include <tuple>
#include <vector>
namespace qflow {
class BoykovKolmogorovMaxFlow {
// Types
enum class Color { white, black, gray };
struct Edge {
int source;
int target;
};
const int NULL_VERTEX = -1;
const int NULL_EDGE = -1;
public:
BoykovKolmogorovMaxFlow() = default;
void resize(int num_verts, int num_edges)
{
m_graph_edges.resize(num_edges);
m_graph_out_edges.resize(num_verts);
m_cap_map.resize(num_edges);
m_res_cap_map.resize(num_edges);
m_rev_edge_map.resize(num_edges);
m_pre_map.resize(num_verts, 0);
m_tree_map.resize(num_verts, Color::gray);
m_dist_map.resize(num_verts, 0);
m_in_active_list_map.resize(num_verts, false);
m_has_parent_map.resize(num_verts, false);
m_time_map.resize(num_verts, 0);
}
void set_edge(const int edge,
const int reverse_edge,
const int source,
const int target,
const int capacity)
{
assert(edge < m_graph_edges.size());
m_graph_edges[edge] = Edge{source, target};
m_graph_out_edges[source].push_back(edge);
m_rev_edge_map[edge] = reverse_edge;
// Initialize flow to zero which means initializing
// the residual capacity equal to the capacity
m_cap_map[edge] = capacity;
m_res_cap_map[edge] = capacity;
}
int edge_capacity(const int edge)
{
return m_cap_map[edge];
}
int edge_residual_capacity(const int edge)
{
return m_res_cap_map[edge];
}
const std::vector<int> &vertex_out_edges(const int vertex)
{
return m_graph_out_edges[vertex];
}
int max_flow(int src, int sink)
{
m_source = src;
m_sink = sink;
// init the search trees with the two terminals
m_tree_map[m_source] = Color::black;
m_tree_map[m_sink] = Color::white;
m_time_map[m_source] = 1;
m_time_map[m_sink] = 1;
// augment direct paths from SOURCE->SINK and SOURCE->VERTEX->SINK
augment_direct_paths();
// start the main-loop
while (true) {
bool path_found;
int connecting_edge;
std::tie(connecting_edge, path_found) = grow(); // find a path from source to sink
if (!path_found) {
// we're finished, no more paths were found
break;
}
++m_time;
augment(connecting_edge); // augment that path
adopt(); // rebuild search tree structure
}
return m_flow;
}
protected:
int lookup_edge(int source, int target)
{
for (const int e : m_graph_out_edges[source]) {
if (m_graph_edges[e].target == target) {
return e;
}
}
return NULL_EDGE;
}
void augment_direct_paths()
{
// in a first step, we augment all direct paths from
// source->NODE->sink and additionally paths from source->sink. This
// improves especially graphcuts for segmentation, as most of the
// nodes have source/sink connects but shouldn't have an impact on
// other maxflow problems (this is done in grow() anyway)
for (const int ei : m_graph_out_edges[m_source]) {
int from_source = ei;
int current_node = m_graph_edges[from_source].target;
if (current_node == m_sink) {
int cap = m_res_cap_map[from_source];
m_res_cap_map[from_source] = 0;
m_flow += cap;
continue;
}
const int to_sink = lookup_edge(current_node, m_sink);
if (to_sink != NULL_EDGE) {
int cap_from_source = m_res_cap_map[from_source];
int cap_to_sink = m_res_cap_map[to_sink];
if (cap_from_source > cap_to_sink) {
m_tree_map[current_node] = Color::black;
add_active_node(current_node);
set_edge_to_parent(current_node, from_source);
m_dist_map[current_node] = 1;
m_time_map[current_node] = 1;
// add stuff to flow and update residuals. we dont need
// to update reverse_edges, as incoming/outgoing edges
// to/from source/sink don't count for max-flow
m_res_cap_map[from_source] = m_res_cap_map[from_source] - cap_to_sink;
m_res_cap_map[to_sink] = 0;
m_flow += cap_to_sink;
}
else if (cap_to_sink > 0) {
m_tree_map[current_node] = Color::white;
add_active_node(current_node);
set_edge_to_parent(current_node, to_sink);
m_dist_map[current_node] = 1;
m_time_map[current_node] = 1;
// add stuff to flow and update residuals. we dont need
// to update reverse_edges, as incoming/outgoing edges
// to/from source/sink don't count for max-flow
m_res_cap_map[to_sink] = m_res_cap_map[to_sink] - cap_from_source;
m_res_cap_map[from_source] = 0;
m_flow += cap_from_source;
}
}
else if (m_res_cap_map[from_source]) {
// there is no sink connect, so we can't augment this path,
// but to avoid adding m_source to the active nodes, we just
// activate this node and set the approciate things
m_tree_map[current_node] = Color::black;
set_edge_to_parent(current_node, from_source);
m_dist_map[current_node] = 1;
m_time_map[current_node] = 1;
add_active_node(current_node);
}
}
for (const int ei : m_graph_out_edges[m_sink]) {
int to_sink = m_rev_edge_map[ei];
int current_node = m_graph_edges[to_sink].source;
if (m_res_cap_map[to_sink]) {
m_tree_map[current_node] = Color::white;
set_edge_to_parent(current_node, to_sink);
m_dist_map[current_node] = 1;
m_time_map[current_node] = 1;
add_active_node(current_node);
}
}
}
/**
* Returns a pair of an edge and a boolean. if the bool is true, the
* edge is a connection of a found path from s->t , read "the link" and
* m_graph_edges[returnVal].source is the end of the path found in the
* source-tree m_graph_edges[returnVal].target is the beginning of the path found
* in the sink-tree
*/
std::pair<int, bool> grow()
{
assert(m_orphans.empty());
int current_node;
while ((current_node = get_next_active_node()) != NULL_VERTEX) { // if there is one
assert(m_tree_map[current_node] != Color::gray &&
(has_parent(current_node) || current_node == m_source || current_node == m_sink));
if (m_tree_map[current_node] == Color::black) {
// source tree growing
if (current_node != m_last_grow_vertex) {
m_last_grow_vertex = current_node;
m_last_grow_out_edge = 0;
}
const std::vector<int> &out_edges = m_graph_out_edges[m_last_grow_vertex];
for (; m_last_grow_out_edge < out_edges.size(); m_last_grow_out_edge++) {
int out_edge = out_edges[m_last_grow_out_edge];
if (m_res_cap_map[out_edge] > 0) { // check if we have capacity left on this edge
int other_node = m_graph_edges[out_edge].target;
if (m_tree_map[other_node] == Color::gray) { // it's a free node
// aquire other node to our search tree
m_tree_map[other_node] = Color::black;
set_edge_to_parent(other_node, out_edge); // set us as parent
m_dist_map[other_node] = m_dist_map[current_node] + 1; // and update the
// distance-heuristic
m_time_map[other_node] = m_time_map[current_node];
add_active_node(other_node);
}
else if (m_tree_map[other_node] == Color::black) {
// we do this to get shorter paths. check if we
// are nearer to the source as its parent is
if (is_closer_to_terminal(current_node, other_node)) {
set_edge_to_parent(other_node, out_edge);
m_dist_map[other_node] = m_dist_map[current_node] + 1;
m_time_map[other_node] = m_time_map[current_node];
}
}
else {
assert(m_tree_map[other_node] == Color::white);
// kewl, found a path from one to the other
// search tree, return
// the connecting edge in src->sink dir
return std::make_pair(out_edge, true);
}
}
} // for all out-edges
} // source-tree-growing
else {
assert(m_tree_map[current_node] == Color::white);
if (current_node != m_last_grow_vertex) {
m_last_grow_vertex = current_node;
m_last_grow_out_edge = 0;
}
const std::vector<int> &out_edges = m_graph_out_edges[m_last_grow_vertex];
for (; m_last_grow_out_edge < out_edges.size(); m_last_grow_out_edge++) {
int in_edge = m_rev_edge_map[out_edges[m_last_grow_out_edge]];
if (m_res_cap_map[in_edge] > 0) { // check if there is capacity left
int other_node = m_graph_edges[in_edge].source;
if (m_tree_map[other_node] == Color::gray) { // it's a free node
// aquire other node to our search tree
m_tree_map[other_node] = Color::white;
set_edge_to_parent(other_node, in_edge); // set us as parent
add_active_node(other_node); // activate that node
m_dist_map[other_node] = m_dist_map[current_node] + 1; // set its distance
m_time_map[other_node] = m_time_map[current_node]; // and time
}
else if (m_tree_map[other_node] == Color::white) {
if (is_closer_to_terminal(current_node, other_node)) {
// we are closer to the sink than its parent
// is, so we "adopt" him
set_edge_to_parent(other_node, in_edge);
m_dist_map[other_node] = m_dist_map[current_node] + 1;
m_time_map[other_node] = m_time_map[current_node];
}
}
else {
assert(m_tree_map[other_node] == Color::black);
// kewl, found a path from one to the other
// search tree,
// return the connecting edge in src->sink dir
return std::make_pair(in_edge, true);
}
}
} // for all out-edges
} // sink-tree growing
// all edges of that node are processed, and no more paths were
// found.
// remove if from the front of the active queue
finish_node(current_node);
} // while active_nodes not empty
// no active nodes anymore and no path found, we're done
return std::make_pair(int(), false);
}
/**
* augments path from s->t and updates residual graph
* m_graph_edges[e].source is the end of the path found in the source-tree
* m_graph_edges[e].target is the beginning of the path found in the sink-tree
* this phase generates orphans on satured edges, if the attached verts
* are from different search-trees orphans are ordered in distance to
* sink/source. first the farest from the source are front_inserted into
* the orphans list, and after that the sink-tree-orphans are
* front_inserted. when going to adoption stage the orphans are
* popped_front, and so we process the nearest verts to the terminals
* first
*/
void augment(int e)
{
assert(m_tree_map[m_graph_edges[e].target] == Color::white);
assert(m_tree_map[m_graph_edges[e].source] == Color::black);
assert(m_orphans.empty());
const int bottleneck = find_bottleneck(e);
// now we push the found flow through the path
// for each edge we saturate we have to look for the verts that
// belong to that edge, one of them becomes an orphans now process
// the connecting edge
m_res_cap_map[e] = m_res_cap_map[e] - bottleneck;
assert(m_res_cap_map[e] >= 0);
m_res_cap_map[m_rev_edge_map[e]] = m_res_cap_map[m_rev_edge_map[e]] + bottleneck;
// now we follow the path back to the source
int current_node = m_graph_edges[e].source;
while (current_node != m_source) {
int pred = get_edge_to_parent(current_node);
m_res_cap_map[pred] = m_res_cap_map[pred] - bottleneck;
assert(m_res_cap_map[pred] >= 0);
m_res_cap_map[m_rev_edge_map[pred]] = m_res_cap_map[m_rev_edge_map[pred]] + bottleneck;
if (m_res_cap_map[pred] == 0) {
set_no_parent(current_node);
m_orphans.push_front(current_node);
}
current_node = m_graph_edges[pred].source;
}
// then go forward in the sink-tree
current_node = m_graph_edges[e].target;
while (current_node != m_sink) {
int pred = get_edge_to_parent(current_node);
m_res_cap_map[pred] = m_res_cap_map[pred] - bottleneck;
assert(m_res_cap_map[pred] >= 0);
m_res_cap_map[m_rev_edge_map[pred]] = m_res_cap_map[m_rev_edge_map[pred]] + bottleneck;
if (m_res_cap_map[pred] == 0) {
set_no_parent(current_node);
m_orphans.push_front(current_node);
}
current_node = m_graph_edges[pred].target;
}
// and add it to the max-flow
m_flow += bottleneck;
}
/**
* returns the bottleneck of a s->t path (end_of_path is last vertex in
* source-tree, begin_of_path is first vertex in sink-tree)
*/
int find_bottleneck(int e)
{
int minimum_cap = m_res_cap_map[e];
int current_node = m_graph_edges[e].source;
// first go back in the source tree
while (current_node != m_source) {
int pred = get_edge_to_parent(current_node);
minimum_cap = std::min(minimum_cap, m_res_cap_map[pred]);
current_node = m_graph_edges[pred].source;
}
// then go forward in the sink-tree
current_node = m_graph_edges[e].target;
while (current_node != m_sink) {
int pred = get_edge_to_parent(current_node);
minimum_cap = std::min(minimum_cap, m_res_cap_map[pred]);
current_node = m_graph_edges[pred].target;
}
return minimum_cap;
}
/**
* rebuild search trees
* empty the queue of orphans, and find new parents for them or just
* drop them from the search trees
*/
void adopt()
{
while (!m_orphans.empty() || !m_child_orphans.empty()) {
int current_node;
if (m_child_orphans.empty()) {
// get the next orphan from the main-queue and remove it
current_node = m_orphans.front();
m_orphans.pop_front();
}
else {
current_node = m_child_orphans.front();
m_child_orphans.pop();
}
if (m_tree_map[current_node] == Color::black) {
// we're in the source-tree
int min_distance = (std::numeric_limits<int>::max)();
int new_parent_edge;
for (const int ei : m_graph_out_edges[current_node]) {
const int in_edge = m_rev_edge_map[ei];
assert(m_graph_edges[in_edge].target == current_node); // we should be the target of
// this edge
if (m_res_cap_map[in_edge] > 0) {
int other_node = m_graph_edges[in_edge].source;
if (m_tree_map[other_node] == Color::black && has_source_connect(other_node)) {
if (m_dist_map[other_node] < min_distance) {
min_distance = m_dist_map[other_node];
new_parent_edge = in_edge;
}
}
}
}
if (min_distance != (std::numeric_limits<int>::max)()) {
set_edge_to_parent(current_node, new_parent_edge);
m_dist_map[current_node] = min_distance + 1;
m_time_map[current_node] = m_time;
}
else {
m_time_map[current_node] = 0;
for (const int ei : m_graph_out_edges[current_node]) {
int in_edge = m_rev_edge_map[ei];
int other_node = m_graph_edges[in_edge].source;
if (m_tree_map[other_node] == Color::black && other_node != m_source) {
if (m_res_cap_map[in_edge] > 0) {
add_active_node(other_node);
}
if (has_parent(other_node) &&
m_graph_edges[get_edge_to_parent(other_node)].source == current_node)
{
// we are the parent of that node
// it has to find a new parent, too
set_no_parent(other_node);
m_child_orphans.push(other_node);
}
}
}
m_tree_map[current_node] = Color::gray;
} // no parent found
} // source-tree-adoption
else {
// now we should be in the sink-tree, check that...
assert(m_tree_map[current_node] == Color::white);
int new_parent_edge;
int min_distance = (std::numeric_limits<int>::max)();
for (const int ei : m_graph_out_edges[current_node]) {
const int out_edge = ei;
if (m_res_cap_map[out_edge] > 0) {
const int other_node = m_graph_edges[out_edge].target;
if (m_tree_map[other_node] == Color::white && has_sink_connect(other_node)) {
if (m_dist_map[other_node] < min_distance) {
min_distance = m_dist_map[other_node];
new_parent_edge = out_edge;
}
}
}
}
if (min_distance != (std::numeric_limits<int>::max)()) {
set_edge_to_parent(current_node, new_parent_edge);
m_dist_map[current_node] = min_distance + 1;
m_time_map[current_node] = m_time;
}
else {
m_time_map[current_node] = 0;
for (const int ei : m_graph_out_edges[current_node]) {
const int out_edge = ei;
const int other_node = m_graph_edges[out_edge].target;
if (m_tree_map[other_node] == Color::white && other_node != m_sink) {
if (m_res_cap_map[out_edge] > 0) {
add_active_node(other_node);
}
if (has_parent(other_node) &&
m_graph_edges[get_edge_to_parent(other_node)].target == current_node)
{
// we were it's parent, so it has to find a
// new one, too
set_no_parent(other_node);
m_child_orphans.push(other_node);
}
}
}
m_tree_map[current_node] = Color::gray;
} // no parent found
} // sink-tree adoption
} // while !orphans.empty()
} // adopt
/**
* return next active vertex if there is one, otherwise a null_vertex
*/
int get_next_active_node()
{
while (true) {
if (m_active_nodes.empty()) {
return NULL_VERTEX;
}
int v = m_active_nodes.front();
// if it has no parent, this node can't be active (if its not
// source or sink)
if (!has_parent(v) && v != m_source && v != m_sink) {
m_active_nodes.pop();
m_in_active_list_map[v] = false;
}
else {
assert(m_tree_map[v] == Color::black || m_tree_map[v] == Color::white);
return v;
}
}
}
/**
* adds v as an active vertex, but only if its not in the list already
*/
void add_active_node(int v)
{
assert(m_tree_map[v] != Color::gray);
if (m_in_active_list_map[v]) {
if (m_last_grow_vertex == v) {
m_last_grow_vertex = NULL_VERTEX;
}
return;
}
m_in_active_list_map[v] = true;
m_active_nodes.push(v);
}
/**
* finish_node removes a node from the front of the active queue (its
* called in grow phase, if no more paths can be found using this node)
*/
void finish_node(int v)
{
assert(m_active_nodes.front() == v);
m_active_nodes.pop();
m_in_active_list_map[v] = false;
m_last_grow_vertex = NULL_VERTEX;
}
/**
* returns edge to parent vertex of v;
*/
int get_edge_to_parent(int v) const
{
return m_pre_map[v];
}
/**
* returns true if the edge stored in m_pre_map[v] is a valid entry
*/
bool has_parent(int v) const
{
return m_has_parent_map[v];
}
/**
* sets edge to parent vertex of v;
*/
void set_edge_to_parent(int v, int f_edge_to_parent)
{
assert(m_res_cap_map[f_edge_to_parent] > 0);
m_pre_map[v] = f_edge_to_parent;
m_has_parent_map[v] = true;
}
/**
* removes the edge to parent of v (this is done by invalidating the
* entry an additional map)
*/
void set_no_parent(int v)
{
m_has_parent_map[v] = false;
}
/**
* checks if vertex v has a connect to the sink-vertex (@var m_sink)
* @param v the vertex which is checked
* @return true if a path to the sink was found, false if not
*/
bool has_sink_connect(int v)
{
int current_distance = 0;
int current_vertex = v;
while (true) {
if (m_time_map[current_vertex] == m_time) {
// we found a node which was already checked this round. use
// it for distance calculations
current_distance += m_dist_map[current_vertex];
break;
}
if (current_vertex == m_sink) {
m_time_map[m_sink] = m_time;
break;
}
if (has_parent(current_vertex)) {
// it has a parent, so get it
current_vertex = m_graph_edges[get_edge_to_parent(current_vertex)].target;
++current_distance;
}
else {
// no path found
return false;
}
}
current_vertex = v;
while (m_time_map[current_vertex] != m_time) {
m_dist_map[current_vertex] = current_distance;
--current_distance;
m_time_map[current_vertex] = m_time;
current_vertex = m_graph_edges[get_edge_to_parent(current_vertex)].target;
}
return true;
}
/**
* checks if vertex v has a connect to the source-vertex (@var m_source)
* @param v the vertex which is checked
* @return true if a path to the source was found, false if not
*/
bool has_source_connect(int v)
{
int current_distance = 0;
int current_vertex = v;
while (true) {
if (m_time_map[current_vertex] == m_time) {
// we found a node which was already checked this round. use
// it for distance calculations
current_distance += m_dist_map[current_vertex];
break;
}
if (current_vertex == m_source) {
m_time_map[m_source] = m_time;
break;
}
if (has_parent(current_vertex)) {
// it has a parent, so get it
current_vertex = m_graph_edges[get_edge_to_parent(current_vertex)].source;
++current_distance;
}
else {
// no path found
return false;
}
}
current_vertex = v;
while (m_time_map[current_vertex] != m_time) {
m_dist_map[current_vertex] = current_distance;
--current_distance;
m_time_map[current_vertex] = m_time;
current_vertex = m_graph_edges[get_edge_to_parent(current_vertex)].source;
}
return true;
}
/**
* returns true, if p is closer to a terminal than q
*/
bool is_closer_to_terminal(int p, int q)
{
// checks the timestamps first, to build no cycles, and after that
// the real distance
return (m_time_map[q] <= m_time_map[p] && m_dist_map[q] > m_dist_map[p] + 1);
}
// Member variables
std::vector<Edge> m_graph_edges;
std::vector<std::vector<int>> m_graph_out_edges;
std::vector<int> m_cap_map;
std::vector<int> m_res_cap_map;
std::vector<int> m_rev_edge_map;
std::vector<int> m_pre_map; // stores paths found in the growth stage
std::vector<Color> m_tree_map; // maps each vertex into white, black or gray
std::vector<int> m_dist_map; // stores distance to source/sink nodes
int m_source;
int m_sink;
std::queue<int> m_active_nodes;
std::vector<bool> m_in_active_list_map;
std::list<int> m_orphans;
std::queue<int> m_child_orphans; // we use a second queuqe for child orphans, as
// they are FIFO processed
std::vector<bool> m_has_parent_map;
std::vector<int> m_time_map; // timestamp of each node, used for
// sink/source-path calculations
int m_flow = 0;
int m_time = 1;
int m_last_grow_vertex = NULL_VERTEX;
int m_last_grow_out_edge = 0;
};
} // namespace qflow