Files
test2/intern/cycles/util/math_float3.h
Lukas Stockner 8cb5e05c48 Cleanup: Cycles: Deduplicate kernel attribute code using templating
The attribute handling code in the kernel is currently highly duplicated since
it needs to handle five different data types and we couldn't use templates
back then.
We can now, so might as well make use of it and get rid of ~1000 lines.

There are also some small fixes for the GPU OSL code:
- Wrong derivative for .w component when converting float2/float3->float4
- Different conversion for float2->float (CPU averages, GPU used to take .x)
- Removed useless code for converting to float2, not used by OSL

Pull Request: https://projects.blender.org/blender/blender/pulls/134694
2025-02-20 19:28:45 +01:00

629 lines
15 KiB
C

/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "util/math_base.h"
#include "util/math_float4.h"
#include "util/types_float3.h"
#include "util/types_float4.h"
CCL_NAMESPACE_BEGIN
ccl_device_inline float3 zero_float3()
{
#ifdef __KERNEL_SSE__
return float3(_mm_setzero_ps());
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
ccl_device_inline float3 one_float3()
{
return make_float3(1.0f, 1.0f, 1.0f);
}
ccl_device_template_spec float3 make_zero()
{
return zero_float3();
}
ccl_device_inline float3 reciprocal(const float3 a)
{
#ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
#else
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
#endif
}
#ifndef __KERNEL_METAL__
ccl_device_inline float3 operator-(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
# else
return make_float3(-a.x, -a.y, -a.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, b.m128));
# else
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float f)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator*(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator/(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(f / a.x, f / a.y, f / a.z);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float f)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, _mm_set1_ps(f)));
# else
float invf = 1.0f / f;
return make_float3(a.x * invf, a.y * invf, a.z * invf);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
# else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
# else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float f)
{
return a + make_float3(f);
}
ccl_device_inline float3 operator-(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
# else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
# endif
}
ccl_device_inline float3 operator-(const float3 a, const float f)
{
return a - make_float3(f);
}
ccl_device_inline float3 operator+=(float3 &a, const float3 b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3 &a, const float3 b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3 &a, const float3 b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3 &a, const float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3 &a, const float3 b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3 &a, const float f)
{
const float invf = 1.0f / f;
return a = a * invf;
}
# if !(defined(__KERNEL_METAL__) || defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__) || \
defined(__KERNEL_ONEAPI__))
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float3 b)
{
a = float3(a) * b;
return a;
}
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float f)
{
a = float3(a) * f;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float3 b)
{
a = float3(a) / b;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float f)
{
a = float3(a) / f;
return a;
}
# endif
ccl_device_inline bool operator==(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z);
# endif
}
ccl_device_inline bool operator!=(const float3 a, const float3 b)
{
return !(a == b);
}
ccl_device_inline float dot(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
# else
return a.x * b.x + a.y * b.y + a.z * b.z;
# endif
}
#endif
ccl_device_inline float dot_xy(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
#else
return a.x * b.x + a.y * b.y;
#endif
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float reduce_min(const float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float reduce_max(const float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
#ifndef __KERNEL_METAL__
ccl_device_inline float distance(const float3 a, const float3 b)
{
return len(a - b);
}
ccl_device_inline float3 cross(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
const float4 x = float4(a.m128);
const float4 y = shuffle<1, 2, 0, 3>(float4(b.m128));
const float4 z = float4(_mm_mul_ps(shuffle<1, 2, 0, 3>(float4(a.m128)), float4(b.m128)));
return float3(shuffle<1, 2, 0, 3>(msub(x, y, z)).m128);
# else
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
# endif
}
ccl_device_inline float3 normalize(const float3 a)
{
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
const __m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
# else
return a / len(a);
# endif
}
ccl_device_inline float3 min(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
# else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
# endif
}
ccl_device_inline float3 max(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
# else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
# endif
}
ccl_device_inline float3 clamp(const float3 a, const float3 mn, const float3 mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3 a)
{
# ifdef __KERNEL_SSE__
# ifdef __KERNEL_NEON__
return float3(vabsq_f32(a.m128));
# else
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
# endif
# else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
# endif
}
ccl_device_inline float3 fmod(const float3 a, const float b)
{
return make_float3(fmodf(a.x, b), fmodf(a.y, b), fmodf(a.z, b));
}
ccl_device_inline float3 sqrt(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sqrt_ps(a));
# else
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
# endif
}
ccl_device_inline float3 floor(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_floor_ps(a));
# else
return make_float3(floorf(a.x), floorf(a.y), floorf(a.z));
# endif
}
ccl_device_inline float3 ceil(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_ceil_ps(a));
# else
return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z));
# endif
}
ccl_device_inline float3 mix(const float3 a, const float3 b, const float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 saturate(const float3 a)
{
return make_float3(saturatef(a.x), saturatef(a.y), saturatef(a.z));
}
ccl_device_inline float3 exp(const float3 v)
{
return make_float3(expf(v.x), expf(v.y), expf(v.z));
}
ccl_device_inline float3 log(const float3 v)
{
return make_float3(logf(v.x), logf(v.y), logf(v.z));
}
ccl_device_inline float3 cos(const float3 v)
{
return make_float3(cosf(v.x), cosf(v.y), cosf(v.z));
}
ccl_device_inline float3 reflect(const float3 incident, const float3 unit_normal)
{
return incident - 2.0f * unit_normal * dot(incident, unit_normal);
}
ccl_device_inline float3 refract(const float3 incident, const float3 normal, const float eta)
{
const float k = 1.0f - eta * eta * (1.0f - dot(normal, incident) * dot(normal, incident));
if (k < 0.0f) {
return zero_float3();
}
return eta * incident - (eta * dot(normal, incident) + sqrt(k)) * normal;
}
ccl_device_inline float3 faceforward(const float3 vector,
const float3 incident,
const float3 reference)
{
return (dot(reference, incident) < 0.0f) ? vector : -vector;
}
#endif
ccl_device_inline float3 project(const float3 v, const float3 v_proj)
{
const float len_squared = dot(v_proj, v_proj);
return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj : zero_float3();
}
ccl_device_inline float3 normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
const float x = 1.0f / *t;
return a * x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
const float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : a;
}
ccl_device_inline float3 safe_normalize_fallback(const float3 a, const float3 fallback)
{
const float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : fallback;
}
ccl_device_inline float3 safe_normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
return (*t != 0.0f) ? a / (*t) : a;
}
ccl_device_inline float3 safe_divide(const float3 a, const float3 b)
{
return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f,
(b.y != 0.0f) ? a.y / b.y : 0.0f,
(b.z != 0.0f) ? a.z / b.z : 0.0f);
}
ccl_device_inline float3 safe_divide(const float3 a, const float b)
{
return (b != 0.0f) ? a / b : zero_float3();
}
ccl_device_inline float3 interp(const float3 a, const float3 b, const float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 sqr(const float3 a)
{
return a * a;
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
#if defined(__KERNEL_SSE__) && defined(__KERNEL_NEON__)
__m128 t = a.m128;
t = vsetq_lane_f32(0.0f, t, 3);
return vaddvq_f32(t);
#else
return (a.x + a.y + a.z);
#endif
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a) * (1.0f / 3.0f);
}
ccl_device_inline bool isequal(const float3 a, const float3 b)
{
#if defined(__KERNEL_METAL__)
return all(a == b);
#else
return a == b;
#endif
}
/* Consistent name for this would be pow, but HIP compiler crashes in name mangling. */
ccl_device_inline float3 power(const float3 v, const float e)
{
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
}
ccl_device_inline bool isfinite_safe(const float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite(const float3 v)
{
float3 r = v;
if (!isfinite_safe(r.x)) {
r.x = 0.0f;
}
if (!isfinite_safe(r.y)) {
r.y = 0.0f;
}
if (!isfinite_safe(r.z)) {
r.z = 0.0f;
}
return r;
}
/* Triangle */
ccl_device_inline float triangle_area(const ccl_private float3 &v1,
const ccl_private float3 &v2,
const ccl_private float3 &v3)
{
return len(cross(v3 - v2, v1 - v2)) * 0.5f;
}
/* Orthonormal vectors */
ccl_device_inline void make_orthonormals(const float3 N,
ccl_private float3 *a,
ccl_private float3 *b)
{
#if 0
if (fabsf(N.y) >= 0.999f) {
*a = make_float3(1, 0, 0);
*b = make_float3(0, 0, 1);
return;
}
if (fabsf(N.z) >= 0.999f) {
*a = make_float3(1, 0, 0);
*b = make_float3(0, 1, 0);
return;
}
#endif
if (N.x != N.y || N.x != N.z) {
*a = make_float3(N.z - N.y, N.x - N.z, N.y - N.x); //(1,1,1)x N
}
else {
*a = make_float3(N.z - N.y, N.x + N.z, -N.y - N.x); //(-1,1,1)x N
}
*a = normalize(*a);
*b = cross(N, *a);
}
/* Rotation of point around axis and angle */
ccl_device_inline float3 rotate_around_axis(const float3 p, const float3 axis, const float angle)
{
const float costheta = cosf(angle);
const float sintheta = sinf(angle);
float3 r;
r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) +
(((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) +
(((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z);
r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) +
((costheta + (1 - costheta) * axis.y * axis.y) * p.y) +
(((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z);
r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) +
(((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) +
((costheta + (1 - costheta) * axis.z * axis.z) * p.z);
return r;
}
/* Calculate the angle between the two vectors a and b.
* The usual approach `acos(dot(a, b))` has severe precision issues for small angles,
* which are avoided by this method.
* Based on "Mangled Angles" from https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
*/
ccl_device_inline float precise_angle(const float3 a, const float3 b)
{
return 2.0f * atan2f(len(a - b), len(a + b));
}
/* Tangent of the angle between vectors a and b. */
ccl_device_inline float tan_angle(const float3 a, const float3 b)
{
return len(cross(a, b)) / dot(a, b);
}
/* projections */
ccl_device_inline float2 map_to_tube(const float3 co)
{
float len;
float u;
float v;
len = sqrtf(co.x * co.x + co.y * co.y);
if (len > 0.0f) {
u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f;
v = (co.z + 1.0f) * 0.5f;
}
else {
u = v = 0.0f;
}
return make_float2(u, v);
}
ccl_device_inline float2 map_to_sphere(const float3 co)
{
const float l = dot(co, co);
float u;
float v;
if (l > 0.0f) {
if (UNLIKELY(co.x == 0.0f && co.y == 0.0f)) {
u = 0.0f; /* Otherwise domain error. */
}
else {
u = (0.5f - atan2f(co.x, co.y) * M_1_2PI_F);
}
v = 1.0f - safe_acosf(co.z / sqrtf(l)) * M_1_PI_F;
}
else {
u = v = 0.0f;
}
return make_float2(u, v);
}
CCL_NAMESPACE_END