Files
test2/source/blender/blenlib/intern/math_base_inline.c
Aras Pranckevicius 5ed2eea0f6 ImBuf: Refactor pixel interpolation functions
There exist a bunch of "give me a (filtered) image pixel at this location"
functions, some with duplicated functionality, some with almost the same but
not quite, some that look similar but behave slightly differently, etc.
Some of them were in BLI, some were in ImBuf.

This commit tries to improve the situation by:
* Adding low level interpolation functions to `BLI_math_interp.hh`
  - With documentation on their behavior,
  - And with more unit tests.
* At `ImBuf` level, there are only convenience inline wrappers to the above BLI
  functions (split off into a separate header `IMB_interp.hh`). However, since
  these wrappers are inline,   some things get a tiny bit faster as a side
  effect. E.g. VSE image strip, scaling to 4K resolution (Windows/Ryzen5950X):
  - Nearest filter: 2.33 -> 1.94ms
  - Bilinear filter: 5.83 -> 5.69ms
  - Subsampled3x3 filter: 28.6 -> 22.4ms

Details on the functions:
- All of them have `_byte` and `_fl` suffixes.
- They exist in 4-channel byte (uchar4) and float (float4), as well as
  explicitly passed amount of channels for other float images.
- New functions in BLI `blender::math` namespace:
  - `interpolate_nearest`
  - `interpolate_bilinear`
  - `interpolate_bilinear_wrap`. Note that unlike previous "wrap" function,
    this one no longer requires the caller to do their own wrapping.
  - `interpolate_cubic_bspline`. Previous similar function was called just
    "bicubic" which could mean many different things.
- Same functions exist in `IMB_interp.hh`, they are just convenience that takes
  ImBuf and uses data pointer, width, height from that.

Other bits:
- Renamed `mod_f_positive` to `floored_fmod` (better matches `safe_floored_modf`
  and `floored_modulo` that exist elsewhere), made it branchless and added more
  unit tests.
- `interpolate_bilinear_wrap_fl` no longer clamps result to 0..1 range. Instead,
  moved the clamp to be outside of the call in `paint_image_proj.cc` and
  `paint_utils.cc`. Though the need for clamping in there is also questionable.

Pull Request: https://projects.blender.org/blender/blender/pulls/117387
2024-01-25 11:45:24 +01:00

726 lines
15 KiB
C

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "BLI_math_base.h"
#ifdef __cplusplus
extern "C" {
#endif
/* copied from BLI_utildefines.h */
#ifdef __GNUC__
# define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
# define UNLIKELY(x) (x)
#endif
MINLINE float pow2f(float x)
{
return x * x;
}
MINLINE float pow3f(float x)
{
return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
return pow2f(pow2f(x));
}
MINLINE float pow5f(float x)
{
return pow4f(x) * x;
}
MINLINE float pow7f(float x)
{
return pow2f(pow3f(x)) * x;
}
MINLINE float sqrt3f(float f)
{
if (UNLIKELY(f == 0.0f)) {
return 0.0f;
}
else if (UNLIKELY(f < 0.0f)) {
return -(float)(exp(log(-f) / 3.0));
}
else {
return (float)(exp(log(f) / 3.0));
}
}
MINLINE double sqrt3d(double d)
{
if (UNLIKELY(d == 0.0)) {
return 0.0;
}
else if (UNLIKELY(d < 0.0)) {
return -exp(log(-d) / 3.0);
}
else {
return exp(log(d) / 3.0);
}
}
MINLINE float sqrtf_signed(float f)
{
return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}
MINLINE float interpf(float target, float origin, float fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
MINLINE double interpd(double target, double origin, double fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
MINLINE float ratiof(float min, float max, float pos)
{
float range = max - min;
return range == 0 ? 0 : ((pos - min) / range);
}
MINLINE double ratiod(double min, double max, double pos)
{
double range = max - min;
return range == 0 ? 0 : ((pos - min) / range);
}
MINLINE float scalenorm(float a, float b, float x)
{
BLI_assert(x <= 1 && x >= 0);
return (x * (b - a)) + a;
}
MINLINE double scalenormd(double a, double b, double x)
{
BLI_assert(x <= 1 && x >= 0);
return (x * (b - a)) + a;
}
MINLINE float power_of_2(float val)
{
return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}
MINLINE int is_power_of_2_i(int n)
{
return (n & (n - 1)) == 0;
}
MINLINE int power_of_2_max_i(int n)
{
if (is_power_of_2_i(n)) {
return n;
}
do {
n = n & (n - 1);
} while (!is_power_of_2_i(n));
return n * 2;
}
MINLINE int power_of_2_min_i(int n)
{
while (!is_power_of_2_i(n)) {
n = n & (n - 1);
}
return n;
}
MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
x -= 1;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
MINLINE unsigned int power_of_2_min_u(unsigned int x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >> 1);
}
MINLINE unsigned int log2_floor_u(unsigned int x)
{
return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1);
}
MINLINE unsigned int log2_ceil_u(unsigned int x)
{
if (is_power_of_2_i((int)x)) {
return log2_floor_u(x);
}
else {
return log2_floor_u(x) + 1;
}
}
/* rounding and clamping */
#define _round_clamp_fl_impl(arg, ty, min, max) \
{ \
float r = floorf(arg + 0.5f); \
if (UNLIKELY(r <= (float)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (float)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_clamp_db_impl(arg, ty, min, max) \
{ \
double r = floor(arg + 0.5); \
if (UNLIKELY(r <= (double)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (double)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_fl_impl(arg, ty) \
{ \
return (ty)floorf(arg + 0.5f); \
}
#define _round_db_impl(arg, ty) \
{ \
return (ty)floor(arg + 0.5); \
}
MINLINE signed char round_fl_to_char(float a){_round_fl_impl(a, signed char)} MINLINE
unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE
short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE
unsigned short round_fl_to_ushort(float a){_round_fl_impl(a, unsigned short)} MINLINE
int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE
unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)}
MINLINE signed char round_db_to_char(double a){_round_db_impl(a, signed char)} MINLINE
unsigned char round_db_to_uchar(double a){_round_db_impl(a, unsigned char)} MINLINE
short round_db_to_short(double a){_round_db_impl(a, short)} MINLINE
unsigned short round_db_to_ushort(double a){_round_db_impl(a, unsigned short)} MINLINE
int round_db_to_int(double a){_round_db_impl(a, int)} MINLINE
unsigned int round_db_to_uint(double a){_round_db_impl(a, unsigned int)}
#undef _round_fl_impl
#undef _round_db_impl
MINLINE signed char round_fl_to_char_clamp(float a){
_round_clamp_fl_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_fl_to_uchar_clamp(float a){
_round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_fl_to_short_clamp(float a){
_round_clamp_fl_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_fl_to_ushort_clamp(float a){
_round_clamp_fl_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_fl_to_uint_clamp(float a){
_round_clamp_fl_impl(a, unsigned int, 0, UINT_MAX)}
MINLINE signed char round_db_to_char_clamp(double a){
_round_clamp_db_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_db_to_uchar_clamp(double a){
_round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_db_to_short_clamp(double a){
_round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_db_to_ushort_clamp(double a){
_round_clamp_db_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_db_to_uint_clamp(double a){
_round_clamp_db_impl(a, unsigned int, 0, UINT_MAX)}
#undef _round_clamp_fl_impl
#undef _round_clamp_db_impl
MINLINE float round_to_even(float f)
{
return roundf(f * 0.5f) * 2.0f;
}
MINLINE int divide_round_i(int a, int b)
{
return (2 * a + b) / (2 * b);
}
/**
* Integer division that floors negative result.
* \note This works like Python's int division.
*/
MINLINE int divide_floor_i(int a, int b)
{
int d = a / b;
int r = a % b; /* Optimizes into a single division. */
return r ? d - ((a < 0) ^ (b < 0)) : d;
}
MINLINE uint divide_ceil_u(uint a, uint b)
{
return (a + b - 1) / b;
}
MINLINE uint64_t divide_ceil_ul(uint64_t a, uint64_t b)
{
return (a + b - 1) / b;
}
MINLINE uint ceil_to_multiple_u(uint a, uint b)
{
return divide_ceil_u(a, b) * b;
}
MINLINE uint64_t ceil_to_multiple_ul(uint64_t a, uint64_t b)
{
return divide_ceil_ul(a, b) * b;
}
MINLINE int mod_i(int i, int n)
{
return (i % n + n) % n;
}
MINLINE float floored_fmod(const float f, const float n)
{
return f - n * floorf(f / n);
}
MINLINE float fractf(float a)
{
return a - floorf(a);
}
/* Adapted from `godot-engine` math_funcs.h. */
MINLINE float wrapf(float value, float max, float min)
{
float range = max - min;
return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min;
}
MINLINE float pingpongf(float value, float scale)
{
if (scale == 0.0f) {
return 0.0f;
}
return fabsf(fractf((value - scale) / (scale * 2.0f)) * scale * 2.0f - scale);
}
/* Square. */
MINLINE int square_s(short a)
{
return a * a;
}
MINLINE int square_i(int a)
{
return a * a;
}
MINLINE unsigned int square_uint(unsigned int a)
{
return a * a;
}
MINLINE int square_uchar(unsigned char a)
{
return a * a;
}
MINLINE float square_f(float a)
{
return a * a;
}
MINLINE double square_d(double a)
{
return a * a;
}
/* Cube. */
MINLINE int cube_s(short a)
{
return a * a * a;
}
MINLINE int cube_i(int a)
{
return a * a * a;
}
MINLINE unsigned int cube_uint(unsigned int a)
{
return a * a * a;
}
MINLINE int cube_uchar(unsigned char a)
{
return a * a * a;
}
MINLINE float cube_f(float a)
{
return a * a * a;
}
MINLINE double cube_d(double a)
{
return a * a * a;
}
/* Min/max */
MINLINE float min_ff(float a, float b)
{
return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
return (a > b) ? a : b;
}
/* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */
MINLINE float smoothminf(float a, float b, float c)
{
if (c != 0.0f) {
float h = max_ff(c - fabsf(a - b), 0.0f) / c;
return min_ff(a, b) - h * h * h * c * (1.0f / 6.0f);
}
else {
return min_ff(a, b);
}
}
MINLINE float smoothstep(float edge0, float edge1, float x)
{
float result;
if (x < edge0) {
result = 0.0f;
}
else if (x >= edge1) {
result = 1.0f;
}
else {
float t = (x - edge0) / (edge1 - edge0);
result = (3.0f - 2.0f * t) * (t * t);
}
return result;
}
MINLINE double min_dd(double a, double b)
{
return (a < b) ? a : b;
}
MINLINE double max_dd(double a, double b)
{
return (a > b) ? a : b;
}
MINLINE int min_ii(int a, int b)
{
return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
return (b < a) ? a : b;
}
MINLINE uint min_uu(uint a, uint b)
{
return (a < b) ? a : b;
}
MINLINE uint max_uu(uint a, uint b)
{
return (b < a) ? a : b;
}
MINLINE unsigned long long min_ulul(unsigned long long a, unsigned long long b)
{
return (a < b) ? a : b;
}
MINLINE unsigned long long max_ulul(unsigned long long a, unsigned long long b)
{
return (b < a) ? a : b;
}
MINLINE double min_ddd(double a, double b, double c)
{
return min_dd(min_dd(a, b), c);
}
MINLINE double max_ddd(double a, double b, double c)
{
return max_dd(max_dd(a, b), c);
}
MINLINE float min_fff(float a, float b, float c)
{
return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
return max_ff(max_ff(a, b), c);
}
MINLINE int min_iii(int a, int b, int c)
{
return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
return max_ii(max_ii(a, b), c);
}
MINLINE float min_ffff(float a, float b, float c, float d)
{
return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
return max_ff(max_fff(a, b, c), d);
}
MINLINE int min_iiii(int a, int b, int c, int d)
{
return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
return max_ii(max_iii(a, b, c), d);
}
MINLINE size_t min_zz(size_t a, size_t b)
{
return (a < b) ? a : b;
}
MINLINE size_t max_zz(size_t a, size_t b)
{
return (b < a) ? a : b;
}
MINLINE char min_cc(char a, char b)
{
return (a < b) ? a : b;
}
MINLINE char max_cc(char a, char b)
{
return (b < a) ? a : b;
}
MINLINE int clamp_i(int value, int min, int max)
{
return min_ii(max_ii(value, min), max);
}
MINLINE float clamp_f(float value, float min, float max)
{
if (value > max) {
return max;
}
else if (value < min) {
return min;
}
return value;
}
MINLINE size_t clamp_z(size_t value, size_t min, size_t max)
{
return min_zz(max_zz(value, min), max);
}
MINLINE int compare_ff(float a, float b, const float max_diff)
{
return fabsf(a - b) <= max_diff;
}
MINLINE uint ulp_diff_ff(float a, float b)
{
BLI_assert(sizeof(float) == sizeof(uint));
const uint sign_bit = 0x80000000;
const uint infinity = 0x7f800000;
union {
float f;
uint i;
} ua, ub;
ua.f = a;
ub.f = b;
const uint a_sign = ua.i & sign_bit;
const uint b_sign = ub.i & sign_bit;
const uint a_abs = ua.i & ~sign_bit;
const uint b_abs = ub.i & ~sign_bit;
if (a_abs > infinity || b_abs > infinity) {
/* NaNs always return maximum ulps apart. */
return 0xffffffff;
}
else if (a_sign == b_sign) {
const uint min_abs = a_abs < b_abs ? a_abs : b_abs;
const uint max_abs = a_abs > b_abs ? a_abs : b_abs;
return max_abs - min_abs;
}
else {
return a_abs + b_abs;
}
}
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
BLI_assert(max_ulps >= 0 && max_ulps < (1 << 22));
if (fabsf(a - b) <= max_diff) {
return 1;
}
return (ulp_diff_ff(a, b) <= (uint)max_ulps) ? 1 : 0;
}
MINLINE bool compare_threshold_relative(const float value1, const float value2, const float thresh)
{
const float abs_diff = fabsf(value1 - value2);
/* Avoid letting the threshold get too small just because the values happen to be close to zero.
*/
if (fabsf(value2) < 1) {
return abs_diff > thresh;
}
/* Using relative threshold in general. */
return abs_diff > thresh * fabsf(value2);
}
MINLINE float signf(float f)
{
return (f < 0.0f) ? -1.0f : 1.0f;
}
MINLINE float compatible_signf(float f)
{
if (f > 0.0f) {
return 1.0f;
}
if (f < 0.0f) {
return -1.0f;
}
else {
return 0.0f;
}
}
MINLINE int signum_i_ex(float a, float eps)
{
if (a > eps) {
return 1;
}
if (a < -eps) {
return -1;
}
else {
return 0;
}
}
MINLINE int signum_i(float a)
{
if (a > 0.0f) {
return 1;
}
if (a < 0.0f) {
return -1;
}
else {
return 0;
}
}
MINLINE int integer_digits_f(const float f)
{
return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1;
}
MINLINE int integer_digits_d(const double d)
{
return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1;
}
MINLINE int integer_digits_i(const int i)
{
return (int)log10((double)i) + 1;
}
/* Low level conversion functions */
MINLINE unsigned char unit_float_to_uchar_clamp(float val)
{
return (unsigned char)((
(val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f))));
}
#define unit_float_to_uchar_clamp(val) \
((CHECK_TYPE_INLINE_NONCONST((val), float)), unit_float_to_uchar_clamp(val))
MINLINE unsigned short unit_float_to_ushort_clamp(float val)
{
return (unsigned short)((val >= 1.0f - 0.5f / 65535) ? 65535 :
(val <= 0.0f) ? 0 :
(val * 65535.0f + 0.5f));
}
#define unit_float_to_ushort_clamp(val) \
((CHECK_TYPE_INLINE_NONCONST(val, float)), unit_float_to_ushort_clamp(val))
MINLINE unsigned char unit_ushort_to_uchar(unsigned short val)
{
return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8);
}
#define unit_ushort_to_uchar(val) \
((CHECK_TYPE_INLINE_NONCONST(val, unsigned short)), unit_ushort_to_uchar(val))
#define unit_float_to_uchar_clamp_v3(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
} \
((void)0)
#define unit_float_to_uchar_clamp_v4(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
(v1)[3] = unit_float_to_uchar_clamp((v2[3])); \
} \
((void)0)
#ifdef __cplusplus
}
#endif
#endif /* __MATH_BASE_INLINE_C__ */