Files
test2/intern/cycles/kernel/camera/projection.h

353 lines
12 KiB
C

/* SPDX-FileCopyrightText: 2009-2010 Sony Pictures Imageworks Inc., et al.
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Adapted code from Open Shading Language. */
#pragma once
#include "kernel/types.h"
#include "util/math.h"
#include "util/types.h"
CCL_NAMESPACE_BEGIN
/* Equirectangular coordinates <-> Cartesian direction */
ccl_device float2 direction_to_equirectangular_range(const float3 dir, const float4 range)
{
if (is_zero(dir)) {
return zero_float2();
}
const float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
const float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
return make_float2(u, v);
}
ccl_device float3 equirectangular_range_to_direction(const float u,
const float v,
const float4 range)
{
const float phi = range.x * u + range.y;
const float theta = range.z * v + range.w;
return spherical_to_direction(theta, phi);
}
ccl_device float2 direction_to_equirectangular(const float3 dir)
{
return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
ccl_device float3 equirectangular_to_direction(const float u, const float v)
{
return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
ccl_device float2 direction_to_central_cylindrical(const float3 dir, const float4 range)
{
const float z = dir.z / len(make_float2(dir.x, dir.y));
const float theta = atan2f(dir.y, dir.x);
const float u = inverse_lerp(range.x, range.y, theta);
const float v = inverse_lerp(range.z, range.w, z);
return make_float2(u, v);
}
ccl_device float3 central_cylindrical_to_direction(const float u,
const float v,
const float4 range)
{
const float theta = mix(range.x, range.y, u);
const float z = mix(range.z, range.w, v);
return make_float3(cosf(theta), sinf(theta), z);
}
/* Fisheye <-> Cartesian direction */
ccl_device_inline float3 fisheye_to_direction(const float theta,
const float u,
float v,
const float r)
{
float phi = safe_acosf(safe_divide(u, r));
if (v < 0.0f) {
phi = -phi;
}
return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}
ccl_device float2 direction_to_fisheye_equidistant(const float3 dir, const float fov)
{
const float r = atan2f(len(make_float2(dir.y, dir.z)), dir.x) / fov;
const float2 uv = r * safe_normalize(make_float2(dir.y, dir.z));
return make_float2(0.5f - uv.x, uv.y + 0.5f);
}
ccl_device float3 fisheye_equidistant_to_direction(float u, float v, float fov)
{
u = (u - 0.5f) * 2.0f;
v = (v - 0.5f) * 2.0f;
const float r = sqrtf(u * u + v * v);
if (r > 1.0f) {
return zero_float3();
}
const float theta = r * fov * 0.5f;
return fisheye_to_direction(theta, u, v, r);
}
ccl_device float2 direction_to_fisheye_equisolid(const float3 dir,
const float lens,
const float width,
const float height)
{
const float theta = safe_acosf(dir.x);
const float r = 2.0f * lens * sinf(theta * 0.5f);
const float2 uv = r * safe_normalize(make_float2(dir.y, dir.z));
return make_float2(0.5f - uv.x / width, uv.y / height + 0.5f);
}
ccl_device_inline float3 fisheye_equisolid_to_direction(
float u, float v, float lens, const float fov, const float width, const float height)
{
u = (u - 0.5f) * width;
v = (v - 0.5f) * height;
const float rmax = 2.0f * lens * sinf(fov * 0.25f);
const float r = sqrtf(u * u + v * v);
if (r > rmax) {
return zero_float3();
}
const float theta = 2.0f * asinf(r / (2.0f * lens));
return fisheye_to_direction(theta, u, v, r);
}
ccl_device_inline float3 fisheye_lens_polynomial_to_direction(float u,
float v,
float coeff0,
const float4 coeffs,
const float fov,
const float width,
const float height)
{
u = (u - 0.5f) * width;
v = (v - 0.5f) * height;
const float r = sqrtf(u * u + v * v);
const float r2 = r * r;
const float4 rr = make_float4(r, r2, r2 * r, r2 * r2);
const float theta = -(coeff0 + dot(coeffs, rr));
if (fabsf(theta) > 0.5f * fov) {
return zero_float3();
}
return fisheye_to_direction(theta, u, v, r);
}
ccl_device float2 direction_to_fisheye_lens_polynomial(
float3 dir, const float coeff0, const float4 coeffs, const float width, const float height)
{
const float theta = -safe_acosf(dir.x);
/* Initialize r with the closed-form solution for the special case
* coeffs.y = coeffs.z = coeffs.w = 0 */
float r = (theta - coeff0) / coeffs.x;
const float4 diff_coeffs = make_float4(1.0f, 2.0f, 3.0f, 4.0f) * coeffs;
for (int i = 0; i < 20; i++) {
/* Newton's method for finding roots
*
* Given is the result theta = distortion_model(r),
* we need to find r.
* Let F(r) := theta - distortion_model(r).
* Then F(r) = 0 <=> distortion_model(r) = theta
* Therefore we apply Newton's method for finding a root of F(r).
* Newton step for the function F:
* r_n+1 = r_n - F(r_n) / F'(r_n)
* The addition in the implementation is due to canceling of signs.
* \{ */
const float old_r = r;
const float r2 = r * r;
const float F_r = theta - (coeff0 + dot(coeffs, make_float4(r, r2, r2 * r, r2 * r2)));
const float dF_r = dot(diff_coeffs, make_float4(1.0f, r, r2, r2 * r));
r += F_r / dF_r;
/* Early termination if the change is below the threshold */
if (fabsf(r - old_r) < 1e-6f) {
break;
}
/** \} */
}
const float2 uv = r * safe_normalize(make_float2(dir.y, dir.z));
return make_float2(0.5f - uv.x / width, uv.y / height + 0.5f);
}
/* Mirror Ball <-> Cartesion direction */
ccl_device float3 mirrorball_to_direction(const float u, const float v)
{
/* point on sphere */
float3 dir;
dir.x = 2.0f * u - 1.0f;
dir.z = 2.0f * v - 1.0f;
if (dir.x * dir.x + dir.z * dir.z > 1.0f) {
return zero_float3();
}
dir.y = -sqrtf(max(1.0f - dir.x * dir.x - dir.z * dir.z, 0.0f));
/* reflection */
const float3 I = make_float3(0.0f, -1.0f, 0.0f);
return 2.0f * dot(dir, I) * dir - I;
}
ccl_device float2 direction_to_mirrorball(float3 dir)
{
/* inverse of mirrorball_to_direction */
dir.y -= 1.0f;
const float div = 2.0f * sqrtf(max(-0.5f * dir.y, 0.0f));
if (div > 0.0f) {
dir /= div;
}
const float u = 0.5f * (dir.x + 1.0f);
const float v = 0.5f * (dir.z + 1.0f);
return make_float2(u, v);
}
/* Single face of a equiangular cube map projection as described in
* https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/ */
ccl_device float3 equiangular_cubemap_face_to_direction(float u, float v)
{
u = tanf((0.5f - u) * M_PI_2_F);
v = tanf((v - 0.5f) * M_PI_2_F);
return normalize(make_float3(1.0f, u, v));
}
ccl_device float2 direction_to_equiangular_cubemap_face(const float3 dir)
{
const float u = 0.5f - atan2f(dir.y, dir.x) * 2.0f / M_PI_F;
const float v = atan2f(dir.z, dir.x) * 2.0f / M_PI_F + 0.5f;
return make_float2(u, v);
}
ccl_device_inline float3 panorama_to_direction(ccl_constant KernelCamera *cam,
const float u,
float v)
{
switch (cam->panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return equirectangular_range_to_direction(u, v, cam->equirectangular_range);
case PANORAMA_EQUIANGULAR_CUBEMAP_FACE:
return equiangular_cubemap_face_to_direction(u, v);
case PANORAMA_MIRRORBALL:
return mirrorball_to_direction(u, v);
case PANORAMA_FISHEYE_EQUIDISTANT:
return fisheye_equidistant_to_direction(u, v, cam->fisheye_fov);
case PANORAMA_FISHEYE_LENS_POLYNOMIAL:
return fisheye_lens_polynomial_to_direction(u,
v,
cam->fisheye_lens_polynomial_bias,
cam->fisheye_lens_polynomial_coefficients,
cam->fisheye_fov,
cam->sensorwidth,
cam->sensorheight);
case PANORAMA_CENTRAL_CYLINDRICAL:
return central_cylindrical_to_direction(u, v, cam->central_cylindrical_range);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return fisheye_equisolid_to_direction(
u, v, cam->fisheye_lens, cam->fisheye_fov, cam->sensorwidth, cam->sensorheight);
}
}
ccl_device_inline float2 direction_to_panorama(ccl_constant KernelCamera *cam, const float3 dir)
{
switch (cam->panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return direction_to_equirectangular_range(dir, cam->equirectangular_range);
case PANORAMA_EQUIANGULAR_CUBEMAP_FACE:
return direction_to_equiangular_cubemap_face(dir);
case PANORAMA_MIRRORBALL:
return direction_to_mirrorball(dir);
case PANORAMA_FISHEYE_EQUIDISTANT:
return direction_to_fisheye_equidistant(dir, cam->fisheye_fov);
case PANORAMA_FISHEYE_LENS_POLYNOMIAL:
return direction_to_fisheye_lens_polynomial(dir,
cam->fisheye_lens_polynomial_bias,
cam->fisheye_lens_polynomial_coefficients,
cam->sensorwidth,
cam->sensorheight);
case PANORAMA_CENTRAL_CYLINDRICAL:
return direction_to_central_cylindrical(dir, cam->central_cylindrical_range);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return direction_to_fisheye_equisolid(
dir, cam->fisheye_lens, cam->sensorwidth, cam->sensorheight);
}
}
ccl_device_inline void spherical_stereo_transform(ccl_constant KernelCamera *cam,
ccl_private float3 *P,
ccl_private float3 *D)
{
float interocular_offset = cam->interocular_offset;
/* Interocular offset of zero means either non stereo, or stereo without
* spherical stereo. */
kernel_assert(interocular_offset != 0.0f);
if (cam->pole_merge_angle_to > 0.0f) {
const float pole_merge_angle_from = cam->pole_merge_angle_from;
const float pole_merge_angle_to = cam->pole_merge_angle_to;
const float altitude = fabsf(safe_asinf((*D).z));
if (altitude > pole_merge_angle_to) {
interocular_offset = 0.0f;
}
else if (altitude > pole_merge_angle_from) {
const float fac = (altitude - pole_merge_angle_from) /
(pole_merge_angle_to - pole_merge_angle_from);
const float fade = cosf(fac * M_PI_2_F);
interocular_offset *= fade;
}
}
const float3 up = make_float3(0.0f, 0.0f, 1.0f);
const float3 side = normalize(cross(*D, up));
const float3 stereo_offset = side * interocular_offset;
*P += stereo_offset;
/* Convergence distance is FLT_MAX in the case of parallel convergence mode,
* no need to modify direction in this case either. */
const float convergence_distance = cam->convergence_distance;
if (convergence_distance != FLT_MAX) {
const float3 screen_offset = convergence_distance * (*D);
*D = normalize(screen_offset - stereo_offset);
}
}
CCL_NAMESPACE_END