Files
test2/source/blender/blenkernel/intern/instances.cc
Jacques Lucke b7a1325c3c BLI: use blender::Mutex by default which wraps tbb::mutex
This patch adds a new `BLI_mutex.hh` header which adds `blender::Mutex` as alias
for either `tbb::mutex` or `std::mutex` depending on whether TBB is enabled.

Description copied from the patch:
```
/**
 * blender::Mutex should be used as the default mutex in Blender. It implements a subset of the API
 * of std::mutex but has overall better guaranteed properties. It can be used with RAII helpers
 * like std::lock_guard. However, it is not compatible with e.g. std::condition_variable. So one
 * still has to use std::mutex for that case.
 *
 * The mutex provided by TBB has these properties:
 * - It's as fast as a spin-lock in the non-contended case, i.e. when no other thread is trying to
 *   lock the mutex at the same time.
 * - In the contended case, it spins a couple of times but then blocks to avoid draining system
 *   resources by spinning for a long time.
 * - It's only 1 byte large, compared to e.g. 40 bytes when using the std::mutex of GCC. This makes
 *   it more feasible to have many smaller mutexes which can improve scalability of algorithms
 *   compared to using fewer larger mutexes. Also it just reduces "memory slop" across Blender.
 * - It is *not* a fair mutex, i.e. it's not guaranteed that a thread will ever be able to lock the
 *   mutex when there are always more than one threads that try to lock it. In the majority of
 *   cases, using a fair mutex just causes extra overhead without any benefit. std::mutex is not
 *   guaranteed to be fair either.
 */
 ```

The performance benchmark suggests that the impact is negilible in almost
all cases. The only benchmarks that show interesting behavior are the once
testing foreach zones in Geometry Nodes. These tests are explicitly testing
overhead, which I still have to reduce over time. So it's not unexpected that
changing the mutex has an impact there. What's interesting is that on macos the
performance improves a lot while on linux it gets worse. Since that overhead
should eventually be removed almost entirely, I don't really consider that
blocking.

Links:
* Documentation of different mutex flavors in TBB:
  https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-12/mutex-flavors.html
* Older implementation of a similar mutex by me:
  https://archive.blender.org/developer/differential/0016/0016711/index.html
* Interesting read regarding how a mutex can be this small:
  https://webkit.org/blog/6161/locking-in-webkit/

Pull Request: https://projects.blender.org/blender/blender/pulls/138370
2025-05-07 04:53:16 +02:00

542 lines
16 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BLI_array_utils.hh"
#include "BLI_listbase.h"
#include "BLI_rand.hh"
#include "BLI_task.hh"
#include "DNA_collection_types.h"
#include "DNA_object_types.h"
#include "BKE_customdata.hh"
#include "BKE_geometry_set.hh"
#include "BKE_geometry_set_instances.hh"
#include "BKE_instances.hh"
namespace blender::bke {
InstanceReference::InstanceReference(GeometrySet geometry_set)
: type_(Type::GeometrySet),
geometry_set_(std::make_unique<GeometrySet>(std::move(geometry_set)))
{
}
InstanceReference::InstanceReference(const InstanceReference &other)
: type_(other.type_), data_(other.data_)
{
if (other.geometry_set_) {
geometry_set_ = std::make_unique<GeometrySet>(*other.geometry_set_);
}
}
void InstanceReference::ensure_owns_direct_data()
{
if (type_ != Type::GeometrySet) {
return;
}
geometry_set_->ensure_owns_direct_data();
}
bool InstanceReference::owns_direct_data() const
{
if (type_ != Type::GeometrySet) {
/* The object and collection instances are not direct data. */
return true;
}
return geometry_set_->owns_direct_data();
}
void InstanceReference::count_memory(MemoryCounter &memory) const
{
switch (type_) {
case Type::GeometrySet: {
geometry_set_->count_memory(memory);
}
default: {
break;
}
}
}
AttributeAccessor Instances::attributes() const
{
return AttributeAccessor(this, instance_attribute_accessor_functions());
}
MutableAttributeAccessor Instances::attributes_for_write()
{
return MutableAttributeAccessor(this, instance_attribute_accessor_functions());
}
static void convert_collection_to_instances(const Collection &collection,
bke::Instances &instances)
{
LISTBASE_FOREACH (CollectionChild *, collection_child, &collection.children) {
float4x4 transform = float4x4::identity();
transform.location() += float3(collection_child->collection->instance_offset);
transform.location() -= float3(collection.instance_offset);
const int handle = instances.add_reference(*collection_child->collection);
instances.add_instance(handle, transform);
}
LISTBASE_FOREACH (CollectionObject *, collection_object, &collection.gobject) {
float4x4 transform = float4x4::identity();
transform.location() -= float3(collection.instance_offset);
transform *= (collection_object->ob)->object_to_world();
const int handle = instances.add_reference(*collection_object->ob);
instances.add_instance(handle, transform);
}
}
void InstanceReference::to_geometry_set(GeometrySet &r_geometry_set) const
{
r_geometry_set.clear();
switch (type_) {
case Type::Object: {
const Object &object = this->object();
r_geometry_set = bke::object_get_evaluated_geometry_set(object);
break;
}
case Type::Collection: {
const Collection &collection = this->collection();
std::unique_ptr<bke::Instances> instances_ptr = std::make_unique<bke::Instances>();
convert_collection_to_instances(collection, *instances_ptr);
r_geometry_set.replace_instances(instances_ptr.release());
break;
}
case Type::GeometrySet: {
r_geometry_set = this->geometry_set();
break;
}
case Type::None: {
break;
}
}
}
StringRefNull InstanceReference::name() const
{
switch (type_) {
case Type::Object:
return this->object().id.name + 2;
case Type::Collection:
return this->collection().id.name + 2;
case Type::GeometrySet:
return this->geometry_set().name;
case Type::None:
break;
}
return "";
}
bool operator==(const InstanceReference &a, const InstanceReference &b)
{
if (a.geometry_set_ && b.geometry_set_) {
return *a.geometry_set_ == *b.geometry_set_;
}
return a.type_ == b.type_ && a.data_ == b.data_;
}
uint64_t InstanceReference::hash() const
{
const uint64_t geometry_hash = geometry_set_ ? geometry_set_->hash() : 0;
return get_default_hash(geometry_hash, type_, data_);
}
Instances::Instances()
{
CustomData_reset(&attributes_);
}
Instances::Instances(Instances &&other)
: references_(std::move(other.references_)),
instances_num_(other.instances_num_),
attributes_(other.attributes_),
reference_user_counts_(std::move(other.reference_user_counts_)),
almost_unique_ids_cache_(std::move(other.almost_unique_ids_cache_))
{
CustomData_reset(&other.attributes_);
}
Instances::Instances(const Instances &other)
: references_(other.references_),
instances_num_(other.instances_num_),
reference_user_counts_(other.reference_user_counts_),
almost_unique_ids_cache_(other.almost_unique_ids_cache_)
{
CustomData_init_from(&other.attributes_, &attributes_, CD_MASK_ALL, other.instances_num_);
}
Instances::~Instances()
{
CustomData_free(&attributes_);
}
Instances &Instances::operator=(const Instances &other)
{
if (this == &other) {
return *this;
}
std::destroy_at(this);
new (this) Instances(other);
return *this;
}
Instances &Instances::operator=(Instances &&other)
{
if (this == &other) {
return *this;
}
std::destroy_at(this);
new (this) Instances(std::move(other));
return *this;
}
void Instances::resize(int capacity)
{
CustomData_realloc(&attributes_, instances_num_, capacity, CD_SET_DEFAULT);
instances_num_ = capacity;
}
void Instances::add_instance(const int instance_handle, const float4x4 &transform)
{
BLI_assert(instance_handle >= 0);
BLI_assert(instance_handle < references_.size());
const int old_size = instances_num_;
instances_num_++;
CustomData_realloc(&attributes_, old_size, instances_num_);
this->reference_handles_for_write().last() = instance_handle;
this->transforms_for_write().last() = transform;
this->tag_reference_handles_changed();
}
Span<int> Instances::reference_handles() const
{
return {static_cast<const int *>(
CustomData_get_layer_named(&attributes_, CD_PROP_INT32, ".reference_index")),
instances_num_};
}
MutableSpan<int> Instances::reference_handles_for_write()
{
int *data = static_cast<int *>(CustomData_get_layer_named_for_write(
&attributes_, CD_PROP_INT32, ".reference_index", instances_num_));
if (!data) {
data = static_cast<int *>(CustomData_add_layer_named(
&attributes_, CD_PROP_INT32, CD_SET_DEFAULT, instances_num_, ".reference_index"));
}
return {data, instances_num_};
}
Span<float4x4> Instances::transforms() const
{
return {static_cast<const float4x4 *>(
CustomData_get_layer_named(&attributes_, CD_PROP_FLOAT4X4, "instance_transform")),
instances_num_};
}
MutableSpan<float4x4> Instances::transforms_for_write()
{
float4x4 *data = static_cast<float4x4 *>(CustomData_get_layer_named_for_write(
&attributes_, CD_PROP_FLOAT4X4, "instance_transform", instances_num_));
if (!data) {
data = static_cast<float4x4 *>(CustomData_add_layer_named(
&attributes_, CD_PROP_FLOAT4X4, CD_SET_DEFAULT, instances_num_, "instance_transform"));
}
return {data, instances_num_};
}
GeometrySet &Instances::geometry_set_from_reference(const int reference_index)
{
/* If this assert fails, it means #ensure_geometry_instances must be called first or that the
* reference can't be converted to a geometry set. */
BLI_assert(references_[reference_index].type() == InstanceReference::Type::GeometrySet);
return references_[reference_index].geometry_set();
}
std::optional<int> Instances::find_reference_handle(const InstanceReference &query)
{
for (const int i : references_.index_range()) {
const InstanceReference &reference = references_[i];
if (reference == query) {
return i;
}
}
return std::nullopt;
}
int Instances::add_reference(const InstanceReference &reference)
{
if (std::optional<int> handle = this->find_reference_handle(reference)) {
return *handle;
}
return this->add_new_reference(reference);
}
int Instances::add_new_reference(const InstanceReference &reference)
{
this->tag_reference_handles_changed();
return references_.append_and_get_index(reference);
}
Span<InstanceReference> Instances::references() const
{
return references_;
}
void Instances::remove(const IndexMask &mask, const AttributeFilter &attribute_filter)
{
const std::optional<IndexRange> masked_range = mask.to_range();
if (masked_range.has_value() && masked_range->start() == 0) {
/* Deleting from the end of the array can be much faster since no data has to be shifted. */
this->resize(mask.size());
this->remove_unused_references();
return;
}
Instances new_instances;
new_instances.references_ = std::move(references_);
new_instances.instances_num_ = mask.size();
gather_attributes(this->attributes(),
AttrDomain::Instance,
AttrDomain::Instance,
attribute_filter,
mask,
new_instances.attributes_for_write());
*this = std::move(new_instances);
this->remove_unused_references();
}
void Instances::remove_unused_references()
{
const int tot_instances = instances_num_;
const int tot_references_before = references_.size();
if (tot_instances == 0) {
/* If there are no instances, no reference is needed. */
references_.clear();
return;
}
if (tot_references_before == 1) {
/* There is only one reference and at least one instance. So the only existing reference is
* used. Nothing to do here. */
return;
}
const Span<int> reference_handles = this->reference_handles();
Array<bool> usage_by_handle(tot_references_before, false);
Mutex mutex;
/* Loop over all instances to see which references are used. */
threading::parallel_for(IndexRange(tot_instances), 1000, [&](IndexRange range) {
/* Use local counter to avoid lock contention. */
Array<bool> local_usage_by_handle(tot_references_before, false);
for (const int i : range) {
const int handle = reference_handles[i];
BLI_assert(handle >= 0 && handle < tot_references_before);
local_usage_by_handle[handle] = true;
}
std::lock_guard lock{mutex};
for (const int i : IndexRange(tot_references_before)) {
usage_by_handle[i] |= local_usage_by_handle[i];
}
});
if (!usage_by_handle.as_span().contains(false)) {
/* All references are used. */
return;
}
/* Create new references and a mapping for the handles. */
Vector<int> handle_mapping;
Vector<InstanceReference> new_references;
int next_new_handle = 0;
bool handles_have_to_be_updated = false;
for (const int old_handle : IndexRange(tot_references_before)) {
if (!usage_by_handle[old_handle]) {
/* Add some dummy value. It won't be read again. */
handle_mapping.append(-1);
}
else {
const InstanceReference &reference = references_[old_handle];
handle_mapping.append(next_new_handle);
new_references.append(reference);
if (old_handle != next_new_handle) {
handles_have_to_be_updated = true;
}
next_new_handle++;
}
}
references_ = new_references;
if (!handles_have_to_be_updated) {
/* All remaining handles are the same as before, so they don't have to be updated. This happens
* when unused handles are only at the end. */
return;
}
/* Update handles of instances. */
{
const MutableSpan<int> reference_handles = this->reference_handles_for_write();
threading::parallel_for(IndexRange(tot_instances), 1000, [&](IndexRange range) {
for (const int i : range) {
reference_handles[i] = handle_mapping[reference_handles[i]];
}
});
}
}
int Instances::instances_num() const
{
return this->instances_num_;
}
int Instances::references_num() const
{
return references_.size();
}
bool Instances::owns_direct_data() const
{
for (const InstanceReference &reference : references_) {
if (!reference.owns_direct_data()) {
return false;
}
}
return true;
}
void Instances::ensure_owns_direct_data()
{
for (const InstanceReference &const_reference : references_) {
/* `const` cast is fine because we are not changing anything that would change the hash of the
* reference. */
InstanceReference &reference = const_cast<InstanceReference &>(const_reference);
reference.ensure_owns_direct_data();
}
}
void Instances::count_memory(MemoryCounter &memory) const
{
CustomData_count_memory(attributes_, instances_num_, memory);
for (const InstanceReference &reference : references_) {
reference.count_memory(memory);
}
}
static Array<int> generate_unique_instance_ids(Span<int> original_ids)
{
Array<int> unique_ids(original_ids.size());
Set<int> used_unique_ids;
used_unique_ids.reserve(original_ids.size());
Vector<int> instances_with_id_collision;
for (const int instance_index : original_ids.index_range()) {
const int original_id = original_ids[instance_index];
if (used_unique_ids.add(original_id)) {
/* The original id has not been used by another instance yet. */
unique_ids[instance_index] = original_id;
}
else {
/* The original id of this instance collided with a previous instance, it needs to be looked
* at again in a second pass. Don't generate a new random id here, because this might collide
* with other existing ids. */
instances_with_id_collision.append(instance_index);
}
}
Map<int, RandomNumberGenerator> generator_by_original_id;
for (const int instance_index : instances_with_id_collision) {
const int original_id = original_ids[instance_index];
RandomNumberGenerator &rng = generator_by_original_id.lookup_or_add_cb(original_id, [&]() {
RandomNumberGenerator rng;
rng.seed_random(original_id);
return rng;
});
const int max_iteration = 100;
for (int iteration = 0;; iteration++) {
/* Try generating random numbers until an unused one has been found. */
const int random_id = rng.get_int32();
if (used_unique_ids.add(random_id)) {
/* This random id is not used by another instance. */
unique_ids[instance_index] = random_id;
break;
}
if (iteration == max_iteration) {
/* It seems to be very unlikely that we ever run into this case (assuming there are less
* than 2^30 instances). However, if that happens, it's better to use an id that is not
* unique than to be stuck in an infinite loop. */
unique_ids[instance_index] = original_id;
break;
}
}
}
return unique_ids;
}
Span<int> Instances::reference_user_counts() const
{
reference_user_counts_.ensure([&](Array<int> &r_data) {
const int references_num = references_.size();
r_data.reinitialize(references_num);
r_data.fill(0);
const Span<int> handles = this->reference_handles();
for (const int handle : handles) {
if (handle >= 0 && handle < references_num) {
r_data[handle]++;
}
}
});
return reference_user_counts_.data();
}
Span<int> Instances::almost_unique_ids() const
{
almost_unique_ids_cache_.ensure([&](Array<int> &r_data) {
const VArraySpan<int> instance_ids = *this->attributes().lookup<int>("id");
if (instance_ids.is_empty()) {
r_data.reinitialize(instances_num_);
array_utils::fill_index_range(r_data.as_mutable_span());
return;
}
r_data = generate_unique_instance_ids(instance_ids);
});
return almost_unique_ids_cache_.data();
}
static float3 get_transform_position(const float4x4 &transform)
{
return transform.location();
}
static void set_transform_position(float4x4 &transform, const float3 position)
{
transform.location() = position;
}
VArray<float3> instance_position_varray(const Instances &instances)
{
return VArray<float3>::ForDerivedSpan<float4x4, get_transform_position>(instances.transforms());
}
VMutableArray<float3> instance_position_varray_for_write(Instances &instances)
{
MutableSpan<float4x4> transforms = instances.transforms_for_write();
return VMutableArray<float3>::
ForDerivedSpan<float4x4, get_transform_position, set_transform_position>(transforms);
}
} // namespace blender::bke