Files
test2/source/blender/render/intern/source/rendercore.c
Ton Roosendaal 8301d7ad00 Bug fix #2762
Quite harmless, but was lazy code...
When you choosed "Vertex Color Paint" material, the init_render_material()
also set the "Vertex color Light" option, because that flag was checked on
during render to detect vertex colors.
Now it has proper checks in render code.
2005-07-11 11:01:06 +00:00

3115 lines
73 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Hos, Robert Wenzlaff.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
/* External modules: */
#include "MEM_guardedalloc.h"
#include "BLI_arithb.h"
#include "MTC_matrixops.h"
#include "BKE_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_image_types.h"
#include "DNA_object_types.h"
#include "DNA_camera_types.h"
#include "DNA_lamp_types.h"
#include "DNA_texture_types.h"
#include "BKE_global.h"
#include "BKE_texture.h"
#include "BLI_rand.h"
/* local include */
#include "RE_callbacks.h"
#include "render.h"
#include "zbuf.h" /* stuff like bgnaccumbuf, fillrect, ...*/
#include "pixelblending.h"
#include "pixelshading.h"
#include "vanillaRenderPipe.h" /* transfercolour... */
#include "gammaCorrectionTables.h"
#include "shadbuf.h"
#include "renderHelp.h"
#include "jitter.h"
#include "texture.h"
/* system includes */
#include <math.h>
#include <string.h>
#include <stdlib.h>
/* own include */
#include "rendercore.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "SDL_thread.h"
/* global for this file. struct render will be more dynamic later, to allow multiple renderers */
RE_Render R;
float bluroffsx=0.0, bluroffsy=0.0; // set in initrender.c (bad, ton)
/* x and y are current pixels to be rendered */
void calc_view_vector(float *view, float x, float y)
{
if(R.r.mode & R_ORTHO) {
view[0]= view[1]= 0.0;
}
else {
view[0]= (x+(R.xstart)+bluroffsx +0.5);
if(R.flag & R_SEC_FIELD) {
if(R.r.mode & R_ODDFIELD) view[1]= (y+R.ystart)*R.ycor;
else view[1]= (y+R.ystart+1.0)*R.ycor;
}
else view[1]= (y+R.ystart+bluroffsy+0.5)*R.ycor;
}
view[2]= -R.viewfac;
if(R.r.mode & R_PANORAMA) {
float panoco, panosi, u, v;
panoco = getPanovCo();
panosi = getPanovSi();
u= view[0]; v= view[2];
view[0]= panoco*u + panosi*v;
view[2]= -panosi*u + panoco*v;
}
}
float mistfactor(float zcor, float *co) /* dist en height, return alpha */
{
float fac, hi;
fac= zcor - R.wrld.miststa; /* zcor is calculated per pixel */
/* fac= -co[2]-R.wrld.miststa; */
if(fac>0.0) {
if(fac< R.wrld.mistdist) {
fac= (fac/(R.wrld.mistdist));
if(R.wrld.mistype==0) fac*= fac;
else if(R.wrld.mistype==1);
else fac= sqrt(fac);
}
else fac= 1.0;
}
else fac= 0.0;
/* height switched off mist */
if(R.wrld.misthi!=0.0 && fac!=0.0) {
/* at height misthi the mist is completely gone */
hi= R.viewinv[0][2]*co[0]+R.viewinv[1][2]*co[1]+R.viewinv[2][2]*co[2]+R.viewinv[3][2];
if(hi>R.wrld.misthi) fac= 0.0;
else if(hi>0.0) {
hi= (R.wrld.misthi-hi)/R.wrld.misthi;
fac*= hi*hi;
}
}
return (1.0-fac)* (1.0-R.wrld.misi);
}
/* external for preview only */
void RE_sky_char(float *view, char *col)
{
float f, colf[3];
float dither_value;
dither_value = ( (BLI_frand()-0.5)*R.r.dither_intensity)/256.0;
shadeSkyPixelFloat(colf, view, NULL);
f= 255.0*(colf[0]+dither_value);
if(f<=0.0) col[0]= 0; else if(f>255.0) col[0]= 255;
else col[0]= (char)f;
f= 255.0*(colf[1]+dither_value);
if(f<=0.0) col[1]= 0; else if(f>255.0) col[1]= 255;
else col[1]= (char)f;
f= 255.0*(colf[2]+dither_value);
if(f<=0.0) col[2]= 0; else if(f>255.0) col[2]= 255;
else col[2]= (char)f;
col[3]= 1; /* to prevent wrong optimalisation alphaover of flares */
}
/* ************************************** */
static void spothalo(struct LampRen *lar, ShadeInput *shi, float *intens)
{
double a, b, c, disc, nray[3], npos[3];
float t0, t1 = 0.0, t2= 0.0, t3, haint;
float p1[3], p2[3], ladist, maxz = 0.0, maxy = 0.0;
int snijp, doclip=1, use_yco=0;
int ok1=0, ok2=0;
*intens= 0.0;
haint= lar->haint;
if(R.r.mode & R_ORTHO) {
/* camera pos (view vector) cannot be used... */
/* camera position (cox,coy,0) rotate around lamp */
p1[0]= shi->co[0]-lar->co[0];
p1[1]= shi->co[1]-lar->co[1];
p1[2]= -lar->co[2];
MTC_Mat3MulVecfl(lar->imat, p1);
VECCOPY(npos, p1); // npos is double!
}
else {
VECCOPY(npos, lar->sh_invcampos); /* in initlamp calculated */
}
/* rotate view */
VECCOPY(nray, shi->view);
MTC_Mat3MulVecd(lar->imat, nray);
if(R.wrld.mode & WO_MIST) {
/* patchy... */
haint *= mistfactor(-lar->co[2], lar->co);
if(haint==0.0) {
return;
}
}
/* rotate maxz */
if(shi->co[2]==0.0) doclip= 0; /* for when halo at sky */
else {
p1[0]= shi->co[0]-lar->co[0];
p1[1]= shi->co[1]-lar->co[1];
p1[2]= shi->co[2]-lar->co[2];
maxz= lar->imat[0][2]*p1[0]+lar->imat[1][2]*p1[1]+lar->imat[2][2]*p1[2];
maxz*= lar->sh_zfac;
maxy= lar->imat[0][1]*p1[0]+lar->imat[1][1]*p1[1]+lar->imat[2][1]*p1[2];
if( fabs(nray[2]) <0.000001 ) use_yco= 1;
}
/* scale z to make sure volume is normalized */
nray[2]*= lar->sh_zfac;
/* nray does not need normalization */
ladist= lar->sh_zfac*lar->dist;
/* solve */
a = nray[0] * nray[0] + nray[1] * nray[1] - nray[2]*nray[2];
b = nray[0] * npos[0] + nray[1] * npos[1] - nray[2]*npos[2];
c = npos[0] * npos[0] + npos[1] * npos[1] - npos[2]*npos[2];
snijp= 0;
if (fabs(a) < 0.00000001) {
/*
* Only one intersection point...
*/
return;
}
else {
disc = b*b - a*c;
if(disc==0.0) {
t1=t2= (-b)/ a;
snijp= 2;
}
else if (disc > 0.0) {
disc = sqrt(disc);
t1 = (-b + disc) / a;
t2 = (-b - disc) / a;
snijp= 2;
}
}
if(snijp==2) {
/* sort */
if(t1>t2) {
a= t1; t1= t2; t2= a;
}
/* z of intersection points with diabolo */
p1[2]= npos[2] + t1*nray[2];
p2[2]= npos[2] + t2*nray[2];
/* evaluate both points */
if(p1[2]<=0.0) ok1= 1;
if(p2[2]<=0.0 && t1!=t2) ok2= 1;
/* at least 1 point with negative z */
if(ok1==0 && ok2==0) return;
/* intersction point with -ladist, the bottom of the cone */
if(use_yco==0) {
t3= (-ladist-npos[2])/nray[2];
/* de we have to replace one of the intersection points? */
if(ok1) {
if(p1[2]<-ladist) t1= t3;
}
else {
ok1= 1;
t1= t3;
}
if(ok2) {
if(p2[2]<-ladist) t2= t3;
}
else {
ok2= 1;
t2= t3;
}
}
else if(ok1==0 || ok2==0) return;
/* at least 1 visible interesction point */
if(t1<0.0 && t2<0.0) return;
if(t1<0.0) t1= 0.0;
if(t2<0.0) t2= 0.0;
if(t1==t2) return;
/* sort again to be sure */
if(t1>t2) {
a= t1; t1= t2; t2= a;
}
/* calculate t0: is the maximum visible z (when halo is intersected by face) */
if(doclip) {
if(use_yco==0) t0= (maxz-npos[2])/nray[2];
else t0= (maxy-npos[1])/nray[1];
if(t0<t1) return;
if(t0<t2) t2= t0;
}
/* calc points */
p1[0]= npos[0] + t1*nray[0];
p1[1]= npos[1] + t1*nray[1];
p1[2]= npos[2] + t1*nray[2];
p2[0]= npos[0] + t2*nray[0];
p2[1]= npos[1] + t2*nray[1];
p2[2]= npos[2] + t2*nray[2];
/* now we have 2 points, make three lengths with it */
a= sqrt(p1[0]*p1[0]+p1[1]*p1[1]+p1[2]*p1[2]);
b= sqrt(p2[0]*p2[0]+p2[1]*p2[1]+p2[2]*p2[2]);
c= VecLenf(p1, p2);
a/= ladist;
a= sqrt(a);
b/= ladist;
b= sqrt(b);
c/= ladist;
*intens= c*( (1.0-a)+(1.0-b) );
/* WATCH IT: do not clip a,b en c at 1.0, this gives nasty little overflows
at the edges (especially with narrow halos) */
if(*intens<=0.0) return;
/* soft area */
/* not needed because t0 has been used for p1/p2 as well */
/* if(doclip && t0<t2) { */
/* *intens *= (t0-t1)/(t2-t1); */
/* } */
*intens *= haint;
if(lar->shb && lar->shb->shadhalostep) {
*intens *= shadow_halo(lar, p1, p2);
}
}
}
static void renderspothalo(ShadeInput *shi, float *col)
{
LampRen *lar;
float i;
int a;
for(a=0; a<R.totlamp; a++) {
lar= R.la[a];
if(lar->type==LA_SPOT && (lar->mode & LA_HALO) && lar->haint>0) {
spothalo(lar, shi, &i);
if(i>0.0) {
col[3]+= i;
col[0]+= i*lar->r;
col[1]+= i*lar->g;
col[2]+= i*lar->b;
}
}
}
/* clip alpha, is needed for unified 'alpha threshold' (vanillaRenderPipe.c) */
if(col[3]>1.0) col[3]= 1.0;
}
static int calchalo_z(HaloRen *har, int zz)
{
if(har->type & HA_ONLYSKY) {
if(zz!=0x7FFFFFFF) zz= - 0x7FFFFF;
}
else {
zz= (zz>>8);
}
return zz;
}
static void scanlinehaloPS(int *rectz, long *rectdelta, float *rowbuf, short ys)
{
HaloRen *har = NULL;
PixStr *ps;
float dist, xsq, ysq, xn, yn;
float *rb;
float col[4], accol[4];
int a, *rz, zz, didgamma=0;
long *rd;
short minx, maxx, x, amount, amountm, flarec;
for(a=0; a<R.tothalo; a++) {
if((a & 255)==0) {
har= R.bloha[a>>8];
if( RE_local_test_break() ) break;
}
else har++;
if(ys>har->maxy);
else if(ys<har->miny);
else {
minx= floor(har->xs-har->rad);
maxx= ceil(har->xs+har->rad);
if(maxx<0);
else if(R.rectx<minx);
else {
if(minx<0) minx= 0;
if(maxx>=R.rectx) maxx= R.rectx-1;
rb= rowbuf + 4*minx;
rd= rectdelta + minx;
rz= rectz + minx;
yn= (ys-har->ys)*R.ycor;
ysq= yn*yn;
for(x=minx; x<=maxx; x++) {
xn= x-har->xs;
xsq= xn*xn;
dist= xsq+ysq;
if(dist<har->radsq) {
/* well yah, halo adding shouldnt be done gamma corrected, have to bypass it this way */
/* alternative is moving it outside of thread renderlineDA */
/* on positive side; the invert correct cancels out correcting halo color */
if(do_gamma && didgamma==0) {
float *buf= rowbuf;
int xt;
for(xt=0; xt<R.rectx; xt++, buf+=4) {
buf[0]= sqrt(buf[0]); // invers gamma 2.0
buf[1]= sqrt(buf[1]);
buf[2]= sqrt(buf[2]);
}
didgamma= 1;
}
flarec= har->flarec; /* har->pixels is only allowed to count once */
if(*rd) { /* theres a pixel struct */
ps= (PixStr *)(*rd);
amount= 0;
accol[0]=accol[1]=accol[2]=accol[3]= 0.0;
while(ps) {
amountm= count_mask(ps->mask);
amount+= amountm;
zz= calchalo_z(har, ps->z);
if(zz> har->zs) {
float fac;
shadeHaloFloat(har, col, zz, dist, xn, yn, flarec);
fac= ((float)amountm)/(float)R.osa;
accol[0]+= fac*col[0];
accol[1]+= fac*col[1];
accol[2]+= fac*col[2];
accol[3]+= fac*col[3];
flarec= 0;
}
ps= ps->next;
}
/* now do the sky sub-pixels */
amount= R.osa-amount;
if(amount) {
float fac;
shadeHaloFloat(har, col, 0x7FFFFF, dist, xn, yn, flarec);
fac= ((float)amount)/(float)R.osa;
accol[0]+= fac*col[0];
accol[1]+= fac*col[1];
accol[2]+= fac*col[2];
accol[3]+= fac*col[3];
}
col[0]= accol[0];
col[1]= accol[1];
col[2]= accol[2];
col[3]= accol[3];
addalphaAddfacFloat(rb, col, har->add);
}
else {
zz= calchalo_z(har, *rz);
if(zz> har->zs) {
shadeHaloFloat(har, col, zz, dist, xn, yn, flarec);
addalphaAddfacFloat(rb, col, har->add);
}
}
}
rb+=4;
rz++;
rd++;
}
}
}
}
/* the entire scanline has to be put back in gammaspace */
if(didgamma) {
float *buf= rowbuf;
int xt;
for(xt=0; xt<R.rectx; xt++, buf+=4) {
buf[0]*= (buf[0]); // gamma 2.0
buf[1]*= (buf[1]);
buf[2]*= (buf[2]);
}
}
}
static void scanlinehalo(int *rectz, float *rowbuf, short ys)
{
HaloRen *har = NULL;
float dist, xsq, ysq, xn, yn, *rb;
float col[4];
int a, *rz, zz;
short minx, maxx, x;
for(a=0; a<R.tothalo; a++) {
if((a & 255)==0) har= R.bloha[a>>8];
else har++;
if(RE_local_test_break() ) break;
if(ys>har->maxy);
else if(ys<har->miny);
else {
minx= floor(har->xs-har->rad);
maxx= ceil(har->xs+har->rad);
if(maxx<0);
else if(R.rectx<minx);
else {
if(minx<0) minx= 0;
if(maxx>=R.rectx) maxx= R.rectx-1;
rb= rowbuf + 4*minx;
rz= rectz + minx;
yn= (ys-har->ys)*R.ycor;
ysq= yn*yn;
for(x=minx; x<=maxx; x++) {
zz= calchalo_z(har, *rz);
if(zz> har->zs) {
xn= x- har->xs;
xsq= xn*xn;
dist= xsq+ysq;
if(dist<har->radsq) {
shadeHaloFloat(har, col, zz, dist, xn, yn, har->flarec);
addalphaAddfacFloat(rb, col, har->add);
}
}
rb+=4;
rz++;
}
}
}
}
}
/* ---------------- shaders ----------------------- */
static double Normalise_d(double *n)
{
double d;
d= n[0]*n[0]+n[1]*n[1]+n[2]*n[2];
if(d>0.00000000000000001) {
d= sqrt(d);
n[0]/=d;
n[1]/=d;
n[2]/=d;
} else {
n[0]=n[1]=n[2]= 0.0;
d= 0.0;
}
return d;
}
/* Stoke's form factor. Need doubles here for extreme small area sizes */
static float area_lamp_energy(float *co, float *vn, LampRen *lar)
{
double fac;
double vec[4][3]; /* vectors of rendered co to vertices lamp */
double cross[4][3]; /* cross products of this */
double rad[4]; /* angles between vecs */
VECSUB(vec[0], co, lar->area[0]);
VECSUB(vec[1], co, lar->area[1]);
VECSUB(vec[2], co, lar->area[2]);
VECSUB(vec[3], co, lar->area[3]);
Normalise_d(vec[0]);
Normalise_d(vec[1]);
Normalise_d(vec[2]);
Normalise_d(vec[3]);
/* cross product */
CROSS(cross[0], vec[0], vec[1]);
CROSS(cross[1], vec[1], vec[2]);
CROSS(cross[2], vec[2], vec[3]);
CROSS(cross[3], vec[3], vec[0]);
Normalise_d(cross[0]);
Normalise_d(cross[1]);
Normalise_d(cross[2]);
Normalise_d(cross[3]);
/* angles */
rad[0]= vec[0][0]*vec[1][0]+ vec[0][1]*vec[1][1]+ vec[0][2]*vec[1][2];
rad[1]= vec[1][0]*vec[2][0]+ vec[1][1]*vec[2][1]+ vec[1][2]*vec[2][2];
rad[2]= vec[2][0]*vec[3][0]+ vec[2][1]*vec[3][1]+ vec[2][2]*vec[3][2];
rad[3]= vec[3][0]*vec[0][0]+ vec[3][1]*vec[0][1]+ vec[3][2]*vec[0][2];
rad[0]= saacos(rad[0]);
rad[1]= saacos(rad[1]);
rad[2]= saacos(rad[2]);
rad[3]= saacos(rad[3]);
/* Stoke formula */
VECMUL(cross[0], rad[0]);
VECMUL(cross[1], rad[1]);
VECMUL(cross[2], rad[2]);
VECMUL(cross[3], rad[3]);
fac= vn[0]*cross[0][0]+ vn[1]*cross[0][1]+ vn[2]*cross[0][2];
fac+= vn[0]*cross[1][0]+ vn[1]*cross[1][1]+ vn[2]*cross[1][2];
fac+= vn[0]*cross[2][0]+ vn[1]*cross[2][1]+ vn[2]*cross[2][2];
fac+= vn[0]*cross[3][0]+ vn[1]*cross[3][1]+ vn[2]*cross[3][2];
if(fac<=0.0) return 0.0;
return pow(fac*lar->areasize, lar->k); // corrected for buttons size and lar->dist^2
}
float spec(float inp, int hard)
{
float b1;
if(inp>=1.0) return 1.0;
else if (inp<=0.0) return 0.0;
b1= inp*inp;
/* avoid FPE */
if(b1<0.01) b1= 0.01;
if((hard & 1)==0) inp= 1.0;
if(hard & 2) inp*= b1;
b1*= b1;
if(hard & 4) inp*= b1;
b1*= b1;
if(hard & 8) inp*= b1;
b1*= b1;
if(hard & 16) inp*= b1;
b1*= b1;
/* avoid FPE */
if(b1<0.001) b1= 0.0;
if(hard & 32) inp*= b1;
b1*= b1;
if(hard & 64) inp*=b1;
b1*= b1;
if(hard & 128) inp*=b1;
if(b1<0.001) b1= 0.0;
if(hard & 256) {
b1*= b1;
inp*=b1;
}
return inp;
}
float Phong_Spec( float *n, float *l, float *v, int hard )
{
float h[3];
float rslt;
h[0] = l[0] + v[0];
h[1] = l[1] + v[1];
h[2] = l[2] + v[2];
Normalise(h);
rslt = h[0]*n[0] + h[1]*n[1] + h[2]*n[2];
if( rslt > 0.0 ) rslt= spec(rslt, hard);
else rslt = 0.0;
return rslt;
}
/* reduced cook torrance spec (for off-specular peak) */
float CookTorr_Spec(float *n, float *l, float *v, int hard)
{
float i, nh, nv, h[3];
h[0]= v[0]+l[0];
h[1]= v[1]+l[1];
h[2]= v[2]+l[2];
Normalise(h);
nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2];
if(nh<0.0) return 0.0;
nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2];
if(nv<0.0) nv= 0.0;
i= spec(nh, hard);
i= i/(0.1+nv);
return i;
}
/* Blinn spec */
float Blinn_Spec(float *n, float *l, float *v, float refrac, float spec_power )
{
float i, nh, nv, nl, vh, h[3];
float a, b, c, g=0.0, p, f, ang;
if(refrac < 1.0) return 0.0;
if(spec_power == 0.0) return 0.0;
/* conversion from 'hardness' (1-255) to 'spec_power' (50 maps at 0.1) */
if(spec_power<100.0)
spec_power= sqrt(1.0/spec_power);
else spec_power= 10.0/spec_power;
h[0]= v[0]+l[0];
h[1]= v[1]+l[1];
h[2]= v[2]+l[2];
Normalise(h);
nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
if(nh<0.0) return 0.0;
nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
if(nv<=0.0) nv= 0.01;
nl= n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
if(nl<=0.0) {
nl= 0.0;
return 0.0;
}
vh= v[0]*h[0]+v[1]*h[1]+v[2]*h[2]; /* Dot product between view vector and half-way vector */
if(vh<=0.0) vh= 0.01;
a = 1.0;
b = (2.0*nh*nv)/vh;
c = (2.0*nh*nl)/vh;
if( a < b && a < c ) g = a;
else if( b < a && b < c ) g = b;
else if( c < a && c < b ) g = c;
p = sqrt( (double)((refrac * refrac)+(vh*vh)-1.0) );
f = (((p-vh)*(p-vh))/((p+vh)*(p+vh)))*(1+((((vh*(p+vh))-1.0)*((vh*(p+vh))-1.0))/(((vh*(p-vh))+1.0)*((vh*(p-vh))+1.0))));
ang = saacos(nh);
i= f * g * exp((double)(-(ang*ang) / (2.0*spec_power*spec_power)));
if(i<0.0) i= 0.0;
return i;
}
/* cartoon render spec */
float Toon_Spec( float *n, float *l, float *v, float size, float smooth )
{
float h[3];
float ang;
float rslt;
h[0] = l[0] + v[0];
h[1] = l[1] + v[1];
h[2] = l[2] + v[2];
Normalise(h);
rslt = h[0]*n[0] + h[1]*n[1] + h[2]*n[2];
ang = saacos( rslt );
if( ang < size ) rslt = 1.0;
else if( ang >= (size + smooth) || smooth == 0.0 ) rslt = 0.0;
else rslt = 1.0 - ((ang - size) / smooth);
return rslt;
}
/* Ward isotropic gaussian spec */
float WardIso_Spec( float *n, float *l, float *v, float rms)
{
float i, nh, nv, nl, h[3], angle, alpha;
/* half-way vector */
h[0] = l[0] + v[0];
h[1] = l[1] + v[1];
h[2] = l[2] + v[2];
Normalise(h);
nh = n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
if(nh<=0.0) nh = 0.001;
nv = n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
if(nv<=0.0) nv = 0.001;
nl = n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
if(nl<=0.0) nl = 0.001;
angle = tan(saacos(nh));
alpha = MAX2(rms,0.001);
i= nl * (1.0/(4*PI*alpha*alpha)) * (exp( -(angle*angle)/(alpha*alpha))/(sqrt(nv*nl)));
return i;
}
/* cartoon render diffuse */
float Toon_Diff( float *n, float *l, float *v, float size, float smooth )
{
float rslt, ang;
rslt = n[0]*l[0] + n[1]*l[1] + n[2]*l[2];
ang = saacos( (double)(rslt) );
if( ang < size ) rslt = 1.0;
else if( ang >= (size + smooth) || smooth == 0.0 ) rslt = 0.0;
else rslt = 1.0 - ((ang - size) / smooth);
return rslt;
}
/* Oren Nayar diffuse */
/* 'nl' is either dot product, or return value of area light */
/* in latter case, only last multiplication uses 'nl' */
static float OrenNayar_Diff_i(float nl, float *n, float *l, float *v, float rough )
{
float i, nh, nv, vh, realnl, h[3];
float a, b, t, A, B;
float Lit_A, View_A, Lit_B[3], View_B[3];
h[0]= v[0]+l[0];
h[1]= v[1]+l[1];
h[2]= v[2]+l[2];
Normalise(h);
nh= n[0]*h[0]+n[1]*h[1]+n[2]*h[2]; /* Dot product between surface normal and half-way vector */
if(nh<0.0) nh = 0.0;
nv= n[0]*v[0]+n[1]*v[1]+n[2]*v[2]; /* Dot product between surface normal and view vector */
if(nv<=0.0) nv= 0.0;
realnl= n[0]*l[0]+n[1]*l[1]+n[2]*l[2]; /* Dot product between surface normal and light vector */
if(realnl<=0.0) return 0.0;
if(nl<0.0) return 0.0; /* value from area light */
vh= v[0]*h[0]+v[1]*h[1]+v[2]*h[2]; /* Dot product between view vector and halfway vector */
if(vh<=0.0) vh= 0.0;
Lit_A = saacos(realnl);
View_A = saacos( nv );
Lit_B[0] = l[0] - (realnl * n[0]);
Lit_B[1] = l[1] - (realnl * n[1]);
Lit_B[2] = l[2] - (realnl * n[2]);
Normalise( Lit_B );
View_B[0] = v[0] - (nv * n[0]);
View_B[1] = v[1] - (nv * n[1]);
View_B[2] = v[2] - (nv * n[2]);
Normalise( View_B );
t = Lit_B[0]*View_B[0] + Lit_B[1]*View_B[1] + Lit_B[2]*View_B[2];
if( t < 0 ) t = 0;
if( Lit_A > View_A ) {
a = Lit_A;
b = View_A;
}
else {
a = View_A;
b = Lit_A;
}
A = 1 - (0.5 * ((rough * rough) / ((rough * rough) + 0.33)));
B = 0.45 * ((rough * rough) / ((rough * rough) + 0.09));
b*= 0.95; /* prevent tangens from shooting to inf, 'nl' can be not a dot product here. */
/* overflow only happens with extreme size area light, and higher roughness */
i = nl * ( A + ( B * t * sin(a) * tan(b) ) );
return i;
}
/* Oren Nayar diffuse */
float OrenNayar_Diff(float *n, float *l, float *v, float rough )
{
float nl= n[0]*l[0] + n[1]*l[1] + n[2]*l[2];
return OrenNayar_Diff_i(nl, n, l, v, rough);
}
/* Minnaert diffuse */
float Minnaert_Diff(float nl, float *n, float *v, float darkness)
{
float i, nv;
/* nl = dot product between surface normal and light vector */
if (nl <= 0.0)
return 0;
/* nv = dot product between surface normal and view vector */
nv = n[0]*v[0]+n[1]*v[1]+n[2]*v[2];
if (nv < 0.0)
nv = 0;
if (darkness <= 1)
i = nl * pow(MAX2(nv*nl, 0.1), (darkness - 1) ); /*The Real model*/
else
i = nl * pow( (1.001 - nv), (darkness - 1) ); /*Nvidia model*/
return i;
}
/* --------------------------------------------- */
/* also called from texture.c */
void calc_R_ref(ShadeInput *shi)
{
float i;
/* shi->vn dot shi->view */
i= -2*(shi->vn[0]*shi->view[0]+shi->vn[1]*shi->view[1]+shi->vn[2]*shi->view[2]);
shi->ref[0]= (shi->view[0]+i*shi->vn[0]);
shi->ref[1]= (shi->view[1]+i*shi->vn[1]);
shi->ref[2]= (shi->view[2]+i*shi->vn[2]);
if(shi->osatex) {
if(shi->vlr->flag & R_SMOOTH) {
i= -2*( (shi->vn[0]+shi->dxno[0])*(shi->view[0]+shi->dxview) +
(shi->vn[1]+shi->dxno[1])*shi->view[1]+ (shi->vn[2]+shi->dxno[2])*shi->view[2] );
shi->dxref[0]= shi->ref[0]- ( shi->view[0]+shi->dxview+i*(shi->vn[0]+shi->dxno[0]));
shi->dxref[1]= shi->ref[1]- (shi->view[1]+ i*(shi->vn[1]+shi->dxno[1]));
shi->dxref[2]= shi->ref[2]- (shi->view[2]+ i*(shi->vn[2]+shi->dxno[2]));
i= -2*( (shi->vn[0]+shi->dyno[0])*shi->view[0]+
(shi->vn[1]+shi->dyno[1])*(shi->view[1]+shi->dyview)+ (shi->vn[2]+shi->dyno[2])*shi->view[2] );
shi->dyref[0]= shi->ref[0]- (shi->view[0]+ i*(shi->vn[0]+shi->dyno[0]));
shi->dyref[1]= shi->ref[1]- (shi->view[1]+shi->dyview+i*(shi->vn[1]+shi->dyno[1]));
shi->dyref[2]= shi->ref[2]- (shi->view[2]+ i*(shi->vn[2]+shi->dyno[2]));
}
else {
i= -2*( shi->vn[0]*(shi->view[0]+shi->dxview) +
shi->vn[1]*shi->view[1]+ shi->vn[2]*shi->view[2] );
shi->dxref[0]= shi->ref[0]- (shi->view[0]+shi->dxview+i*shi->vn[0]);
shi->dxref[1]= shi->ref[1]- (shi->view[1]+ i*shi->vn[1]);
shi->dxref[2]= shi->ref[2]- (shi->view[2]+ i*shi->vn[2]);
i= -2*( shi->vn[0]*shi->view[0]+
shi->vn[1]*(shi->view[1]+shi->dyview)+ shi->vn[2]*shi->view[2] );
shi->dyref[0]= shi->ref[0]- (shi->view[0]+ i*shi->vn[0]);
shi->dyref[1]= shi->ref[1]- (shi->view[1]+shi->dyview+i*shi->vn[1]);
shi->dyref[2]= shi->ref[2]- (shi->view[2]+ i*shi->vn[2]);
}
}
}
/* mix of 'real' fresnel and allowing control. grad defines blending gradient */
float fresnel_fac(float *view, float *vn, float grad, float fac)
{
float t1, t2;
if(fac==0.0) return 1.0;
t1= (view[0]*vn[0] + view[1]*vn[1] + view[2]*vn[2]);
if(t1>0.0) t2= 1.0+t1;
else t2= 1.0-t1;
t2= grad + (1.0-grad)*pow(t2, fac);
if(t2<0.0) return 0.0;
else if(t2>1.0) return 1.0;
return t2;
}
void shade_color(ShadeInput *shi, ShadeResult *shr)
{
Material *ma= shi->mat;
if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
shi->r= shi->vcol[0];
shi->g= shi->vcol[1];
shi->b= shi->vcol[2];
}
if(ma->texco) {
if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
shi->r= shi->vcol[0];
shi->g= shi->vcol[1];
shi->b= shi->vcol[2];
}
do_material_tex(shi);
}
if(ma->mode & (MA_ZTRA|MA_RAYTRANSP)) {
if(ma->fresnel_tra!=0.0)
shi->alpha*= fresnel_fac(shi->view, shi->vn, ma->fresnel_tra_i, ma->fresnel_tra);
}
shr->diff[0]= shi->r;
shr->diff[1]= shi->g;
shr->diff[2]= shi->b;
shr->alpha= shi->alpha;
}
/* r g b = 1 value, col = vector */
static void ramp_blend(int type, float *r, float *g, float *b, float fac, float *col)
{
float tmp, facm= 1.0-fac;
switch (type) {
case MA_RAMP_BLEND:
*r = facm*(*r) + fac*col[0];
*g = facm*(*g) + fac*col[1];
*b = facm*(*b) + fac*col[2];
break;
case MA_RAMP_ADD:
*r += fac*col[0];
*g += fac*col[1];
*b += fac*col[2];
break;
case MA_RAMP_MULT:
*r *= (facm + fac*col[0]);
*g *= (facm + fac*col[1]);
*b *= (facm + fac*col[2]);
break;
case MA_RAMP_SCREEN:
*r = 1.0-(facm + (1.0 - col[0]))*(1.0 - *r);
*g = 1.0-(facm + (1.0 - col[1]))*(1.0 - *g);
*b = 1.0-(facm + (1.0 - col[2]))*(1.0 - *b);
break;
case MA_RAMP_SUB:
*r -= fac*col[0];
*g -= fac*col[1];
*b -= fac*col[2];
break;
case MA_RAMP_DIV:
if(col[0]!=0.0)
*r = facm*(*r) + fac*(*r)/col[0];
if(col[1]!=0.0)
*g = facm*(*g) + fac*(*g)/col[1];
if(col[2]!=0.0)
*b = facm*(*b) + fac*(*b)/col[2];
break;
case MA_RAMP_DIFF:
*r = facm*(*r) + fac*fabs(*r-col[0]);
*g = facm*(*g) + fac*fabs(*g-col[1]);
*b = facm*(*b) + fac*fabs(*b-col[2]);
break;
case MA_RAMP_DARK:
tmp= fac*col[0];
if(tmp < *r) *r= tmp;
tmp= fac*col[1];
if(tmp < *g) *g= tmp;
tmp= fac*col[2];
if(tmp < *b) *b= tmp;
break;
case MA_RAMP_LIGHT:
tmp= fac*col[0];
if(tmp > *r) *r= tmp;
tmp= fac*col[1];
if(tmp > *g) *g= tmp;
tmp= fac*col[2];
if(tmp > *b) *b= tmp;
break;
}
}
/* ramp for at end of shade */
void ramp_diffuse_result(float *diff, ShadeInput *shi)
{
Material *ma= shi->mat;
float col[4], fac=0;
if(ma->ramp_col) {
if(ma->rampin_col==MA_RAMP_IN_RESULT) {
fac= 0.3*diff[0] + 0.58*diff[1] + 0.12*diff[2];
do_colorband(ma->ramp_col, fac, col);
/* blending method */
fac= col[3]*ma->rampfac_col;
ramp_blend(ma->rampblend_col, diff, diff+1, diff+2, fac, col);
}
}
}
/* r,g,b denote energy, ramp is used with different values to make new material color */
void add_to_diffuse(float *diff, ShadeInput *shi, float is, float r, float g, float b)
{
Material *ma= shi->mat;
float col[4], colt[3], fac=0;
if(ma->ramp_col && (ma->mode & MA_RAMP_COL)) {
/* MA_RAMP_IN_RESULT is exceptional */
if(ma->rampin_col==MA_RAMP_IN_RESULT) {
// normal add
diff[0] += r * shi->r;
diff[1] += g * shi->g;
diff[2] += b * shi->b;
}
else {
/* input */
switch(ma->rampin_col) {
case MA_RAMP_IN_ENERGY:
fac= 0.3*r + 0.58*g + 0.12*b;
break;
case MA_RAMP_IN_SHADER:
fac= is;
break;
case MA_RAMP_IN_NOR:
fac= shi->view[0]*shi->vn[0] + shi->view[1]*shi->vn[1] + shi->view[2]*shi->vn[2];
break;
}
do_colorband(ma->ramp_col, fac, col);
/* blending method */
fac= col[3]*ma->rampfac_col;
colt[0]= shi->r; colt[1]= shi->g; colt[2]= shi->b;
ramp_blend(ma->rampblend_col, colt, colt+1, colt+2, fac, col);
/* output to */
diff[0] += r * colt[0];
diff[1] += g * colt[1];
diff[2] += b * colt[2];
}
}
else {
diff[0] += r * shi->r;
diff[1] += g * shi->g;
diff[2] += b * shi->b;
}
}
void ramp_spec_result(float *specr, float *specg, float *specb, ShadeInput *shi)
{
Material *ma= shi->mat;
float col[4];
float fac;
if(ma->ramp_spec && (ma->rampin_spec==MA_RAMP_IN_RESULT)) {
fac= 0.3*(*specr) + 0.58*(*specg) + 0.12*(*specb);
do_colorband(ma->ramp_spec, fac, col);
/* blending method */
fac= col[3]*ma->rampfac_spec;
ramp_blend(ma->rampblend_spec, specr, specg, specb, fac, col);
}
}
/* is = dot product shade, t = spec energy */
void do_specular_ramp(ShadeInput *shi, float is, float t, float *spec)
{
Material *ma= shi->mat;
float col[4];
float fac=0.0;
spec[0]= shi->specr;
spec[1]= shi->specg;
spec[2]= shi->specb;
/* MA_RAMP_IN_RESULT is exception */
if(ma->ramp_spec && (ma->rampin_spec!=MA_RAMP_IN_RESULT)) {
/* input */
switch(ma->rampin_spec) {
case MA_RAMP_IN_ENERGY:
fac= t;
break;
case MA_RAMP_IN_SHADER:
fac= is;
break;
case MA_RAMP_IN_NOR:
fac= shi->view[0]*shi->vn[0] + shi->view[1]*shi->vn[1] + shi->view[2]*shi->vn[2];
break;
}
do_colorband(ma->ramp_spec, fac, col);
/* blending method */
fac= col[3]*ma->rampfac_spec;
ramp_blend(ma->rampblend_spec, spec, spec+1, spec+2, fac, col);
}
}
static void ambient_occlusion(World *wrld, ShadeInput *shi, ShadeResult *shr)
{
float f, shadfac[4];
if((wrld->mode & WO_AMB_OCC) && (R.r.mode & R_RAYTRACE) && shi->amb!=0.0) {
ray_ao(shi, wrld, shadfac);
if(wrld->aocolor==WO_AOPLAIN) {
if (wrld->aomix==WO_AOADDSUB) shadfac[3] = 2.0*shadfac[3]-1.0;
else if (wrld->aomix==WO_AOSUB) shadfac[3] = shadfac[3]-1.0;
f= wrld->aoenergy*shadfac[3]*shi->amb;
add_to_diffuse(shr->diff, shi, f, f, f, f);
}
else {
if (wrld->aomix==WO_AOADDSUB) {
shadfac[0] = 2.0*shadfac[0]-1.0;
shadfac[1] = 2.0*shadfac[1]-1.0;
shadfac[2] = 2.0*shadfac[2]-1.0;
}
else if (wrld->aomix==WO_AOSUB) {
shadfac[0] = shadfac[0]-1.0;
shadfac[1] = shadfac[1]-1.0;
shadfac[2] = shadfac[2]-1.0;
}
f= wrld->aoenergy*shi->amb;
add_to_diffuse(shr->diff, shi, f, f*shadfac[0], f*shadfac[1], f*shadfac[2]);
}
}
}
void shade_lamp_loop(ShadeInput *shi, ShadeResult *shr)
{
LampRen *lar;
Material *ma= shi->mat;
VlakRen *vlr= shi->vlr;
float i, inp, inpr, is, t, lv[3], lacol[3], lampdist, ld = 0;
float lvrot[3], *vn, *view, shadfac[4], soft, phongcorr; // shadfac = rgba
int a;
vn= shi->vn;
view= shi->view;
memset(shr, 0, sizeof(ShadeResult));
/* separate loop */
if(ma->mode & MA_ONLYSHADOW) {
float ir;
if(R.r.mode & R_SHADOW) {
shadfac[3]= ir= 0.0;
for(a=0; a<R.totlamp; a++) {
lar= R.la[a];
/* yafray: ignore shading by photonlights, not used in Blender */
if (lar->type==LA_YF_PHOTON) continue;
if(lar->mode & LA_LAYER) if((lar->lay & vlr->lay)==0) continue;
lv[0]= shi->co[0]-lar->co[0];
lv[1]= shi->co[1]-lar->co[1];
lv[2]= shi->co[2]-lar->co[2];
if(lar->type==LA_SPOT) {
/* only test within spotbundel */
if(lar->shb || (lar->mode & LA_SHAD_RAY)) {
Normalise(lv);
inpr= lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2];
if(inpr>lar->spotsi) {
inp= vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2];
if(lar->shb) i = testshadowbuf(lar->shb, shi->co, shi->dxco, shi->dyco, inp);
else {
float shad[4];
ray_shadow(shi, lar, shad);
i= shad[3];
}
t= inpr - lar->spotsi;
if(t<lar->spotbl && lar->spotbl!=0.0) {
t/= lar->spotbl;
t*= t;
i= t*i+(1.0-t);
}
shadfac[3]+= i;
ir+= 1.0;
}
else {
shadfac[3]+= 1.0;
ir+= 1.0;
}
}
}
else if(lar->mode & LA_SHAD_RAY) {
float shad[4];
/* single sided? */
if( shi->facenor[0]*lv[0] + shi->facenor[1]*lv[1] + shi->facenor[2]*lv[2] > -0.01) {
ray_shadow(shi, lar, shad);
shadfac[3]+= shad[3];
ir+= 1.0;
}
}
}
if(ir>0.0) {
shadfac[3]/= ir;
shr->alpha= (shi->alpha)*(1.0-shadfac[3]);
}
}
if((R.wrld.mode & WO_AMB_OCC) && (R.r.mode & R_RAYTRACE) && shi->amb!=0.0) {
float f;
ray_ao(shi, &R.wrld, shadfac); // shadfac==0: full light
shadfac[3]= 1.0-shadfac[3];
f= R.wrld.aoenergy*shadfac[3]*shi->amb;
if(R.wrld.aomix==WO_AOADD) {
shr->alpha += f;
shr->alpha *= f;
}
else if(R.wrld.aomix==WO_AOSUB) {
shr->alpha += f;
}
else {
shr->alpha *= f;
shr->alpha += f;
}
}
return;
}
if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
shi->r= shi->vcol[0];
shi->g= shi->vcol[1];
shi->b= shi->vcol[2];
}
/* envmap hack, always reset */
shi->refcol[0]= shi->refcol[1]= shi->refcol[2]= shi->refcol[3]= 0.0;
if(ma->texco) {
if(ma->mode & (MA_VERTEXCOLP|MA_FACETEXTURE)) {
shi->r= shi->vcol[0];
shi->g= shi->vcol[1];
shi->b= shi->vcol[2];
}
do_material_tex(shi);
}
if(ma->mode & MA_SHLESS) {
shr->diff[0]= shi->r;
shr->diff[1]= shi->g;
shr->diff[2]= shi->b;
shr->alpha= shi->alpha;
return;
}
if( (ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))== MA_VERTEXCOL ) { // vertexcolor light
// add_to_diffuse(shr->diff, shi, 1.0, ma->emit+shi->vcol[0], ma->emit+shi->vcol[1], ma->emit+shi->vcol[2]);
shr->diff[0]= shi->r*(shi->emit+shi->vcol[0]);
shr->diff[1]= shi->g*(shi->emit+shi->vcol[1]);
shr->diff[2]= shi->b*(shi->emit+shi->vcol[2]);
}
else {
// add_to_diffuse(shr->diff, shi, 1.0, ma->emit, ma->emit, ma->emit);
shr->diff[0]= shi->r*shi->emit;
shr->diff[1]= shi->g*shi->emit;
shr->diff[2]= shi->b*shi->emit;
}
ambient_occlusion(&R.wrld, shi, shr);
for(a=0; a<R.totlamp; a++) {
lar= R.la[a];
/* yafray: ignore shading by photonlights, not used in Blender */
if (lar->type==LA_YF_PHOTON) continue;
/* test for lamp layer */
if(lar->mode & LA_LAYER) if((lar->lay & vlr->lay)==0) continue;
/* lampdist calculation */
if(lar->type==LA_SUN || lar->type==LA_HEMI) {
VECCOPY(lv, lar->vec);
lampdist= 1.0;
}
else {
lv[0]= shi->co[0]-lar->co[0];
lv[1]= shi->co[1]-lar->co[1];
lv[2]= shi->co[2]-lar->co[2];
ld= sqrt(lv[0]*lv[0]+lv[1]*lv[1]+lv[2]*lv[2]);
lv[0]/= ld;
lv[1]/= ld;
lv[2]/= ld;
/* ld is re-used further on (texco's) */
if(lar->type==LA_AREA) {
lampdist= 1.0;
}
else {
if(lar->mode & LA_QUAD) {
t= 1.0;
if(lar->ld1>0.0)
t= lar->dist/(lar->dist+lar->ld1*ld);
if(lar->ld2>0.0)
t*= lar->distkw/(lar->distkw+lar->ld2*ld*ld);
lampdist= t;
}
else {
lampdist= (lar->dist/(lar->dist+ld));
}
if(lar->mode & LA_SPHERE) {
t= lar->dist - ld;
if(t<0.0) continue;
t/= lar->dist;
lampdist*= (t);
}
}
}
lacol[0]= lar->r;
lacol[1]= lar->g;
lacol[2]= lar->b;
/* init transp shadow */
shadfac[3]= 1.0;
if(ma->mode & MA_SHADOW_TRA) shadfac[0]= shadfac[1]= shadfac[2]= 1.0;
if(lar->type==LA_SPOT) {
if(lar->mode & LA_SQUARE) {
if(lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2]>0.0) {
float x;
/* rotate view to lampspace */
VECCOPY(lvrot, lv);
MTC_Mat3MulVecfl(lar->imat, lvrot);
x= MAX2(fabs(lvrot[0]/lvrot[2]) , fabs(lvrot[1]/lvrot[2]));
/* 1.0/(sqrt(1+x*x)) is equivalent to cos(atan(x)) */
inpr= 1.0/(sqrt(1+x*x));
}
else inpr= 0.0;
}
else {
inpr= lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2];
}
t= lar->spotsi;
if(inpr<t) continue;
else {
t= inpr-t;
i= 1.0;
soft= 1.0;
if(t<lar->spotbl && lar->spotbl!=0.0) {
/* soft area */
i= t/lar->spotbl;
t= i*i;
soft= (3.0*t-2.0*t*i);
inpr*= soft;
}
lampdist*=inpr;
}
if(lar->mode & LA_OSATEX) {
shi->osatex= 1; /* signal for multitex() */
shi->dxlv[0]= lv[0] - (shi->co[0]-lar->co[0]+shi->dxco[0])/ld;
shi->dxlv[1]= lv[1] - (shi->co[1]-lar->co[1]+shi->dxco[1])/ld;
shi->dxlv[2]= lv[2] - (shi->co[2]-lar->co[2]+shi->dxco[2])/ld;
shi->dylv[0]= lv[0] - (shi->co[0]-lar->co[0]+shi->dyco[0])/ld;
shi->dylv[1]= lv[1] - (shi->co[1]-lar->co[1]+shi->dyco[1])/ld;
shi->dylv[2]= lv[2] - (shi->co[2]-lar->co[2]+shi->dyco[2])/ld;
}
}
if(lar->mode & LA_TEXTURE) do_lamp_tex(lar, lv, shi, lacol);
/* dot product and reflectivity */
/* inp = dotproduct, is = shader result, i = lamp energy (with shadow) */
inp= vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2];
/* phong threshold to prevent backfacing faces having artefacts on ray shadow (terminator problem) */
if((ma->mode & MA_RAYBIAS) && (lar->mode & LA_SHAD_RAY) && (vlr->flag & R_SMOOTH)) {
float thresh= vlr->ob->smoothresh;
if(inp>thresh)
phongcorr= (inp-thresh)/(inp*(1.0-thresh));
else
phongcorr= 0.0;
}
else phongcorr= 1.0;
/* diffuse shaders */
if(lar->mode & LA_NO_DIFF) {
is= 0.0; // skip shaders
}
else if(lar->type==LA_HEMI) {
is= 0.5*inp + 0.5;
}
else {
if(lar->type==LA_AREA) {
/* single sided */
if(lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2]>0.0)
inp= area_lamp_energy(shi->co, shi->vn, lar);
else inp= 0.0;
}
/* diffuse shaders (oren nayer gets inp from area light) */
if(ma->diff_shader==MA_DIFF_ORENNAYAR) is= OrenNayar_Diff_i(inp, vn, lv, view, ma->roughness);
else if(ma->diff_shader==MA_DIFF_TOON) is= Toon_Diff(vn, lv, view, ma->param[0], ma->param[1]);
else if(ma->diff_shader==MA_DIFF_MINNAERT) is= Minnaert_Diff(inp, vn, view, ma->darkness);
else is= inp; // Lambert
}
i= is*phongcorr;
if(i>0.0) {
i*= lampdist*shi->refl;
}
/* shadow and spec, (lampdist==0 outside spot) */
if(lampdist> 0.0) {
if(i>0.0 && (R.r.mode & R_SHADOW)) {
if(ma->mode & MA_SHADOW) {
if(lar->type==LA_HEMI); // no shadow
else {
if(lar->shb) {
shadfac[3] = testshadowbuf(lar->shb, shi->co, shi->dxco, shi->dyco, inp);
}
else if(lar->mode & LA_SHAD_RAY) {
ray_shadow(shi, lar, shadfac);
}
/* warning, here it skips the loop */
if(lar->mode & LA_ONLYSHADOW) {
shadfac[3]= i*lar->energy*(1.0-shadfac[3]);
shr->diff[0] -= shadfac[3]*shi->r;
shr->diff[1] -= shadfac[3]*shi->g;
shr->diff[2] -= shadfac[3]*shi->b;
continue;
}
if(shadfac[3]==0.0) continue;
i*= shadfac[3];
}
}
}
/* specularity */
if(shadfac[3]>0.0 && shi->spec!=0.0 && !(lar->mode & LA_NO_SPEC)) {
if(lar->type==LA_HEMI) {
/* hemi uses no spec shaders (yet) */
lv[0]+= view[0];
lv[1]+= view[1];
lv[2]+= view[2];
Normalise(lv);
t= vn[0]*lv[0]+vn[1]*lv[1]+vn[2]*lv[2];
if(lar->type==LA_HEMI) {
t= 0.5*t+0.5;
}
t= shadfac[3]*shi->spec*spec(t, shi->har);
shr->spec[0]+= t*(lacol[0] * shi->specr);
shr->spec[1]+= t*(lacol[1] * shi->specg);
shr->spec[2]+= t*(lacol[2] * shi->specb);
}
else {
/* specular shaders */
float specfac;
if(ma->spec_shader==MA_SPEC_PHONG)
specfac= Phong_Spec(vn, lv, view, shi->har);
else if(ma->spec_shader==MA_SPEC_COOKTORR)
specfac= CookTorr_Spec(vn, lv, view, shi->har);
else if(ma->spec_shader==MA_SPEC_BLINN)
specfac= Blinn_Spec(vn, lv, view, ma->refrac, (float)shi->har);
else if(ma->spec_shader==MA_SPEC_WARDISO)
specfac= WardIso_Spec( vn, lv, view, ma->rms);
else
specfac= Toon_Spec(vn, lv, view, ma->param[2], ma->param[3]);
/* area lamp correction */
if(lar->type==LA_AREA) specfac*= inp;
t= shadfac[3]*shi->spec*lampdist*specfac;
if(ma->mode & MA_RAMP_SPEC) {
float spec[3];
do_specular_ramp(shi, specfac, t, spec);
shr->spec[0]+= t*(lacol[0] * spec[0]);
shr->spec[1]+= t*(lacol[1] * spec[1]);
shr->spec[2]+= t*(lacol[2] * spec[2]);
}
else {
shr->spec[0]+= t*(lacol[0] * shi->specr);
shr->spec[1]+= t*(lacol[1] * shi->specg);
shr->spec[2]+= t*(lacol[2] * shi->specb);
}
}
}
}
/* in case 'no diffuse' we still do most calculus, spec can be in shadow */
if(i>0.0 && !(lar->mode & LA_NO_DIFF)) {
if(ma->mode & MA_SHADOW_TRA) {
add_to_diffuse(shr->diff, shi, is, i*shadfac[0]*lacol[0], i*shadfac[1]*lacol[1], i*shadfac[2]*lacol[2]);
}
else {
add_to_diffuse(shr->diff, shi, is, i*lacol[0], i*lacol[1], i*lacol[2]);
}
}
}
if(ma->mode & (MA_ZTRA|MA_RAYTRANSP)) {
if(ma->fresnel_tra!=0.0)
shi->alpha*= fresnel_fac(shi->view, shi->vn, ma->fresnel_tra_i, ma->fresnel_tra);
if(shi->spectra!=0.0) {
t = MAX3(shr->spec[0], shr->spec[1], shr->spec[2]);
t *= shi->spectra;
if(t>1.0) t= 1.0;
shi->alpha= (1.0-t)*shi->alpha+t;
}
}
shr->alpha= shi->alpha;
if(shr->spec[0]<0.0) shr->spec[0]= 0.0;
if(shr->spec[1]<0.0) shr->spec[1]= 0.0;
if(shr->spec[2]<0.0) shr->spec[2]= 0.0;
shr->diff[0]+= shi->r*shi->amb*shi->rad[0];
shr->diff[0]+= shi->ambr;
if(shr->diff[0]<0.0) shr->diff[0]= 0.0;
shr->diff[1]+= shi->g*shi->amb*shi->rad[1];
shr->diff[1]+= shi->ambg;
if(shr->diff[1]<0.0) shr->diff[1]= 0.0;
shr->diff[2]+= shi->b*shi->amb*shi->rad[2];
shr->diff[2]+= shi->ambb;
if(shr->diff[2]<0.0) shr->diff[2]= 0.0;
if(ma->mode & MA_RAMP_COL) ramp_diffuse_result(shr->diff, shi);
if(ma->mode & MA_RAMP_SPEC) ramp_spec_result(shr->spec, shr->spec+1, shr->spec+2, shi);
/* refcol is for envmap only */
if(shi->refcol[0]!=0.0) {
shr->diff[0]= shi->mirr*shi->refcol[1] + (1.0 - shi->mirr*shi->refcol[0])*shr->diff[0];
shr->diff[1]= shi->mirg*shi->refcol[2] + (1.0 - shi->mirg*shi->refcol[0])*shr->diff[1];
shr->diff[2]= shi->mirb*shi->refcol[3] + (1.0 - shi->mirb*shi->refcol[0])*shr->diff[2];
}
}
/* this function sets all coords for render (shared with raytracer) */
/* warning; exception for ortho render is here, can be done better! */
void shade_input_set_coords(ShadeInput *shi, float u, float v, int i1, int i2, int i3)
{
VertRen *v1, *v2, *v3;
VlakRen *vlr= shi->vlr;
float l, dl;
short texco= shi->mat->texco;
int mode= shi->mat->mode;
char p1, p2, p3;
/* for rendering of quads, the following values are used to denote vertices:
0 1 2 scanline tria & first half quad, and ray tria
0 2 3 scanline 2nd half quad
0 1 3 raytracer first half quad
2 1 3 raytracer 2nd half quad
*/
if(i1==0) {
v1= vlr->v1;
p1= ME_FLIPV1;
} else {
v1= vlr->v3;
p1= ME_FLIPV3;
}
if(i2==1) {
v2= vlr->v2;
p2= ME_FLIPV2;
} else {
v2= vlr->v3;
p2= ME_FLIPV3;
}
if(i3==2) {
v3= vlr->v3;
p3= ME_FLIPV3;
} else {
v3= vlr->v4;
p3= ME_FLIPV4;
}
/* calculate U and V, for scanline (normal u and v are -1 to 0) */
if(u==1.0) {
/* exception case for wire render of edge */
if(vlr->v2==vlr->v3);
else if( (vlr->flag & R_SMOOTH) || (texco & NEED_UV) ) {
float detsh, t00, t10, t01, t11;
if(vlr->snproj==0) {
t00= v3->co[0]-v1->co[0]; t01= v3->co[1]-v1->co[1];
t10= v3->co[0]-v2->co[0]; t11= v3->co[1]-v2->co[1];
}
else if(vlr->snproj==1) {
t00= v3->co[0]-v1->co[0]; t01= v3->co[2]-v1->co[2];
t10= v3->co[0]-v2->co[0]; t11= v3->co[2]-v2->co[2];
}
else {
t00= v3->co[1]-v1->co[1]; t01= v3->co[2]-v1->co[2];
t10= v3->co[1]-v2->co[1]; t11= v3->co[2]-v2->co[2];
}
detsh= 1.0/(t00*t11-t10*t01);
t00*= detsh; t01*=detsh;
t10*=detsh; t11*=detsh;
if(vlr->snproj==0) {
u= (shi->co[0]-v3->co[0])*t11-(shi->co[1]-v3->co[1])*t10;
v= (shi->co[1]-v3->co[1])*t00-(shi->co[0]-v3->co[0])*t01;
if(shi->osatex) {
shi->dxuv[0]= shi->dxco[0]*t11- shi->dxco[1]*t10;
shi->dxuv[1]= shi->dxco[1]*t00- shi->dxco[0]*t01;
shi->dyuv[0]= shi->dyco[0]*t11- shi->dyco[1]*t10;
shi->dyuv[1]= shi->dyco[1]*t00- shi->dyco[0]*t01;
}
}
else if(vlr->snproj==1) {
u= (shi->co[0]-v3->co[0])*t11-(shi->co[2]-v3->co[2])*t10;
v= (shi->co[2]-v3->co[2])*t00-(shi->co[0]-v3->co[0])*t01;
if(shi->osatex) {
shi->dxuv[0]= shi->dxco[0]*t11- shi->dxco[2]*t10;
shi->dxuv[1]= shi->dxco[2]*t00- shi->dxco[0]*t01;
shi->dyuv[0]= shi->dyco[0]*t11- shi->dyco[2]*t10;
shi->dyuv[1]= shi->dyco[2]*t00- shi->dyco[0]*t01;
}
}
else {
u= (shi->co[1]-v3->co[1])*t11-(shi->co[2]-v3->co[2])*t10;
v= (shi->co[2]-v3->co[2])*t00-(shi->co[1]-v3->co[1])*t01;
if(shi->osatex) {
shi->dxuv[0]= shi->dxco[1]*t11- shi->dxco[2]*t10;
shi->dxuv[1]= shi->dxco[2]*t00- shi->dxco[1]*t01;
shi->dyuv[0]= shi->dyco[1]*t11- shi->dyco[2]*t10;
shi->dyuv[1]= shi->dyco[2]*t00- shi->dyco[1]*t01;
}
}
}
}
l= 1.0+u+v;
/* calculate punos (vertexnormals) */
if(vlr->flag & R_SMOOTH) {
float n1[3], n2[3], n3[3];
if(shi->puno & p1) {
n1[0]= -v1->n[0]; n1[1]= -v1->n[1]; n1[2]= -v1->n[2];
} else {
n1[0]= v1->n[0]; n1[1]= v1->n[1]; n1[2]= v1->n[2];
}
if(shi->puno & p2) {
n2[0]= -v2->n[0]; n2[1]= -v2->n[1]; n2[2]= -v2->n[2];
} else {
n2[0]= v2->n[0]; n2[1]= v2->n[1]; n2[2]= v2->n[2];
}
if(shi->puno & p3) {
n3[0]= -v3->n[0]; n3[1]= -v3->n[1]; n3[2]= -v3->n[2];
} else {
n3[0]= v3->n[0]; n3[1]= v3->n[1]; n3[2]= v3->n[2];
}
shi->vn[0]= l*n3[0]-u*n1[0]-v*n2[0];
shi->vn[1]= l*n3[1]-u*n1[1]-v*n2[1];
shi->vn[2]= l*n3[2]-u*n1[2]-v*n2[2];
Normalise(shi->vn);
if(shi->osatex && (texco & (TEXCO_NORM|TEXCO_REFL)) ) {
dl= shi->dxuv[0]+shi->dxuv[1];
shi->dxno[0]= dl*n3[0]-shi->dxuv[0]*n1[0]-shi->dxuv[1]*n2[0];
shi->dxno[1]= dl*n3[1]-shi->dxuv[0]*n1[1]-shi->dxuv[1]*n2[1];
shi->dxno[2]= dl*n3[2]-shi->dxuv[0]*n1[2]-shi->dxuv[1]*n2[2];
dl= shi->dyuv[0]+shi->dyuv[1];
shi->dyno[0]= dl*n3[0]-shi->dyuv[0]*n1[0]-shi->dyuv[1]*n2[0];
shi->dyno[1]= dl*n3[1]-shi->dyuv[0]*n1[1]-shi->dyuv[1]*n2[1];
shi->dyno[2]= dl*n3[2]-shi->dyuv[0]*n1[2]-shi->dyuv[1]*n2[2];
}
}
else {
VECCOPY(shi->vn, shi->facenor);
}
/* texture coordinates. shi->dxuv shi->dyuv have been set */
if(texco & NEED_UV) {
if(texco & TEXCO_ORCO) {
if(v1->orco) {
float *o1, *o2, *o3;
o1= v1->orco;
o2= v2->orco;
o3= v3->orco;
shi->lo[0]= l*o3[0]-u*o1[0]-v*o2[0];
shi->lo[1]= l*o3[1]-u*o1[1]-v*o2[1];
shi->lo[2]= l*o3[2]-u*o1[2]-v*o2[2];
if(shi->osatex) {
dl= shi->dxuv[0]+shi->dxuv[1];
shi->dxlo[0]= dl*o3[0]-shi->dxuv[0]*o1[0]-shi->dxuv[1]*o2[0];
shi->dxlo[1]= dl*o3[1]-shi->dxuv[0]*o1[1]-shi->dxuv[1]*o2[1];
shi->dxlo[2]= dl*o3[2]-shi->dxuv[0]*o1[2]-shi->dxuv[1]*o2[2];
dl= shi->dyuv[0]+shi->dyuv[1];
shi->dylo[0]= dl*o3[0]-shi->dyuv[0]*o1[0]-shi->dyuv[1]*o2[0];
shi->dylo[1]= dl*o3[1]-shi->dyuv[0]*o1[1]-shi->dyuv[1]*o2[1];
shi->dylo[2]= dl*o3[2]-shi->dyuv[0]*o1[2]-shi->dyuv[1]*o2[2];
}
}
}
if(texco & TEXCO_GLOB) {
VECCOPY(shi->gl, shi->co);
MTC_Mat4MulVecfl(R.viewinv, shi->gl);
if(shi->osatex) {
VECCOPY(shi->dxgl, shi->dxco);
MTC_Mat3MulVecfl(R.imat, shi->dxco);
VECCOPY(shi->dygl, shi->dyco);
MTC_Mat3MulVecfl(R.imat, shi->dyco);
}
}
if((texco & TEXCO_UV) || (mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE))) {
int j1=i1, j2=i2, j3=i3;
/* to prevent storing new tfaces or vcols, we check a split runtime */
/* 4---3 4---3 */
/* |\ 1| or |1 /| */
/* |0\ | |/ 0| */
/* 1---2 1---2 0 = orig face, 1 = new face */
/* Update vert nums to point to correct verts of original face */
if(vlr->flag & R_DIVIDE_24) {
if(vlr->flag & R_FACE_SPLIT) {
j1++; j2++; j3++;
}
else {
j3++;
}
}
else if(vlr->flag & R_FACE_SPLIT) {
j2++; j3++;
}
if(mode & (MA_VERTEXCOL|MA_VERTEXCOLP)) {
if(vlr->vcol) {
char *cp1, *cp2, *cp3;
cp1= (char *)(vlr->vcol+j1);
cp2= (char *)(vlr->vcol+j2);
cp3= (char *)(vlr->vcol+j3);
shi->vcol[0]= (l*cp3[3]-u*cp1[3]-v*cp2[3])/255.0;
shi->vcol[1]= (l*cp3[2]-u*cp1[2]-v*cp2[2])/255.0;
shi->vcol[2]= (l*cp3[1]-u*cp1[1]-v*cp2[1])/255.0;
}
else {
shi->vcol[0]= 0.0;
shi->vcol[1]= 0.0;
shi->vcol[2]= 0.0;
}
}
if(vlr->tface) {
float *uv1, *uv2, *uv3;
uv1= vlr->tface->uv[j1];
uv2= vlr->tface->uv[j2];
uv3= vlr->tface->uv[j3];
shi->uv[0]= -1.0 + 2.0*(l*uv3[0]-u*uv1[0]-v*uv2[0]);
shi->uv[1]= -1.0 + 2.0*(l*uv3[1]-u*uv1[1]-v*uv2[1]);
shi->uv[2]= 0.0; // texture.c assumes there are 3 coords
if(shi->osatex) {
float duv[2];
dl= shi->dxuv[0]+shi->dxuv[1];
duv[0]= shi->dxuv[0];
duv[1]= shi->dxuv[1];
shi->dxuv[0]= 2.0*(dl*uv3[0]-duv[0]*uv1[0]-duv[1]*uv2[0]);
shi->dxuv[1]= 2.0*(dl*uv3[1]-duv[0]*uv1[1]-duv[1]*uv2[1]);
dl= shi->dyuv[0]+shi->dyuv[1];
duv[0]= shi->dyuv[0];
duv[1]= shi->dyuv[1];
shi->dyuv[0]= 2.0*(dl*uv3[0]-duv[0]*uv1[0]-duv[1]*uv2[0]);
shi->dyuv[1]= 2.0*(dl*uv3[1]-duv[0]*uv1[1]-duv[1]*uv2[1]);
}
if(mode & MA_FACETEXTURE) {
if((mode & (MA_VERTEXCOL|MA_VERTEXCOLP))==0) {
shi->vcol[0]= 1.0;
shi->vcol[1]= 1.0;
shi->vcol[2]= 1.0;
}
if(vlr->tface) render_realtime_texture(shi);
}
}
else {
shi->uv[0]= 2.0*(u+.5);
shi->uv[1]= 2.0*(v+.5);
shi->uv[2]= 0.0; // texture.c assumes there are 3 coords
if(mode & MA_FACETEXTURE) {
/* no tface? set at 1.0 */
shi->vcol[0]= 1.0;
shi->vcol[1]= 1.0;
shi->vcol[2]= 1.0;
}
}
}
if(texco & TEXCO_NORM) {
shi->orn[0]= -shi->vn[0];
shi->orn[1]= -shi->vn[1];
shi->orn[2]= -shi->vn[2];
}
if(mode & MA_RADIO) {
shi->rad[0]= (l*v3->rad[0] - u*v1->rad[0] - v*v2->rad[0]);
shi->rad[1]= (l*v3->rad[1] - u*v1->rad[1] - v*v2->rad[1]);
shi->rad[2]= (l*v3->rad[2] - u*v1->rad[2] - v*v2->rad[2]);
}
else {
shi->rad[0]= shi->rad[1]= shi->rad[2]= 0.0;
}
if(texco & TEXCO_REFL) {
/* mirror reflection colour textures (and envmap) */
calc_R_ref(shi);
}
}
else {
shi->rad[0]= shi->rad[1]= shi->rad[2]= 0.0;
}
}
#if 0
/* return labda for view vector being closest to line v3-v4 */
/* was used for wire render */
static float isec_view_line(float *view, float *v3, float *v4)
{
float vec[3];
float dot0, dot1, dot2, veclen, viewlen;
float fac, div;
vec[0]= v4[0] - v3[0];
vec[1]= v4[1] - v3[1];
vec[2]= v4[2] - v3[2];
dot0 = v3[0]*vec[0] + v3[1]*vec[1] + v3[2]*vec[2];
dot1 = vec[0]*view[0] + vec[1]*view[1] + vec[2]*view[2];
dot2 = v3[0]*view[0] + v3[1]*view[1] + v3[2]*view[2];
veclen = vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
viewlen = view[0]*view[0] + view[1]*view[1] + view[2]*view[2];
div = viewlen*veclen - dot1*dot1;
if (div==0.0) return 0.0;
fac = dot2*veclen - dot0*dot1;
return fac/div;
}
#endif
/* x,y: window coordinate from 0 to rectx,y */
/* return pointer to rendered face */
void *shadepixel(float x, float y, int z, int facenr, int mask, float *col)
{
ShadeResult shr;
ShadeInput shi;
VlakRen *vlr=NULL;
if(facenr< 0) { /* error */
return NULL;
}
/* currently in use for dithering (soft shadow) and detecting thread */
shi.xs= x;
shi.ys= y;
/* mask is used to indicate amount of samples (ray shad/mir and AO) */
shi.mask= mask;
shi.depth= 0; // means first hit, not raytracing
if(facenr==0) { /* sky */
col[0]= 0.0; col[1]= 0.0; col[2]= 0.0; col[3]= 0.0;
}
else if( (facenr & 0x7FFFFF) <= R.totvlak) {
VertRen *v1, *v2, *v3;
float alpha, fac, zcor;
vlr= RE_findOrAddVlak( (facenr-1) & 0x7FFFFF);
shi.vlr= vlr;
shi.mat= vlr->mat;
// copy all relevant material vars, note, keep this synced with render_types.h
memcpy(&shi.r, &shi.mat->r, 23*sizeof(float));
// set special cases:
shi.har= shi.mat->har;
if((shi.mat->mode & MA_RAYMIRROR)==0) shi.ray_mirror= 0.0;
shi.osatex= (shi.mat->texco & TEXCO_OSA);
/* copy the face normal (needed because it gets flipped for tracing */
VECCOPY(shi.facenor, vlr->n);
shi.puno= vlr->puno;
v1= vlr->v1;
/* COXYZ AND VIEW VECTOR */
calc_view_vector(shi.view, x, y);
/* wire cannot use normal for calculating shi.co */
if(shi.mat->mode & MA_WIRE) {
float zco;
/* inverse of zbuf calc: zbuf = MAXZ*hoco_z/hoco_w */
zco= ((float)z)/(float)0x7FFFFFFF;
shi.co[2]= R.winmat[3][2]/( R.winmat[2][3]*zco - R.winmat[2][2] );
fac= zcor= shi.co[2]/shi.view[2];
shi.co[0]= fac*shi.view[0];
shi.co[1]= fac*shi.view[1];
}
else {
float dface;
dface= v1->co[0]*shi.facenor[0]+v1->co[1]*shi.facenor[1]+v1->co[2]*shi.facenor[2];
/* ortho viewplane cannot intersect using view vector originating in (0,0,0) */
if(R.r.mode & R_ORTHO) {
/* x and y 3d coordinate can be derived from pixel coord and winmat */
float fx= 2.0/(R.rectx*R.winmat[0][0]);
float fy= 2.0/(R.recty*R.winmat[1][1]);
shi.co[0]= (0.5 + x - 0.5*R.rectx)*fx - R.winmat[3][0]/R.winmat[0][0];
shi.co[1]= (0.5 + y - 0.5*R.recty)*fy - R.winmat[3][1]/R.winmat[1][1];
/* using a*x + b*y + c*z = d equation, (a b c) is normal */
shi.co[2]= (dface - shi.facenor[0]*shi.co[0] - shi.facenor[1]*shi.co[1])/shi.facenor[2];
zcor= 1.0; // only to prevent not-initialize
if(shi.osatex || (R.r.mode & R_SHADOW) ) {
shi.dxco[0]= fx;
shi.dxco[1]= 0.0;
shi.dxco[2]= (shi.facenor[0]*fx)/shi.facenor[2];
shi.dyco[0]= 0.0;
shi.dyco[1]= fy;
shi.dyco[2]= (shi.facenor[1]*fy)/shi.facenor[2];
}
}
else {
float div;
div= shi.facenor[0]*shi.view[0] + shi.facenor[1]*shi.view[1] + shi.facenor[2]*shi.view[2];
if (div!=0.0) fac= zcor= dface/div;
else fac= zcor= 0.0;
shi.co[0]= fac*shi.view[0];
shi.co[1]= fac*shi.view[1];
shi.co[2]= fac*shi.view[2];
/* pixel dx/dy for render coord */
if(shi.osatex || (R.r.mode & R_SHADOW) ) {
float u= dface/(div-shi.facenor[0]);
float v= dface/(div- R.ycor*shi.facenor[1]);
shi.dxco[0]= shi.co[0]- (shi.view[0]-1.0)*u;
shi.dxco[1]= shi.co[1]- (shi.view[1])*u;
shi.dxco[2]= shi.co[2]- (shi.view[2])*u;
shi.dyco[0]= shi.co[0]- (shi.view[0])*v;
shi.dyco[1]= shi.co[1]- (shi.view[1]-1.0*R.ycor)*v;
shi.dyco[2]= shi.co[2]- (shi.view[2])*v;
}
}
}
/* cannot normalise earlier, code above needs it at pixel level */
fac= Normalise(shi.view);
zcor*= fac; // for mist, distance of point from camera
if(shi.osatex) {
if( (shi.mat->texco & TEXCO_REFL) ) {
shi.dxview= -1.0/fac;
shi.dyview= -R.ycor/fac;
}
}
/* calcuate normals, texture coords, vertex colors, etc */
if(facenr & 0x800000)
shade_input_set_coords(&shi, 1.0, 1.0, 0, 2, 3);
else
shade_input_set_coords(&shi, 1.0, 1.0, 0, 1, 2);
/* this only avalailable for scanline */
if(shi.mat->texco & TEXCO_WINDOW) {
shi.winco[0]= (x+(R.xstart))/(float)R.afmx;
shi.winco[1]= (y+(R.ystart))/(float)R.afmy;
shi.winco[2]= 0.0;
if(shi.osatex) {
shi.dxwin[0]= 0.5/(float)R.r.xsch;
shi.dywin[1]= 0.5/(float)R.r.ysch;
shi.dxwin[1]= shi.dxwin[2]= 0.0;
shi.dywin[0]= shi.dywin[2]= 0.0;
}
}
/* after this the u and v AND shi.dxuv and shi.dyuv are incorrect */
if(shi.mat->texco & TEXCO_STICKY) {
if(v1->sticky) {
extern float Zmulx, Zmuly;
float *o1, *o2, *o3, hox, hoy, l, dl, u, v;
float s00, s01, s10, s11, detsh;
if(facenr & 0x800000) {
v2= vlr->v3; v3= vlr->v4;
} else {
v2= vlr->v2; v3= vlr->v3;
}
s00= v3->ho[0]/v3->ho[3] - v1->ho[0]/v1->ho[3];
s01= v3->ho[1]/v3->ho[3] - v1->ho[1]/v1->ho[3];
s10= v3->ho[0]/v3->ho[3] - v2->ho[0]/v2->ho[3];
s11= v3->ho[1]/v3->ho[3] - v2->ho[1]/v2->ho[3];
detsh= s00*s11-s10*s01;
s00/= detsh; s01/=detsh;
s10/=detsh; s11/=detsh;
/* recalc u and v again */
hox= x/Zmulx -1.0;
hoy= y/Zmuly -1.0;
u= (hox - v3->ho[0]/v3->ho[3])*s11 - (hoy - v3->ho[1]/v3->ho[3])*s10;
v= (hoy - v3->ho[1]/v3->ho[3])*s00 - (hox - v3->ho[0]/v3->ho[3])*s01;
l= 1.0+u+v;
o1= v1->sticky;
o2= v2->sticky;
o3= v3->sticky;
shi.sticky[0]= l*o3[0]-u*o1[0]-v*o2[0];
shi.sticky[1]= l*o3[1]-u*o1[1]-v*o2[1];
shi.sticky[2]= 0.0;
if(shi.osatex) {
shi.dxuv[0]= s11/Zmulx;
shi.dxuv[1]= - s01/Zmulx;
shi.dyuv[0]= - s10/Zmuly;
shi.dyuv[1]= s00/Zmuly;
dl= shi.dxuv[0]+shi.dxuv[1];
shi.dxsticky[0]= dl*o3[0]-shi.dxuv[0]*o1[0]-shi.dxuv[1]*o2[0];
shi.dxsticky[1]= dl*o3[1]-shi.dxuv[0]*o1[1]-shi.dxuv[1]*o2[1];
dl= shi.dyuv[0]+shi.dyuv[1];
shi.dysticky[0]= dl*o3[0]-shi.dyuv[0]*o1[0]-shi.dyuv[1]*o2[0];
shi.dysticky[1]= dl*o3[1]-shi.dyuv[0]*o1[1]-shi.dyuv[1]*o2[1];
}
}
}
/* ------ main shading loop */
shade_lamp_loop(&shi, &shr);
if(shi.translucency!=0.0) {
ShadeResult shr_t;
VecMulf(shi.vn, -1.0);
VecMulf(shi.facenor, -1.0);
shade_lamp_loop(&shi, &shr_t);
shr.diff[0]+= shi.translucency*shr_t.diff[0];
shr.diff[1]+= shi.translucency*shr_t.diff[1];
shr.diff[2]+= shi.translucency*shr_t.diff[2];
VecMulf(shi.vn, -1.0);
VecMulf(shi.facenor, -1.0);
}
if(R.r.mode & R_RAYTRACE) {
if(shi.ray_mirror!=0.0 || ((shi.mat->mode & MA_RAYTRANSP) && shr.alpha!=1.0)) {
ray_trace(&shi, &shr);
}
}
else {
// doesnt look 'correct', but is better for preview, plus envmaps dont raytrace this
if(shi.mat->mode & MA_RAYTRANSP) shr.alpha= 1.0;
}
VECADD(col, shr.diff, shr.spec);
/* exposure correction */
if(R.wrld.exp!=0.0 || R.wrld.range!=1.0) {
if((shi.mat->mode & MA_SHLESS)==0) {
col[0]= R.wrld.linfac*(1.0-exp( col[0]*R.wrld.logfac) );
col[1]= R.wrld.linfac*(1.0-exp( col[1]*R.wrld.logfac) );
col[2]= R.wrld.linfac*(1.0-exp( col[2]*R.wrld.logfac) );
}
}
/* MIST */
if( (R.wrld.mode & WO_MIST) && (shi.mat->mode & MA_NOMIST)==0 ) {
if(R.r.mode & R_ORTHO)
alpha= mistfactor(-shi.co[2], shi.co);
else
alpha= mistfactor(zcor, shi.co);
}
else alpha= 1.0;
if(shr.alpha!=1.0 || alpha!=1.0) {
if(shi.mat->mode & MA_RAYTRANSP) {
// sky was applied allready for ray transp, only do mist
col[3]= shr.alpha;
fac= alpha;
}
else {
fac= alpha*(shr.alpha);
col[3]= fac;
}
col[0]*= fac;
col[1]*= fac;
col[2]*= fac;
}
else col[3]= 1.0;
}
if(R.flag & R_LAMPHALO) {
if(facenr<=0) { /* calc view vector and put shi.co at far */
calc_view_vector(shi.view, x, y);
shi.co[2]= 0.0;
}
renderspothalo(&shi, col);
}
return vlr;
}
static void shadepixel_sky(float x, float y, int z, int facenr, int mask, float *colf)
{
VlakRen *vlr;
float collector[4];
vlr= shadepixel(x, y, z, facenr, mask, colf);
if(colf[3] != 1.0) {
/* bail out when raytrace transparency (sky included already) */
if(vlr && (R.r.mode & R_RAYTRACE))
if(vlr->mat->mode & MA_RAYTRANSP) return;
renderSkyPixelFloat(collector, x, y);
addAlphaOverFloat(collector, colf);
QUATCOPY(colf, collector);
}
}
/* ************* pixel struct ******** */
static PixStrMain psmfirst;
static int psmteller;
static PixStr *addpsmain(void)
{
PixStrMain *psm;
psm= &psmfirst;
while(psm->next) {
psm= psm->next;
}
psm->next= (PixStrMain *)MEM_mallocN(sizeof(PixStrMain),"pixstrMain");
psm= psm->next;
psm->next=0;
psm->ps= (PixStr *)MEM_mallocN(4096*sizeof(PixStr),"pixstr");
psmteller= 0;
return psm->ps;
}
static void freeps(void)
{
PixStrMain *psm,*next;
psm= &psmfirst;
while(psm) {
next= psm->next;
if(psm->ps) {
MEM_freeN(psm->ps);
psm->ps= 0;
}
if(psm!= &psmfirst) MEM_freeN(psm);
psm= next;
}
psmfirst.next= 0;
psmfirst.ps= 0;
}
static void addps(long *rd, int facenr, int z, unsigned short mask)
{
static PixStr *cur;
PixStr *ps, *last = NULL;
if(*rd) {
ps= (PixStr *)(*rd);
while(ps) {
if( ps->facenr == facenr ) {
ps->mask |= mask;
return;
}
last= ps;
ps= ps->next;
}
}
/* make new PS (pixel struct) */
if((psmteller & 4095)==0) cur= addpsmain();
else cur++;
psmteller++;
if(last) last->next= cur;
else *rd= (long)cur;
cur->next= NULL;
cur->facenr= facenr;
cur->z= z;
cur->mask = mask;
}
int count_mask(unsigned short mask)
{
extern char cmask[256];
return (cmask[mask & 255]+cmask[mask>>8]);
}
static void edge_enhance(void)
{
/* use zbuffer to define edges, add it to the image */
int val, y, x, col, *rz, *rz1, *rz2, *rz3;
int zval1, zval2, zval3;
char *cp;
/* shift values in zbuffer 4 to the right, for filter we need multiplying with 12 max */
rz= (int *)R.rectz;
if(rz==NULL) return;
for(y=0; y<R.recty; y++) {
for(x=0; x<R.rectx; x++, rz++) (*rz)>>= 4;
}
rz1= (int *)R.rectz;
rz2= rz1+R.rectx;
rz3= rz2+R.rectx;
if(R.r.mode & R_OSA) {
cp= (char *)(R.rectaccu+R.rectx);
}
else {
cp= (char *)(R.rectot+R.rectx);
}
cp+= 4;
for(y=0; y<R.recty-2; y++) {
for(x=0; x<R.rectx-2; x++, rz++, rz1++, rz2++, rz3++, cp+=4) {
/* prevent overflow with sky z values */
zval1= rz1[0] + 2*rz1[1] + rz1[2];
zval2= 2*rz2[0] + 2*rz2[2];
zval3= rz3[0] + 2*rz3[1] + rz3[2];
col= abs ( 4*rz2[1] - (zval1 + zval2 + zval3)/3 );
col >>= 5;
if(col > (1<<16)) col= (1<<16);
else col= (R.r.edgeint*col)>>8;
if(col>0) {
if(col>255) col= 255;
if(R.r.mode & R_OSA) {
col/= R.osa;
val= cp[3]+col;
if(val>255) cp[3]= 255; else cp[3]= val;
}
else {
val= cp[0]- col;
if(val<0) cp[0]= 0; else cp[0]= val;
val= cp[1]- col;
if(val<0) cp[1]= 0; else cp[1]= val;
val= cp[2]- col;
if(val<0) cp[2]= 0; else cp[2]= val;
}
}
}
rz++;
rz1+= 2;
rz2+= 2;
rz3+= 2;
cp+= 8;
}
}
/* ********************* MAINLOOPS ******************** */
struct renderlineDA {
long *rd;
int *rz;
float *rb1, *rb2, *rb3;
float *acol;
int y;
};
static int do_renderlineDA(void *poin)
{
struct renderlineDA *rl= poin;
PixStr *ps;
float xs, ys;
float fcol[4], *acol=NULL, *rb1, *rb2, *rb3;
long *rd= rl->rd;
int zbuf, samp, curmask, face, mask, fullmask;
int b, x, full_osa;
fullmask= (1<<R.osa)-1;
rb1= rl->rb1;
rb2= rl->rb2;
rb3= rl->rb3;
if(R.flag & R_ZTRA) { /* zbuf tra */
abufsetrow(rl->acol, rl->y);
acol= rl->acol;
}
for(x=0; x<R.rectx; x++, rd++) {
ps= (PixStr *)(*rd);
mask= 0;
/* complex loop, because empty spots are sky, without mask */
while(TRUE) {
if(ps==NULL) {
face= 0;
curmask= (~mask) & fullmask;
zbuf= *(rl->rz+x);
}
else {
face= ps->facenr;
curmask= ps->mask;
zbuf= ps->z;
}
/* check osa level */
if(face==0) full_osa= 0;
else {
VlakRen *vlr= RE_findOrAddVlak( (face-1) & 0x7FFFFF);
full_osa= (vlr->flag & R_FULL_OSA);
}
if(full_osa) {
for(samp=0; samp<R.osa; samp++) {
if(curmask & (1<<samp)) {
xs= (float)x + jit[samp][0];
ys= (float)rl->y + jit[samp][1];
shadepixel_sky(xs, ys, zbuf, face, (1<<samp), fcol);
if(acol && acol[3]!=0.0) addAlphaOverFloat(fcol, acol);
if(do_gamma) {
fcol[0]= gammaCorrect(fcol[0]);
fcol[1]= gammaCorrect(fcol[1]);
fcol[2]= gammaCorrect(fcol[2]);
}
add_filt_fmask(1<<samp, fcol, rb1, rb2, rb3);
}
}
}
else {
extern char *centmask; // initrender.c
extern float centLut[16];
b= centmask[curmask];
xs= (float)x+centLut[b & 15];
ys= (float)rl->y+centLut[b>>4];
shadepixel_sky(xs, ys, zbuf, face, curmask, fcol);
if(acol && acol[3]!=0.0) addAlphaOverFloat(fcol, acol);
if(do_gamma) {
fcol[0]= gammaCorrect(fcol[0]);
fcol[1]= gammaCorrect(fcol[1]);
fcol[2]= gammaCorrect(fcol[2]);
}
add_filt_fmask(curmask, fcol, rb1, rb2, rb3);
}
mask |= curmask;
if(ps==NULL) break;
else ps= ps->next;
}
rb1+=4;
rb2+=4;
rb3+=4;
if(acol) acol+=4;
}
return 1;
}
void zbufshadeDA(void) /* Delta Accum Pixel Struct */
{
extern float Zjitx,Zjity;
struct renderlineDA rl1, rl2;
float xd, yd, *rf;
long *rd;
int *rz, *rp, *rt;
float *rowbuf1, *rowbuf2, *rowbuf3, *rowbuf0, *rowbuf1a, *rowbuf2a, *rb3;
int a;
short v, x, y;
R.rectdaps= MEM_callocN(sizeof(long)*R.rectx*R.recty+4,"zbufDArectd");
if(R.flag & R_ZTRA) {
bgnaccumbuf();
rl1.acol= MEM_callocN((R.rectx+4)*4*sizeof(float), "Acol");
rl2.acol= MEM_callocN((R.rectx+4)*4*sizeof(float), "Acol");
}
psmteller= 0;
if(R.r.mode & R_EDGE) {
R.rectaccu= (int *)MEM_callocN(sizeof(int)*R.rectx*R.recty,"zbufshadeDA");
}
for(v=0; v<R.osa; v++) {
xd= jit[v][0];
yd= jit[v][1];
Zjitx= -xd -0.5;
Zjity= -yd -0.5;
if((R.r.mode & R_MBLUR)==0) RE_local_printrenderinfo(0.0, v);
/* RECTDELTA */
fillrect(R.rectot,R.rectx,R.recty,0);
zbufferall();
rd= R.rectdaps;
rp= R.rectot;
rz= R.rectz;
for(y=0; y<R.recty; y++) {
for(x=0; x<R.rectx; x++, rp++, rd++) {
if(*rp) {
addps(rd, *rp, *(rz+x), 1<<v);
}
}
rz+= R.rectx;
}
if(R.r.mode & R_EDGE) edge_enhance();
if(RE_local_test_break()) break;
}
rd= R.rectdaps;
rz= R.rectz;
rt= R.rectot;
rf= R.rectftot;
/* the rowbuf is 4 pixels larger than an image! */
rowbuf0= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
rowbuf1= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
rowbuf2= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
rowbuf1a= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
rowbuf2a= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
rowbuf3= MEM_callocN((R.rectx+4)*4*sizeof(float), "ZbufshadeDA3");
for(y=0; y<=R.recty; y++, rd+=R.rectx, rt+=R.rectx, rz+= R.rectx) {
if(y<R.recty) {
rl1.rd= rd;
rl1.rz= rz;
rl1.y= y;
rl1.rb1= rowbuf1;
rl1.rb2= rowbuf2;
rl1.rb3= rowbuf3;
if( (R.r.mode & R_THREADS) && y!=R.recty-1) { // odd amount of total y pixels...
if((y & 1)==0) {
SDL_Thread *thread;
thread = SDL_CreateThread(do_renderlineDA, &rl1);
if ( thread == NULL ) {
fprintf(stderr, "Unable to create thread");
G.afbreek= 1;
break;
}
rl2.rd= rd+R.rectx;
rl2.rz= rz+R.rectx;
rl2.y= y+1;
rl2.rb1= rowbuf0;
rl2.rb2= rowbuf1a;
rl2.rb3= rowbuf2a;
do_renderlineDA(&rl2);
SDL_WaitThread(thread, NULL);
if(R.r.mode & R_GAUSS) {
float *rb1= rowbuf1, *rb2= rowbuf2, *rb1a= rowbuf1a, *rb2a= rowbuf2a;
a= 4*(R.rectx + 4);
while(a--) {
*rb1 += *rb1a;
*rb2 += *rb2a;
*(rb1a++)= 0; rb1++;
*(rb2a++)= 0; rb2++;
}
}
else {
SWAP(float *, rowbuf1a, rowbuf1);
}
}
}
else do_renderlineDA(&rl1);
}
if(y>0) {
/* halos are alpha-added, not in thread loop (yet) because of gauss mask */
if(R.flag & R_HALO) {
/* one scanline older... */
scanlinehaloPS(rz-R.rectx, rd-R.rectx, rowbuf3+4, y-1);
}
/* convert 4x32 bits buffer to 4x8, this can't be threaded due to gauss */
transferColourBufferToOutput(rowbuf3+4, y-1);
if(R.rectftot) {
memcpy(rf, rowbuf3+4, 4*sizeof(float)*R.rectx);
rf+= 4*R.rectx;
}
}
if(y<R.recty) {
memset(rowbuf3, 0, (R.rectx+4)*4*sizeof(int));
rb3= rowbuf3;
rowbuf3= rowbuf2;
rowbuf2= rowbuf1;
rowbuf1= rowbuf0;
rowbuf0= rb3;
if( y>0) {
if((y & 1)==0) {
RE_local_render_display(y-2, y-1, R.rectx, R.recty, R.rectot);
}
}
}
if(RE_local_test_break()) break;
}
if( (R.r.mode & R_EDGE) && RE_local_test_break()==0) {
if(R.rectftot) {
float *rtf= R.rectftot, colf[4];
rp= R.rectaccu;
for(a= R.rectx*R.recty; a>0; a--, rtf+=4, rp++) {
cpCharColV2FloatColV((char *)rp, colf);
addAlphaOverFloat(rtf, colf);
}
RE_floatbuffer_to_output();
}
else {
rt= R.rectot;
rp= R.rectaccu;
for(a= R.rectx*R.recty; a>0; a--, rt++, rp++) {
addalphaOver((char *)rt, (char *)rp);
}
}
}
MEM_freeN(R.rectdaps);
freeps();
MEM_freeN(rowbuf0);
MEM_freeN(rowbuf1);
MEM_freeN(rowbuf2);
MEM_freeN(rowbuf1a);
MEM_freeN(rowbuf2a);
MEM_freeN(rowbuf3);
R.rectdaps= NULL;
if(R.r.mode & R_EDGE) if(R.rectaccu) MEM_freeN(R.rectaccu);
R.rectaccu= NULL;
if(R.flag & R_ZTRA) {
endaccumbuf();
MEM_freeN(rl1.acol);
MEM_freeN(rl2.acol);
}
} /* end of void zbufshadeDA() */
/* ------------------------------------------------------------------------ */
struct renderline {
float *rowbuf, *acol;
int *rp;
int *rz;
short ys;
float y;
};
static int do_renderline(void *poin)
{
struct renderline *rl= poin;
float *fcol= rl->rowbuf;
float *acol=NULL;
int x, *rz, *rp;
if(R.flag & R_ZTRA) { /* zbuf tra */
abufsetrow(rl->acol, rl->ys);
acol= rl->acol;
}
for(x=0, rz= rl->rz, rp= rl->rp; x<R.rectx; x++, rz++, rp++, fcol+=4) {
shadepixel_sky((float)x, rl->y, *rz, *rp, 0, fcol);
if(acol) {
if(acol[3]!=0.0) addAlphaOverFloat(fcol, acol);
acol+= 4;
}
}
if(R.flag & R_HALO) {
scanlinehalo(rl->rz, rl->rowbuf, rl->ys);
}
transferColourBufferToOutput(rl->rowbuf, rl->y);
if(R.rectftot) {
memcpy(R.rectftot + 4*rl->ys*R.rectx, rl->rowbuf, 4*sizeof(float)*R.rectx);
}
return 1;
}
void zbufshade(void)
{
struct renderline rl1, rl2;
extern float Zjitx,Zjity;
int *rz, *rp;
float fy;
int y;
rl1.rowbuf= MEM_callocN((R.rectx+4)*4*sizeof(float), "Zbufshade");
rl2.rowbuf= MEM_callocN((R.rectx+4)*4*sizeof(float), "Zbufshade");
Zjitx=Zjity= -0.5;
zbufferall();
/* SHADE */
rp= R.rectot;
rz= R.rectz;
if(R.flag & R_ZTRA) {
rl1.acol= MEM_callocN((R.rectx+4)*4*sizeof(float), "Acol");
rl2.acol= MEM_callocN((R.rectx+4)*4*sizeof(float), "Acol");
bgnaccumbuf();
}
for(y=0; y<R.recty; y++) {
fy= y;
rl1.rp= rp;
rl1.rz= rz;
rl1.y= fy;
rl1.ys= y;
if(R.r.mode & R_THREADS) {
SDL_Thread *thread;
thread = SDL_CreateThread(do_renderline, &rl1);
if ( thread == NULL ) {
fprintf(stderr, "Unable to create thread");
G.afbreek= 1;
break;
}
rp+= R.rectx;
rz+= R.rectx;
if(y < R.recty-1) {
rl2.rp= rp;
rl2.rz= rz;
rl2.y= fy+1.0;
rl2.ys= y+1;
do_renderline(&rl2);
rp+= R.rectx;
rz+= R.rectx;
y++;
}
SDL_WaitThread(thread, NULL);
}
else {
do_renderline(&rl1);
rp+= R.rectx;
rz+= R.rectx;
}
if(y & 1) {
RE_local_render_display(y-1, y, R.rectx, R.recty, R.rectot);
}
if(RE_local_test_break()) break;
}
MEM_freeN(rl1.rowbuf);
MEM_freeN(rl2.rowbuf);
if(R.flag & R_ZTRA) {
endaccumbuf();
MEM_freeN(rl1.acol);
MEM_freeN(rl2.acol);
}
if(R.r.mode & R_EDGE) edge_enhance();
} /* end of void zbufshade() */
/* ------------------------------------------------------------------------ */
void RE_shadehalo(HaloRen *har, char *col, float *colf, int zz, float dist, float xn, float yn, short flarec)
{
shadeHaloFloat(har, colf, zz, dist, xn, yn, flarec);
if(colf[0]<=0.0) col[0]= 0; else if(colf[0]>=1.0) col[0]= 255; else col[0]= 255.0*colf[0];
if(colf[1]<=0.0) col[1]= 0; else if(colf[1]>=1.0) col[1]= 255; else col[1]= 255.0*colf[1];
if(colf[2]<=0.0) col[2]= 0; else if(colf[2]>=1.0) col[2]= 255; else col[2]= 255.0*colf[2];
if(colf[3]<=0.0) col[3]= 0; else if(colf[3]>=1.0) col[3]= 255; else col[3]= 255.0*colf[3];
}
static void renderhalo(HaloRen *har) /* postprocess version */
{
float dist, xsq, ysq, xn, yn, colf[4], *rectft, *rtf;
int *rectt, *rt;
int minx, maxx, miny, maxy, x, y;
char col[4];
har->miny= miny= har->ys - har->rad/R.ycor;
har->maxy= maxy= har->ys + har->rad/R.ycor;
if(maxy<0);
else if(R.recty<miny);
else {
minx= floor(har->xs-har->rad);
maxx= ceil(har->xs+har->rad);
if(maxx<0);
else if(R.rectx<minx);
else {
if(minx<0) minx= 0;
if(maxx>=R.rectx) maxx= R.rectx-1;
if(miny<0) miny= 0;
if(maxy>R.recty) maxy= R.recty;
rectt= R.rectot+ R.rectx*miny;
rectft= R.rectftot+ 4*R.rectx*miny;
for(y=miny; y<maxy; y++) {
rt= rectt+minx;
rtf= rectft+4*minx;
yn= (y - har->ys)*R.ycor;
ysq= yn*yn;
for(x=minx; x<=maxx; x++) {
xn= x - har->xs;
xsq= xn*xn;
dist= xsq+ysq;
if(dist<har->radsq) {
shadeHaloFloat(har, colf, 0x7FFFFF, dist, xn, yn, har->flarec);
if(R.rectftot) addalphaAddfacFloat(rtf, colf, har->add);
else {
std_floatcol_to_charcol(colf, col);
RE_addalphaAddfac((char *)rt, col, har->add);
}
}
rt++;
rtf+=4;
}
rectt+= R.rectx;
rectft+= 4*R.rectx;
if(RE_local_test_break()) break;
}
}
}
}
/* ------------------------------------------------------------------------ */
void RE_renderflare(HaloRen *har)
{
extern float hashvectf[];
HaloRen fla;
Material *ma;
float *rc, rad, alfa, visifac, vec[3];
int b, type;
fla= *har;
fla.linec= fla.ringc= fla.flarec= 0;
rad= har->rad;
alfa= har->alfa;
visifac= R.ycor*(har->pixels);
/* all radials added / r^3 == 1.0! */
visifac /= (har->rad*har->rad*har->rad);
visifac*= visifac;
ma= har->mat;
/* first halo: just do */
har->rad= rad*ma->flaresize*visifac;
har->radsq= har->rad*har->rad;
har->zs= fla.zs= 0;
har->alfa= alfa*visifac;
renderhalo(har);
/* next halo's: the flares */
rc= hashvectf + ma->seed2;
for(b=1; b<har->flarec; b++) {
fla.r= fabs(rc[0]);
fla.g= fabs(rc[1]);
fla.b= fabs(rc[2]);
fla.alfa= ma->flareboost*fabs(alfa*visifac*rc[3]);
fla.hard= 20.0 + fabs(70*rc[7]);
fla.tex= 0;
type= (int)(fabs(3.9*rc[6]));
fla.rad= ma->subsize*sqrt(fabs(2.0*har->rad*rc[4]));
if(type==3) {
fla.rad*= 3.0;
fla.rad+= R.rectx/10;
}
fla.radsq= fla.rad*fla.rad;
vec[0]= 1.4*rc[5]*(har->xs-R.afmx);
vec[1]= 1.4*rc[5]*(har->ys-R.afmy);
vec[2]= 32.0*sqrt(vec[0]*vec[0] + vec[1]*vec[1] + 1.0);
fla.xs= R.afmx + vec[0] + (1.2+rc[8])*R.rectx*vec[0]/vec[2];
fla.ys= R.afmy + vec[1] + (1.2+rc[8])*R.rectx*vec[1]/vec[2];
if(R.flag & R_SEC_FIELD) {
if(R.r.mode & R_ODDFIELD) fla.ys += 0.5;
else fla.ys -= 0.5;
}
if(type & 1) fla.type= HA_FLARECIRC;
else fla.type= 0;
renderhalo(&fla);
fla.alfa*= 0.5;
if(type & 2) fla.type= HA_FLARECIRC;
else fla.type= 0;
renderhalo(&fla);
rc+= 7;
}
} /* end of void renderflare(HaloRen *har) */
void add_halo_flare(void)
{
/* extern void RE_projectverto(); */ /* zbuf.c */
HaloRen *har = NULL;
int a, mode;
mode= R.r.mode;
R.r.mode &= ~R_PANORAMA;
R.xstart= -R.afmx;
R.ystart= -R.afmy;
R.xend= R.xstart+R.rectx-1;
R.yend= R.ystart+R.recty-1;
RE_setwindowclip(1,-1); /* no jit:(-1) */
setzbufvlaggen(RE_projectverto);
for(a=0; a<R.tothalo; a++) {
if((a & 255)==0) har= R.bloha[a>>8];
else har++;
if(har->flarec) {
RE_renderflare(har);
}
}
R.r.mode= mode;
if(R.rectftot) RE_floatbuffer_to_output();
}
/* end of render.c */