Files
test2/source/blender/blenkernel/intern/mesh_mapping.cc
Hans Goudey a3bfd6e20d Cleanup: Extract utility for counting indices
This utility counts the number of occurrences of each index in an array.
This is used for building mesh topology maps offsets, or for counting
the number of connected elements. Some users are geometry nodes,
the subdivision draw cache, and mesh to curve conversion.

See #109628
2023-07-03 18:47:03 -04:00

970 lines
32 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*
* Functions for accessing mesh connectivity data.
* eg: polys connected to verts, UVs connected to verts.
*/
#include "MEM_guardedalloc.h"
#include "DNA_meshdata_types.h"
#include "DNA_vec_types.h"
#include "BLI_array.hh"
#include "BLI_bitmap.h"
#include "BLI_buffer.h"
#include "BLI_function_ref.hh"
#include "BLI_math.h"
#include "BLI_task.hh"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mapping.h"
#include "BLI_memarena.h"
#include "BLI_strict_flags.h"
/* -------------------------------------------------------------------- */
/** \name Mesh Connectivity Mapping
* \{ */
UvVertMap *BKE_mesh_uv_vert_map_create(const blender::OffsetIndices<int> polys,
const bool *hide_poly,
const bool *select_poly,
const int *corner_verts,
const float (*mloopuv)[2],
uint totvert,
const float limit[2],
const bool selected,
const bool use_winding)
{
/* NOTE: N-gon version WIP, based on #BM_uv_vert_map_create. */
UvVertMap *vmap;
UvMapVert *buf;
int i, totuv, nverts;
BLI_buffer_declare_static(vec2f, tf_uv_buf, BLI_BUFFER_NOP, 32);
totuv = 0;
/* generate UvMapVert array */
for (const int64_t a : polys.index_range()) {
if (!selected || (!(hide_poly && hide_poly[a]) && (select_poly && select_poly[a]))) {
totuv += int(polys[a].size());
}
}
if (totuv == 0) {
return nullptr;
}
vmap = (UvVertMap *)MEM_callocN(sizeof(*vmap), "UvVertMap");
buf = vmap->buf = (UvMapVert *)MEM_callocN(sizeof(*vmap->buf) * size_t(totuv), "UvMapVert");
vmap->vert = (UvMapVert **)MEM_callocN(sizeof(*vmap->vert) * totvert, "UvMapVert*");
if (!vmap->vert || !vmap->buf) {
BKE_mesh_uv_vert_map_free(vmap);
return nullptr;
}
bool *winding = nullptr;
if (use_winding) {
winding = static_cast<bool *>(
MEM_calloc_arrayN(sizeof(*winding), size_t(polys.size()), "winding"));
}
for (const int64_t a : polys.index_range()) {
const blender::IndexRange poly = polys[a];
if (!selected || (!(hide_poly && hide_poly[a]) && (select_poly && select_poly[a]))) {
float(*tf_uv)[2] = nullptr;
if (use_winding) {
tf_uv = (float(*)[2])BLI_buffer_reinit_data(&tf_uv_buf, vec2f, size_t(poly.size()));
}
nverts = int(poly.size());
for (i = 0; i < nverts; i++) {
buf->loop_of_poly_index = ushort(i);
buf->poly_index = uint(a);
buf->separate = false;
buf->next = vmap->vert[corner_verts[poly[i]]];
vmap->vert[corner_verts[poly[i]]] = buf;
if (use_winding) {
copy_v2_v2(tf_uv[i], mloopuv[poly[i]]);
}
buf++;
}
if (use_winding) {
winding[a] = cross_poly_v2(tf_uv, uint(nverts)) > 0;
}
}
}
/* sort individual uvs for each vert */
for (uint a = 0; a < totvert; a++) {
UvMapVert *newvlist = nullptr, *vlist = vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
const float *uv, *uv2;
float uvdiff[2];
while (vlist) {
v = vlist;
vlist = vlist->next;
v->next = newvlist;
newvlist = v;
uv = mloopuv[polys[v->poly_index].start() + v->loop_of_poly_index];
lastv = nullptr;
iterv = vlist;
while (iterv) {
next = iterv->next;
uv2 = mloopuv[polys[iterv->poly_index].start() + iterv->loop_of_poly_index];
sub_v2_v2v2(uvdiff, uv2, uv);
if (fabsf(uv[0] - uv2[0]) < limit[0] && fabsf(uv[1] - uv2[1]) < limit[1] &&
(!use_winding || winding[iterv->poly_index] == winding[v->poly_index]))
{
if (lastv) {
lastv->next = next;
}
else {
vlist = next;
}
iterv->next = newvlist;
newvlist = iterv;
}
else {
lastv = iterv;
}
iterv = next;
}
newvlist->separate = true;
}
vmap->vert[a] = newvlist;
}
if (use_winding) {
MEM_freeN(winding);
}
BLI_buffer_free(&tf_uv_buf);
return vmap;
}
UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, uint v)
{
return vmap->vert[v];
}
void BKE_mesh_uv_vert_map_free(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) {
MEM_freeN(vmap->vert);
}
if (vmap->buf) {
MEM_freeN(vmap->buf);
}
MEM_freeN(vmap);
}
}
void BKE_mesh_vert_looptri_map_create(MeshElemMap **r_map,
int **r_mem,
const int totvert,
const MLoopTri *mlooptri,
const int totlooptri,
const int *corner_verts,
const int /*totloop*/)
{
MeshElemMap *map = MEM_cnew_array<MeshElemMap>(size_t(totvert), __func__);
int *indices = static_cast<int *>(MEM_mallocN(sizeof(int) * size_t(totlooptri) * 3, __func__));
int *index_step;
const MLoopTri *mlt;
int i;
/* count face users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
map[corner_verts[mlt->tri[j]]].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totvert; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign looptri-edge users */
for (i = 0, mlt = mlooptri; i < totlooptri; mlt++, i++) {
for (int j = 3; j--;) {
MeshElemMap *map_ele = &map[corner_verts[mlt->tri[j]]];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create(MeshElemMap **r_map,
int **r_mem,
const int totsource,
const int *final_origindex,
const int totfinal)
{
MeshElemMap *map = MEM_cnew_array<MeshElemMap>(size_t(totsource), __func__);
int *indices = static_cast<int *>(MEM_mallocN(sizeof(int) * size_t(totfinal), __func__));
int *index_step;
int i;
/* count face users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
BLI_assert(final_origindex[i] < totsource);
map[final_origindex[i]].count++;
}
}
/* create offsets */
index_step = indices;
for (i = 0; i < totsource; i++) {
map[i].indices = index_step;
index_step += map[i].count;
/* re-count, using this as an index below */
map[i].count = 0;
}
/* assign poly-tessface users */
for (i = 0; i < totfinal; i++) {
if (final_origindex[i] != ORIGINDEX_NONE) {
MeshElemMap *map_ele = &map[final_origindex[i]];
map_ele->indices[map_ele->count++] = i;
}
}
*r_map = map;
*r_mem = indices;
}
void BKE_mesh_origindex_map_create_looptri(MeshElemMap **r_map,
int **r_mem,
const blender::OffsetIndices<int> polys,
const int *looptri_polys,
const int looptri_num)
{
MeshElemMap *map = MEM_cnew_array<MeshElemMap>(size_t(polys.size()), __func__);
int *indices = static_cast<int *>(MEM_mallocN(sizeof(int) * size_t(looptri_num), __func__));
int *index_step;
/* create offsets */
index_step = indices;
for (const int64_t i : polys.index_range()) {
map[i].indices = index_step;
index_step += ME_POLY_TRI_TOT(polys[i].size());
}
/* assign poly-tessface users */
for (int i = 0; i < looptri_num; i++) {
MeshElemMap *map_ele = &map[looptri_polys[i]];
map_ele->indices[map_ele->count++] = i;
}
*r_map = map;
*r_mem = indices;
}
namespace blender::bke::mesh {
static Array<int> create_reverse_offsets(const Span<int> indices, const int items_num)
{
Array<int> offsets(items_num + 1, 0);
offset_indices::build_reverse_offsets(indices, offsets);
return offsets;
}
Array<int> build_loop_to_poly_map(const OffsetIndices<int> polys)
{
Array<int> map(polys.total_size());
offset_indices::build_reverse_map(polys, map);
return map;
}
GroupedSpan<int> build_vert_to_edge_map(const Span<int2> edges,
const int verts_num,
Array<int> &r_offsets,
Array<int> &r_indices)
{
r_offsets = create_reverse_offsets(edges.cast<int>(), verts_num);
r_indices.reinitialize(r_offsets.last());
Array<int> counts(verts_num, 0);
for (const int64_t edge_i : edges.index_range()) {
for (const int vert : {edges[edge_i][0], edges[edge_i][1]}) {
r_indices[r_offsets[vert] + counts[vert]] = int(edge_i);
counts[vert]++;
}
}
return {OffsetIndices<int>(r_offsets), r_indices};
}
GroupedSpan<int> build_vert_to_poly_map(const OffsetIndices<int> polys,
const Span<int> corner_verts,
const int verts_num,
Array<int> &r_offsets,
Array<int> &r_indices)
{
r_offsets = create_reverse_offsets(corner_verts, verts_num);
r_indices.reinitialize(r_offsets.last());
Array<int> counts(verts_num, 0);
for (const int64_t poly_i : polys.index_range()) {
for (const int vert : corner_verts.slice(polys[poly_i])) {
r_indices[r_offsets[vert] + counts[vert]] = int(poly_i);
counts[vert]++;
}
}
return {OffsetIndices<int>(r_offsets), r_indices};
}
GroupedSpan<int> build_vert_to_loop_map(const Span<int> corner_verts,
const int verts_num,
Array<int> &r_offsets,
Array<int> &r_indices)
{
r_offsets = create_reverse_offsets(corner_verts, verts_num);
r_indices.reinitialize(r_offsets.last());
Array<int> counts(verts_num, 0);
for (const int64_t corner : corner_verts.index_range()) {
const int vert = corner_verts[corner];
r_indices[r_offsets[vert] + counts[vert]] = int(corner);
counts[vert]++;
}
return {OffsetIndices<int>(r_offsets), r_indices};
}
GroupedSpan<int> build_edge_to_loop_map(const Span<int> corner_edges,
const int edges_num,
Array<int> &r_offsets,
Array<int> &r_indices)
{
r_offsets = create_reverse_offsets(corner_edges, edges_num);
r_indices.reinitialize(r_offsets.last());
Array<int> counts(edges_num, 0);
for (const int64_t corner : corner_edges.index_range()) {
const int edge = corner_edges[corner];
r_indices[r_offsets[edge] + counts[edge]] = int(corner);
counts[edge]++;
}
return {OffsetIndices<int>(r_offsets), r_indices};
}
GroupedSpan<int> build_edge_to_poly_map(const OffsetIndices<int> polys,
const Span<int> corner_edges,
const int edges_num,
Array<int> &r_offsets,
Array<int> &r_indices)
{
r_offsets = create_reverse_offsets(corner_edges, edges_num);
r_indices.reinitialize(r_offsets.last());
Array<int> counts(edges_num, 0);
for (const int64_t poly_i : polys.index_range()) {
for (const int edge : corner_edges.slice(polys[poly_i])) {
r_indices[r_offsets[edge] + counts[edge]] = int(poly_i);
counts[edge]++;
}
}
return {OffsetIndices<int>(r_offsets), r_indices};
}
} // namespace blender::bke::mesh
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh loops/poly islands.
* Used currently for UVs and 'smooth groups'.
* \{ */
/**
* Callback deciding whether the given poly/loop/edge define an island boundary or not.
*/
using MeshRemap_CheckIslandBoundary =
blender::FunctionRef<bool(int poly_index,
int loop_index,
int edge_index,
int edge_user_count,
const blender::Span<int> edge_poly_map_elem)>;
static void poly_edge_loop_islands_calc(const int totedge,
const blender::OffsetIndices<int> polys,
const blender::Span<int> corner_edges,
blender::GroupedSpan<int> edge_poly_map,
const bool use_bitflags,
MeshRemap_CheckIslandBoundary edge_boundary_check,
int **r_poly_groups,
int *r_totgroup,
BLI_bitmap **r_edge_borders,
int *r_totedgeborder)
{
int *poly_groups;
int *poly_stack;
BLI_bitmap *edge_borders = nullptr;
int num_edgeborders = 0;
int poly_prev = 0;
const int temp_poly_group_id = 3; /* Placeholder value. */
/* Group we could not find any available bit, will be reset to 0 at end. */
const int poly_group_id_overflowed = 5;
int tot_group = 0;
bool group_id_overflow = false;
if (polys.size() == 0) {
*r_totgroup = 0;
*r_poly_groups = nullptr;
if (r_edge_borders) {
*r_edge_borders = nullptr;
*r_totedgeborder = 0;
}
return;
}
if (r_edge_borders) {
edge_borders = BLI_BITMAP_NEW(totedge, __func__);
*r_totedgeborder = 0;
}
blender::Array<int> edge_to_poly_src_offsets;
blender::Array<int> edge_to_poly_src_indices;
if (edge_poly_map.is_empty()) {
edge_poly_map = blender::bke::mesh::build_edge_to_poly_map(
polys, corner_edges, totedge, edge_to_poly_src_offsets, edge_to_poly_src_indices);
}
poly_groups = static_cast<int *>(MEM_callocN(sizeof(int) * size_t(polys.size()), __func__));
poly_stack = static_cast<int *>(MEM_mallocN(sizeof(int) * size_t(polys.size()), __func__));
while (true) {
int poly;
int bit_poly_group_mask = 0;
int poly_group_id;
int ps_curr_idx = 0, ps_end_idx = 0; /* stack indices */
for (poly = poly_prev; poly < int(polys.size()); poly++) {
if (poly_groups[poly] == 0) {
break;
}
}
if (poly == int(polys.size())) {
/* all done */
break;
}
poly_group_id = use_bitflags ? temp_poly_group_id : ++tot_group;
/* start searching from here next time */
poly_prev = poly + 1;
poly_groups[poly] = poly_group_id;
poly_stack[ps_end_idx++] = poly;
while (ps_curr_idx != ps_end_idx) {
poly = poly_stack[ps_curr_idx++];
BLI_assert(poly_groups[poly] == poly_group_id);
for (const int64_t loop : polys[poly]) {
const int edge = corner_edges[loop];
/* loop over poly users */
const blender::Span<int> map_ele = edge_poly_map[edge];
const int *p = map_ele.data();
int i = int(map_ele.size());
if (!edge_boundary_check(poly, int(loop), edge, i, map_ele)) {
for (; i--; p++) {
/* if we meet other non initialized its a bug */
BLI_assert(ELEM(poly_groups[*p], 0, poly_group_id));
if (poly_groups[*p] == 0) {
poly_groups[*p] = poly_group_id;
poly_stack[ps_end_idx++] = *p;
}
}
}
else {
if (edge_borders && !BLI_BITMAP_TEST(edge_borders, edge)) {
BLI_BITMAP_ENABLE(edge_borders, edge);
num_edgeborders++;
}
if (use_bitflags) {
/* Find contiguous smooth groups already assigned,
* these are the values we can't reuse! */
for (; i--; p++) {
int bit = poly_groups[*p];
if (!ELEM(bit, 0, poly_group_id, poly_group_id_overflowed) &&
!(bit_poly_group_mask & bit)) {
bit_poly_group_mask |= bit;
}
}
}
}
}
}
/* And now, we have all our poly from current group in poly_stack
* (from 0 to (ps_end_idx - 1)),
* as well as all smoothgroups bits we can't use in bit_poly_group_mask.
*/
if (use_bitflags) {
int i, *p, gid_bit = 0;
poly_group_id = 1;
/* Find first bit available! */
for (; (poly_group_id & bit_poly_group_mask) && (gid_bit < 32); gid_bit++) {
poly_group_id <<= 1; /* will 'overflow' on last possible iteration. */
}
if (UNLIKELY(gid_bit > 31)) {
/* All bits used in contiguous smooth groups, we can't do much!
* NOTE: this is *very* unlikely - theoretically, four groups are enough,
* I don't think we can reach this goal with such a simple algorithm,
* but I don't think either we'll never need all 32 groups!
*/
printf(
"Warning, could not find an available id for current smooth group, faces will me "
"marked "
"as out of any smooth group...\n");
/* Can't use 0, will have to set them to this value later. */
poly_group_id = poly_group_id_overflowed;
group_id_overflow = true;
}
if (gid_bit > tot_group) {
tot_group = gid_bit;
}
/* And assign the final smooth group id to that poly group! */
for (i = ps_end_idx, p = poly_stack; i--; p++) {
poly_groups[*p] = poly_group_id;
}
}
}
if (use_bitflags) {
/* used bits are zero-based. */
tot_group++;
}
if (UNLIKELY(group_id_overflow)) {
int i = int(polys.size()), *gid = poly_groups;
for (; i--; gid++) {
if (*gid == poly_group_id_overflowed) {
*gid = 0;
}
}
/* Using 0 as group id adds one more group! */
tot_group++;
}
MEM_freeN(poly_stack);
*r_totgroup = tot_group;
*r_poly_groups = poly_groups;
if (r_edge_borders) {
*r_edge_borders = edge_borders;
*r_totedgeborder = num_edgeborders;
}
}
int *BKE_mesh_calc_smoothgroups(const int totedge,
const int *poly_offsets,
const int totpoly,
const int *corner_edges,
const int totloop,
const bool *sharp_edges,
const bool *sharp_faces,
int *r_totgroup,
const bool use_bitflags)
{
int *poly_groups = nullptr;
auto poly_is_smooth = [&](const int i) { return !(sharp_faces && sharp_faces[i]); };
auto poly_is_island_boundary_smooth = [&](const int poly_index,
const int /*loop_index*/,
const int edge_index,
const int edge_user_count,
const blender::Span<int> edge_poly_map_elem) {
/* Edge is sharp if one of its polys is flat, or edge itself is sharp,
* or edge is not used by exactly two polygons. */
if (poly_is_smooth(poly_index) && !(sharp_edges && sharp_edges[edge_index]) &&
(edge_user_count == 2))
{
/* In that case, edge appears to be smooth, but we need to check its other poly too. */
const int other_poly_index = (poly_index == edge_poly_map_elem[0]) ? edge_poly_map_elem[1] :
edge_poly_map_elem[0];
return !poly_is_smooth(other_poly_index);
}
return true;
};
poly_edge_loop_islands_calc(totedge,
blender::Span(poly_offsets, totpoly + 1),
{corner_edges, totloop},
{},
use_bitflags,
poly_is_island_boundary_smooth,
&poly_groups,
r_totgroup,
nullptr,
nullptr);
return poly_groups;
}
#define MISLAND_DEFAULT_BUFSIZE 64
void BKE_mesh_loop_islands_init(MeshIslandStore *island_store,
const short item_type,
const int items_num,
const short island_type,
const short innercut_type)
{
MemArena *mem = island_store->mem;
if (mem == nullptr) {
mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
island_store->mem = mem;
}
/* else memarena should be cleared */
BLI_assert(
ELEM(item_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
BLI_assert(ELEM(
island_type, MISLAND_TYPE_VERT, MISLAND_TYPE_EDGE, MISLAND_TYPE_POLY, MISLAND_TYPE_LOOP));
island_store->item_type = item_type;
island_store->items_to_islands_num = items_num;
island_store->items_to_islands = static_cast<int *>(
BLI_memarena_alloc(mem, sizeof(*island_store->items_to_islands) * size_t(items_num)));
island_store->island_type = island_type;
island_store->islands_num_alloc = MISLAND_DEFAULT_BUFSIZE;
island_store->islands = static_cast<MeshElemMap **>(
BLI_memarena_alloc(mem, sizeof(*island_store->islands) * island_store->islands_num_alloc));
island_store->innercut_type = innercut_type;
island_store->innercuts = static_cast<MeshElemMap **>(
BLI_memarena_alloc(mem, sizeof(*island_store->innercuts) * island_store->islands_num_alloc));
}
void BKE_mesh_loop_islands_clear(MeshIslandStore *island_store)
{
island_store->item_type = MISLAND_TYPE_NONE;
island_store->items_to_islands_num = 0;
island_store->items_to_islands = nullptr;
island_store->island_type = MISLAND_TYPE_NONE;
island_store->islands_num = 0;
island_store->islands = nullptr;
island_store->innercut_type = MISLAND_TYPE_NONE;
island_store->innercuts = nullptr;
if (island_store->mem) {
BLI_memarena_clear(island_store->mem);
}
island_store->islands_num_alloc = 0;
}
void BKE_mesh_loop_islands_free(MeshIslandStore *island_store)
{
if (island_store->mem) {
BLI_memarena_free(island_store->mem);
island_store->mem = nullptr;
}
}
void BKE_mesh_loop_islands_add(MeshIslandStore *island_store,
const int item_num,
const int *items_indices,
const int num_island_items,
int *island_item_indices,
const int num_innercut_items,
int *innercut_item_indices)
{
MemArena *mem = island_store->mem;
MeshElemMap *isld, *innrcut;
const int curr_island_idx = island_store->islands_num++;
const size_t curr_num_islands = size_t(island_store->islands_num);
int i = item_num;
while (i--) {
island_store->items_to_islands[items_indices[i]] = curr_island_idx;
}
if (UNLIKELY(curr_num_islands > island_store->islands_num_alloc)) {
MeshElemMap **islds, **innrcuts;
island_store->islands_num_alloc *= 2;
islds = static_cast<MeshElemMap **>(
BLI_memarena_alloc(mem, sizeof(*islds) * island_store->islands_num_alloc));
memcpy(islds, island_store->islands, sizeof(*islds) * (curr_num_islands - 1));
island_store->islands = islds;
innrcuts = static_cast<MeshElemMap **>(
BLI_memarena_alloc(mem, sizeof(*innrcuts) * island_store->islands_num_alloc));
memcpy(innrcuts, island_store->innercuts, sizeof(*innrcuts) * (curr_num_islands - 1));
island_store->innercuts = innrcuts;
}
island_store->islands[curr_island_idx] = isld = static_cast<MeshElemMap *>(
BLI_memarena_alloc(mem, sizeof(*isld)));
isld->count = num_island_items;
isld->indices = static_cast<int *>(
BLI_memarena_alloc(mem, sizeof(*isld->indices) * size_t(num_island_items)));
memcpy(isld->indices, island_item_indices, sizeof(*isld->indices) * size_t(num_island_items));
island_store->innercuts[curr_island_idx] = innrcut = static_cast<MeshElemMap *>(
BLI_memarena_alloc(mem, sizeof(*innrcut)));
innrcut->count = num_innercut_items;
innrcut->indices = static_cast<int *>(
BLI_memarena_alloc(mem, sizeof(*innrcut->indices) * size_t(num_innercut_items)));
memcpy(innrcut->indices,
innercut_item_indices,
sizeof(*innrcut->indices) * size_t(num_innercut_items));
}
static bool mesh_calc_islands_loop_poly_uv(const int totedge,
const bool *uv_seams,
const blender::OffsetIndices<int> polys,
const int *corner_verts,
const int *corner_edges,
const int totloop,
const float (*luvs)[2],
MeshIslandStore *r_island_store)
{
using namespace blender;
int *poly_groups = nullptr;
int num_poly_groups;
int *poly_indices;
int *loop_indices;
int num_pidx, num_lidx;
/* Those are used to detect 'inner cuts', i.e. edges that are borders,
* and yet have two or more polys of a same group using them
* (typical case: seam used to unwrap properly a cylinder). */
BLI_bitmap *edge_borders = nullptr;
int num_edge_borders = 0;
char *edge_border_count = nullptr;
int *edge_innercut_indices = nullptr;
int num_einnercuts = 0;
int grp_idx;
BKE_mesh_loop_islands_clear(r_island_store);
BKE_mesh_loop_islands_init(
r_island_store, MISLAND_TYPE_LOOP, totloop, MISLAND_TYPE_POLY, MISLAND_TYPE_EDGE);
Array<int> edge_to_poly_offsets;
Array<int> edge_to_poly_indices;
const GroupedSpan<int> edge_to_poly_map = bke::mesh::build_edge_to_poly_map(
polys, {corner_edges, totloop}, totedge, edge_to_poly_offsets, edge_to_poly_indices);
Array<int> edge_to_loop_offsets;
Array<int> edge_to_loop_indices;
GroupedSpan<int> edge_to_loop_map;
if (luvs) {
edge_to_loop_map = bke::mesh::build_edge_to_loop_map(
{corner_edges, totloop}, totedge, edge_to_loop_offsets, edge_to_loop_indices);
}
/* TODO: I'm not sure edge seam flag is enough to define UV islands?
* Maybe we should also consider UV-maps values
* themselves (i.e. different UV-edges for a same mesh-edge => boundary edge too?).
* Would make things much more complex though,
* and each UVMap would then need its own mesh mapping, not sure we want that at all!
*/
auto mesh_check_island_boundary_uv = [&](const int /*poly_index*/,
const int loop_index,
const int edge_index,
const int /*edge_user_count*/,
const Span<int> /*edge_poly_map_elem*/) -> bool {
if (luvs) {
const Span<int> edge_to_loops = edge_to_loop_map[corner_edges[loop_index]];
BLI_assert(edge_to_loops.size() >= 2 && (edge_to_loops.size() % 2) == 0);
const int v1 = corner_verts[edge_to_loops[0]];
const int v2 = corner_verts[edge_to_loops[1]];
const float *uvco_v1 = luvs[edge_to_loops[0]];
const float *uvco_v2 = luvs[edge_to_loops[1]];
for (int i = 2; i < edge_to_loops.size(); i += 2) {
if (corner_verts[edge_to_loops[i]] == v1) {
if (!equals_v2v2(uvco_v1, luvs[edge_to_loops[i]]) ||
!equals_v2v2(uvco_v2, luvs[edge_to_loops[i + 1]]))
{
return true;
}
}
else {
BLI_assert(corner_verts[edge_to_loops[i]] == v2);
UNUSED_VARS_NDEBUG(v2);
if (!equals_v2v2(uvco_v2, luvs[edge_to_loops[i]]) ||
!equals_v2v2(uvco_v1, luvs[edge_to_loops[i + 1]]))
{
return true;
}
}
}
return false;
}
/* Edge is UV boundary if tagged as seam. */
return uv_seams && uv_seams[edge_index];
};
poly_edge_loop_islands_calc(totedge,
polys,
{corner_edges, totloop},
edge_to_poly_map,
false,
mesh_check_island_boundary_uv,
&poly_groups,
&num_poly_groups,
&edge_borders,
&num_edge_borders);
if (!num_poly_groups) {
if (edge_borders) {
MEM_freeN(edge_borders);
}
return false;
}
if (num_edge_borders) {
edge_border_count = static_cast<char *>(
MEM_mallocN(sizeof(*edge_border_count) * size_t(totedge), __func__));
edge_innercut_indices = static_cast<int *>(
MEM_mallocN(sizeof(*edge_innercut_indices) * size_t(num_edge_borders), __func__));
}
poly_indices = static_cast<int *>(
MEM_mallocN(sizeof(*poly_indices) * size_t(polys.size()), __func__));
loop_indices = static_cast<int *>(
MEM_mallocN(sizeof(*loop_indices) * size_t(totloop), __func__));
/* NOTE: here we ignore '0' invalid group - this should *never* happen in this case anyway? */
for (grp_idx = 1; grp_idx <= num_poly_groups; grp_idx++) {
num_pidx = num_lidx = 0;
if (num_edge_borders) {
num_einnercuts = 0;
memset(edge_border_count, 0, sizeof(*edge_border_count) * size_t(totedge));
}
for (const int64_t p_idx : polys.index_range()) {
if (poly_groups[p_idx] != grp_idx) {
continue;
}
poly_indices[num_pidx++] = int(p_idx);
for (const int64_t corner : polys[p_idx]) {
const int edge_i = corner_edges[corner];
loop_indices[num_lidx++] = int(corner);
if (num_edge_borders && BLI_BITMAP_TEST(edge_borders, edge_i) &&
(edge_border_count[edge_i] < 2)) {
edge_border_count[edge_i]++;
if (edge_border_count[edge_i] == 2) {
edge_innercut_indices[num_einnercuts++] = edge_i;
}
}
}
}
BKE_mesh_loop_islands_add(r_island_store,
num_lidx,
loop_indices,
num_pidx,
poly_indices,
num_einnercuts,
edge_innercut_indices);
}
MEM_freeN(poly_indices);
MEM_freeN(loop_indices);
MEM_freeN(poly_groups);
if (edge_borders) {
MEM_freeN(edge_borders);
}
if (num_edge_borders) {
MEM_freeN(edge_border_count);
MEM_freeN(edge_innercut_indices);
}
return true;
}
bool BKE_mesh_calc_islands_loop_poly_edgeseam(const float (*vert_positions)[3],
const int totvert,
const blender::int2 *edges,
const int totedge,
const bool *uv_seams,
const blender::OffsetIndices<int> polys,
const int *corner_verts,
const int *corner_edges,
const int totloop,
MeshIslandStore *r_island_store)
{
UNUSED_VARS(vert_positions, totvert, edges);
return mesh_calc_islands_loop_poly_uv(
totedge, uv_seams, polys, corner_verts, corner_edges, totloop, nullptr, r_island_store);
}
bool BKE_mesh_calc_islands_loop_poly_uvmap(float (*vert_positions)[3],
const int totvert,
blender::int2 *edges,
const int totedge,
const bool *uv_seams,
const blender::OffsetIndices<int> polys,
const int *corner_verts,
const int *corner_edges,
const int totloop,
const float (*luvs)[2],
MeshIslandStore *r_island_store)
{
UNUSED_VARS(vert_positions, totvert, edges);
BLI_assert(luvs != nullptr);
return mesh_calc_islands_loop_poly_uv(
totedge, uv_seams, polys, corner_verts, corner_edges, totloop, luvs, r_island_store);
}
/** \} */