Files
test2/source/blender/blenlib/BLI_linear_allocator.hh
Sergey Sharybin c1bc70b711 Cleanup: Add a copyright notice to files and use SPDX format
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.

This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.

Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.

Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:

    https://reuse.software/faq/
2023-05-31 16:19:06 +02:00

271 lines
8.6 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*
* A linear allocator is the simplest form of an allocator. It never reuses any memory, and
* therefore does not need a deallocation method. It simply hands out consecutive buffers of
* memory. When the current buffer is full, it reallocates a new larger buffer and continues.
*/
#pragma once
#include "BLI_string_ref.hh"
#include "BLI_utility_mixins.hh"
#include "BLI_vector.hh"
namespace blender {
/**
* If enabled, #LinearAllocator keeps track of how much memory it owns and how much it has
* allocated.
*/
// #define BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
template<typename Allocator = GuardedAllocator> class LinearAllocator : NonCopyable, NonMovable {
private:
BLI_NO_UNIQUE_ADDRESS Allocator allocator_;
Vector<void *, 2> owned_buffers_;
uintptr_t current_begin_;
uintptr_t current_end_;
/* Buffers larger than that are not packed together with smaller allocations to avoid wasting
* memory. */
constexpr static inline int64_t large_buffer_threshold = 4096;
public:
#ifdef BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
int64_t user_requested_size_ = 0;
int64_t owned_allocation_size_ = 0;
#endif
LinearAllocator()
{
current_begin_ = 0;
current_end_ = 0;
}
~LinearAllocator()
{
for (void *ptr : owned_buffers_) {
allocator_.deallocate(ptr);
}
}
/**
* Get a pointer to a memory buffer with the given size an alignment. The memory buffer will be
* freed when this LinearAllocator is destructed.
*
* The alignment has to be a power of 2.
*/
void *allocate(const int64_t size, const int64_t alignment)
{
BLI_assert(size >= 0);
BLI_assert(alignment >= 1);
BLI_assert(is_power_of_2_i(alignment));
const uintptr_t alignment_mask = alignment - 1;
const uintptr_t potential_allocation_begin = (current_begin_ + alignment_mask) &
~alignment_mask;
const uintptr_t potential_allocation_end = potential_allocation_begin + size;
if (potential_allocation_end <= current_end_) {
#ifdef BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
user_requested_size_ += size;
#endif
current_begin_ = potential_allocation_end;
return reinterpret_cast<void *>(potential_allocation_begin);
}
if (size <= large_buffer_threshold) {
this->allocate_new_buffer(size + alignment, alignment);
return this->allocate(size, alignment);
}
#ifdef BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
user_requested_size_ += size;
#endif
return this->allocator_large_buffer(size, alignment);
};
/**
* Allocate a memory buffer that can hold an instance of T.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> T *allocate()
{
return static_cast<T *>(this->allocate(sizeof(T), alignof(T)));
}
/**
* Allocate a memory buffer that can hold T array with the given size.
*
* This method only allocates memory and does not construct the instance.
*/
template<typename T> MutableSpan<T> allocate_array(int64_t size)
{
T *array = static_cast<T *>(this->allocate(sizeof(T) * size, alignof(T)));
return MutableSpan<T>(array, size);
}
/**
* Construct an instance of T in memory provided by this allocator.
*
* Arguments passed to this method will be forwarded to the constructor of T.
*
* You must not call `delete` on the returned value.
* Instead, only the destructor has to be called.
*/
template<typename T, typename... Args> destruct_ptr<T> construct(Args &&...args)
{
void *buffer = this->allocate(sizeof(T), alignof(T));
T *value = new (buffer) T(std::forward<Args>(args)...);
return destruct_ptr<T>(value);
}
/**
* Construct multiple instances of a type in an array. The constructor of is called with the
* given arguments. The caller is responsible for calling the destructor (and not `delete`) on
* the constructed elements.
*/
template<typename T, typename... Args>
MutableSpan<T> construct_array(int64_t size, Args &&...args)
{
MutableSpan<T> array = this->allocate_array<T>(size);
for (const int64_t i : IndexRange(size)) {
new (&array[i]) T(std::forward<Args>(args)...);
}
return array;
}
/**
* Copy the given array into a memory buffer provided by this allocator.
*/
template<typename T> MutableSpan<T> construct_array_copy(Span<T> src)
{
if (src.is_empty()) {
return {};
}
MutableSpan<T> dst = this->allocate_array<T>(src.size());
uninitialized_copy_n(src.data(), src.size(), dst.data());
return dst;
}
/**
* Copy the given string into a memory buffer provided by this allocator. The returned string is
* always null terminated.
*/
StringRefNull copy_string(StringRef str)
{
const int64_t alloc_size = str.size() + 1;
char *buffer = static_cast<char *>(this->allocate(alloc_size, 1));
str.copy(buffer, alloc_size);
return StringRefNull(static_cast<const char *>(buffer));
}
MutableSpan<void *> allocate_elements_and_pointer_array(int64_t element_amount,
int64_t element_size,
int64_t element_alignment)
{
void *pointer_buffer = this->allocate(element_amount * sizeof(void *), alignof(void *));
void *elements_buffer = this->allocate(element_amount * element_size, element_alignment);
MutableSpan<void *> pointers(static_cast<void **>(pointer_buffer), element_amount);
void *next_element_buffer = elements_buffer;
for (int64_t i : IndexRange(element_amount)) {
pointers[i] = next_element_buffer;
next_element_buffer = POINTER_OFFSET(next_element_buffer, element_size);
}
return pointers;
}
template<typename T, typename... Args>
Span<T *> construct_elements_and_pointer_array(int64_t n, Args &&...args)
{
MutableSpan<void *> void_pointers = this->allocate_elements_and_pointer_array(
n, sizeof(T), alignof(T));
MutableSpan<T *> pointers = void_pointers.cast<T *>();
for (int64_t i : IndexRange(n)) {
new (static_cast<void *>(pointers[i])) T(std::forward<Args>(args)...);
}
return pointers;
}
/**
* Tell the allocator to use up the given memory buffer, before allocating new memory from the
* system.
*/
void provide_buffer(void *buffer, const int64_t size)
{
BLI_assert(owned_buffers_.is_empty());
current_begin_ = uintptr_t(buffer);
current_end_ = current_begin_ + size;
}
template<size_t Size, size_t Alignment>
void provide_buffer(AlignedBuffer<Size, Alignment> &aligned_buffer)
{
this->provide_buffer(aligned_buffer.ptr(), Size);
}
/**
* This allocator takes ownership of the buffers owned by `other`. Therefor, when `other` is
* destructed, memory allocated using it is not freed.
*
* Note that the caller is responsible for making sure that buffers passed into #provide_buffer
* of `other` live at least as long as this allocator.
*/
void transfer_ownership_from(LinearAllocator<> &other)
{
owned_buffers_.extend(other.owned_buffers_);
#ifdef BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
user_requested_size_ += other.user_requested_size_;
owned_allocation_size_ += other.owned_allocation_size_;
#endif
other.owned_buffers_.clear();
std::destroy_at(&other);
new (&other) LinearAllocator<>();
}
private:
void allocate_new_buffer(int64_t min_allocation_size, int64_t min_alignment)
{
/* Possibly allocate more bytes than necessary for the current allocation. This way more small
* allocations can be packed together. Large buffers are allocated exactly to avoid wasting too
* much memory. */
int64_t size_in_bytes = min_allocation_size;
if (size_in_bytes <= large_buffer_threshold) {
/* Gradually grow buffer size with each allocation, up to a maximum. */
const int grow_size = 1 << std::min<int>(owned_buffers_.size() + 6, 20);
size_in_bytes = std::min(large_buffer_threshold,
std::max<int64_t>(size_in_bytes, grow_size));
}
void *buffer = this->allocated_owned(size_in_bytes, min_alignment);
current_begin_ = uintptr_t(buffer);
current_end_ = current_begin_ + size_in_bytes;
}
void *allocator_large_buffer(const int64_t size, const int64_t alignment)
{
return this->allocated_owned(size, alignment);
}
void *allocated_owned(const int64_t size, const int64_t alignment)
{
void *buffer = allocator_.allocate(size, alignment, __func__);
owned_buffers_.append(buffer);
#ifdef BLI_DEBUG_LINEAR_ALLOCATOR_SIZE
owned_allocation_size_ += size;
#endif
return buffer;
}
};
} // namespace blender