Files
test2/source/blender/blenlib/intern/math_base_inline.c
Sergey Sharybin 5907ab0364 Fix redefinition SSE2NEON_PRECISE_SQRT on Apple Silicon
After some recent changes BLI_math_base got (indirectly) included
from DNA file, causing defines conflict in Cycles: Cycles wants the
default fast behavior of square root, and BLI color wants it to be
more preciese.

Proposed solution is to move the SSE block away from the math_base
closer to code which uses it. The initial intent was to make those
functions reusable, but for a long long time the color utilities
are the only users of those functions.

This change does not prevent the error from re-occurring in the
future if some code includes sse2neon and BLI color utilities, but
it makes such conflict situation much less likely to happen, for
now.

The downside of this change is that the code now need to include
BLI_simd.h explicitly to access BLI_HAVE_SSE2 instead of relying
on it being included indirectly with math headers. The mitigation
for this is to change semantic of the BLI_HAVE_SSE2: now it is
defined to 1 if SSE2 is supported and to 0 otherwise. This makes
it so the code needs to check if using `#if BLI_HAVE_SSE2` and
if the BLI_simd.h is not included it will generate warning when
using GCC or Clang.

This change in semantic is is something the current patches would
need to ensure is handled correctly.

Pull Request: https://projects.blender.org/blender/blender/pulls/109664
2023-07-03 19:18:30 +02:00

786 lines
16 KiB
C

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "BLI_math_base.h"
#ifdef __cplusplus
extern "C" {
#endif
/* copied from BLI_utildefines.h */
#ifdef __GNUC__
# define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
# define UNLIKELY(x) (x)
#endif
MINLINE float pow2f(float x)
{
return x * x;
}
MINLINE float pow3f(float x)
{
return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
return pow2f(pow2f(x));
}
MINLINE float pow5f(float x)
{
return pow4f(x) * x;
}
MINLINE float pow7f(float x)
{
return pow2f(pow3f(x)) * x;
}
MINLINE float sqrt3f(float f)
{
if (UNLIKELY(f == 0.0f)) {
return 0.0f;
}
else if (UNLIKELY(f < 0.0f)) {
return -(float)(exp(log(-f) / 3.0));
}
else {
return (float)(exp(log(f) / 3.0));
}
}
MINLINE double sqrt3d(double d)
{
if (UNLIKELY(d == 0.0)) {
return 0.0;
}
else if (UNLIKELY(d < 0.0)) {
return -exp(log(-d) / 3.0);
}
else {
return exp(log(d) / 3.0);
}
}
MINLINE float sqrtf_signed(float f)
{
return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}
MINLINE float saacos(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)M_PI;
}
else if (UNLIKELY(fac >= 1.0f)) {
return 0.0f;
}
else {
return acosf(fac);
}
}
MINLINE float saasin(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)-M_PI_2;
}
else if (UNLIKELY(fac >= 1.0f)) {
return (float)M_PI_2;
}
else {
return asinf(fac);
}
}
MINLINE float sasqrt(float fac)
{
if (UNLIKELY(fac <= 0.0f)) {
return 0.0f;
}
else {
return sqrtf(fac);
}
}
MINLINE float saacosf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)M_PI;
}
else if (UNLIKELY(fac >= 1.0f)) {
return 0.0f;
}
else {
return acosf(fac);
}
}
MINLINE float saasinf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)-M_PI_2;
}
else if (UNLIKELY(fac >= 1.0f)) {
return (float)M_PI_2;
}
else {
return asinf(fac);
}
}
MINLINE float sasqrtf(float fac)
{
if (UNLIKELY(fac <= 0.0f)) {
return 0.0f;
}
else {
return sqrtf(fac);
}
}
MINLINE float interpf(float target, float origin, float fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
MINLINE double interpd(double target, double origin, double fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
MINLINE float ratiof(float min, float max, float pos)
{
float range = max - min;
return range == 0 ? 0 : ((pos - min) / range);
}
MINLINE double ratiod(double min, double max, double pos)
{
double range = max - min;
return range == 0 ? 0 : ((pos - min) / range);
}
MINLINE float scalenorm(float a, float b, float x)
{
BLI_assert(x <= 1 && x >= 0);
return (x * (b - a)) + a;
}
MINLINE double scalenormd(double a, double b, double x)
{
BLI_assert(x <= 1 && x >= 0);
return (x * (b - a)) + a;
}
MINLINE float power_of_2(float val)
{
return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}
MINLINE int is_power_of_2_i(int n)
{
return (n & (n - 1)) == 0;
}
MINLINE int power_of_2_max_i(int n)
{
if (is_power_of_2_i(n)) {
return n;
}
do {
n = n & (n - 1);
} while (!is_power_of_2_i(n));
return n * 2;
}
MINLINE int power_of_2_min_i(int n)
{
while (!is_power_of_2_i(n)) {
n = n & (n - 1);
}
return n;
}
MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
x -= 1;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
MINLINE unsigned int power_of_2_min_u(unsigned int x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >> 1);
}
MINLINE unsigned int log2_floor_u(unsigned int x)
{
return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1);
}
MINLINE unsigned int log2_ceil_u(unsigned int x)
{
if (is_power_of_2_i((int)x)) {
return log2_floor_u(x);
}
else {
return log2_floor_u(x) + 1;
}
}
/* rounding and clamping */
#define _round_clamp_fl_impl(arg, ty, min, max) \
{ \
float r = floorf(arg + 0.5f); \
if (UNLIKELY(r <= (float)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (float)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_clamp_db_impl(arg, ty, min, max) \
{ \
double r = floor(arg + 0.5); \
if (UNLIKELY(r <= (double)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (double)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_fl_impl(arg, ty) \
{ \
return (ty)floorf(arg + 0.5f); \
}
#define _round_db_impl(arg, ty) \
{ \
return (ty)floor(arg + 0.5); \
}
MINLINE signed char round_fl_to_char(float a){_round_fl_impl(a, signed char)} MINLINE
unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE
short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE
unsigned short round_fl_to_ushort(float a){_round_fl_impl(a, unsigned short)} MINLINE
int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE
unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)}
MINLINE signed char round_db_to_char(double a){_round_db_impl(a, signed char)} MINLINE
unsigned char round_db_to_uchar(double a){_round_db_impl(a, unsigned char)} MINLINE
short round_db_to_short(double a){_round_db_impl(a, short)} MINLINE
unsigned short round_db_to_ushort(double a){_round_db_impl(a, unsigned short)} MINLINE
int round_db_to_int(double a){_round_db_impl(a, int)} MINLINE
unsigned int round_db_to_uint(double a)
{
_round_db_impl(a, unsigned int)
}
#undef _round_fl_impl
#undef _round_db_impl
MINLINE signed char round_fl_to_char_clamp(float a){
_round_clamp_fl_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_fl_to_uchar_clamp(float a){
_round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_fl_to_short_clamp(float a){
_round_clamp_fl_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_fl_to_ushort_clamp(float a){
_round_clamp_fl_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_fl_to_uint_clamp(float a){
_round_clamp_fl_impl(a, unsigned int, 0, UINT_MAX)}
MINLINE signed char round_db_to_char_clamp(double a){
_round_clamp_db_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_db_to_uchar_clamp(double a){
_round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_db_to_short_clamp(double a){
_round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_db_to_ushort_clamp(double a){
_round_clamp_db_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_db_to_uint_clamp(double a)
{
_round_clamp_db_impl(a, unsigned int, 0, UINT_MAX)
}
#undef _round_clamp_fl_impl
#undef _round_clamp_db_impl
MINLINE float round_to_even(float f)
{
return roundf(f * 0.5f) * 2.0f;
}
MINLINE int divide_round_i(int a, int b)
{
return (2 * a + b) / (2 * b);
}
/**
* Integer division that floors negative result.
* \note This works like Python's int division.
*/
MINLINE int divide_floor_i(int a, int b)
{
int d = a / b;
int r = a % b; /* Optimizes into a single division. */
return r ? d - ((a < 0) ^ (b < 0)) : d;
}
MINLINE uint divide_ceil_u(uint a, uint b)
{
return (a + b - 1) / b;
}
MINLINE uint64_t divide_ceil_ul(uint64_t a, uint64_t b)
{
return (a + b - 1) / b;
}
MINLINE uint ceil_to_multiple_u(uint a, uint b)
{
return divide_ceil_u(a, b) * b;
}
MINLINE uint64_t ceil_to_multiple_ul(uint64_t a, uint64_t b)
{
return divide_ceil_ul(a, b) * b;
}
MINLINE int mod_i(int i, int n)
{
return (i % n + n) % n;
}
MINLINE float mod_f_positive(const float f, const float n)
{
const float modulo = fmodf(f, n);
if (modulo < 0) {
/* fmodf returns a value in the interval (-n, n). */
return modulo + n;
}
return modulo;
}
MINLINE float fractf(float a)
{
return a - floorf(a);
}
/* Adapted from `godot-engine` math_funcs.h. */
MINLINE float wrapf(float value, float max, float min)
{
float range = max - min;
return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min;
}
MINLINE float pingpongf(float value, float scale)
{
if (scale == 0.0f) {
return 0.0f;
}
return fabsf(fractf((value - scale) / (scale * 2.0f)) * scale * 2.0f - scale);
}
/* Square. */
MINLINE int square_s(short a)
{
return a * a;
}
MINLINE int square_i(int a)
{
return a * a;
}
MINLINE unsigned int square_uint(unsigned int a)
{
return a * a;
}
MINLINE int square_uchar(unsigned char a)
{
return a * a;
}
MINLINE float square_f(float a)
{
return a * a;
}
MINLINE double square_d(double a)
{
return a * a;
}
/* Cube. */
MINLINE int cube_s(short a)
{
return a * a * a;
}
MINLINE int cube_i(int a)
{
return a * a * a;
}
MINLINE unsigned int cube_uint(unsigned int a)
{
return a * a * a;
}
MINLINE int cube_uchar(unsigned char a)
{
return a * a * a;
}
MINLINE float cube_f(float a)
{
return a * a * a;
}
MINLINE double cube_d(double a)
{
return a * a * a;
}
/* Min/max */
MINLINE float min_ff(float a, float b)
{
return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
return (a > b) ? a : b;
}
/* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */
MINLINE float smoothminf(float a, float b, float c)
{
if (c != 0.0f) {
float h = max_ff(c - fabsf(a - b), 0.0f) / c;
return min_ff(a, b) - h * h * h * c * (1.0f / 6.0f);
}
else {
return min_ff(a, b);
}
}
MINLINE float smoothstep(float edge0, float edge1, float x)
{
float result;
if (x < edge0) {
result = 0.0f;
}
else if (x >= edge1) {
result = 1.0f;
}
else {
float t = (x - edge0) / (edge1 - edge0);
result = (3.0f - 2.0f * t) * (t * t);
}
return result;
}
MINLINE double min_dd(double a, double b)
{
return (a < b) ? a : b;
}
MINLINE double max_dd(double a, double b)
{
return (a > b) ? a : b;
}
MINLINE int min_ii(int a, int b)
{
return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
return (b < a) ? a : b;
}
MINLINE uint min_uu(uint a, uint b)
{
return (a < b) ? a : b;
}
MINLINE uint max_uu(uint a, uint b)
{
return (b < a) ? a : b;
}
MINLINE unsigned long long min_ulul(unsigned long long a, unsigned long long b)
{
return (a < b) ? a : b;
}
MINLINE unsigned long long max_ulul(unsigned long long a, unsigned long long b)
{
return (b < a) ? a : b;
}
MINLINE double min_ddd(double a, double b, double c)
{
return min_dd(min_dd(a, b), c);
}
MINLINE double max_ddd(double a, double b, double c)
{
return max_dd(max_dd(a, b), c);
}
MINLINE float min_fff(float a, float b, float c)
{
return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
return max_ff(max_ff(a, b), c);
}
MINLINE int min_iii(int a, int b, int c)
{
return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
return max_ii(max_ii(a, b), c);
}
MINLINE float min_ffff(float a, float b, float c, float d)
{
return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
return max_ff(max_fff(a, b, c), d);
}
MINLINE int min_iiii(int a, int b, int c, int d)
{
return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
return max_ii(max_iii(a, b, c), d);
}
MINLINE size_t min_zz(size_t a, size_t b)
{
return (a < b) ? a : b;
}
MINLINE size_t max_zz(size_t a, size_t b)
{
return (b < a) ? a : b;
}
MINLINE char min_cc(char a, char b)
{
return (a < b) ? a : b;
}
MINLINE char max_cc(char a, char b)
{
return (b < a) ? a : b;
}
MINLINE int clamp_i(int value, int min, int max)
{
return min_ii(max_ii(value, min), max);
}
MINLINE float clamp_f(float value, float min, float max)
{
if (value > max) {
return max;
}
else if (value < min) {
return min;
}
return value;
}
MINLINE size_t clamp_z(size_t value, size_t min, size_t max)
{
return min_zz(max_zz(value, min), max);
}
MINLINE int compare_ff(float a, float b, const float max_diff)
{
return fabsf(a - b) <= max_diff;
}
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
union {
float f;
int i;
} ua, ub;
BLI_assert(sizeof(float) == sizeof(int));
BLI_assert(max_ulps < (1 << 22));
if (fabsf(a - b) <= max_diff) {
return 1;
}
ua.f = a;
ub.f = b;
/* Important to compare sign from integers, since (-0.0f < 0) is false
* (though this shall not be an issue in common cases)... */
return ((ua.i < 0) != (ub.i < 0)) ? 0 : (abs(ua.i - ub.i) <= max_ulps) ? 1 : 0;
}
MINLINE bool compare_threshold_relative(const float value1, const float value2, const float thresh)
{
const float abs_diff = fabsf(value1 - value2);
/* Avoid letting the threshold get too small just because the values happen to be close to zero.
*/
if (fabsf(value2) < 1) {
return abs_diff > thresh;
}
/* Using relative threshold in general. */
return abs_diff > thresh * fabsf(value2);
}
MINLINE float signf(float f)
{
return (f < 0.0f) ? -1.0f : 1.0f;
}
MINLINE float compatible_signf(float f)
{
if (f > 0.0f) {
return 1.0f;
}
if (f < 0.0f) {
return -1.0f;
}
else {
return 0.0f;
}
}
MINLINE int signum_i_ex(float a, float eps)
{
if (a > eps) {
return 1;
}
if (a < -eps) {
return -1;
}
else {
return 0;
}
}
MINLINE int signum_i(float a)
{
if (a > 0.0f) {
return 1;
}
if (a < 0.0f) {
return -1;
}
else {
return 0;
}
}
MINLINE int integer_digits_f(const float f)
{
return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1;
}
MINLINE int integer_digits_d(const double d)
{
return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1;
}
MINLINE int integer_digits_i(const int i)
{
return (int)log10((double)i) + 1;
}
/* Low level conversion functions */
MINLINE unsigned char unit_float_to_uchar_clamp(float val)
{
return (unsigned char)((
(val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f))));
}
#define unit_float_to_uchar_clamp(val) \
((CHECK_TYPE_INLINE_NONCONST((val), float)), unit_float_to_uchar_clamp(val))
MINLINE unsigned short unit_float_to_ushort_clamp(float val)
{
return (unsigned short)((val >= 1.0f - 0.5f / 65535) ? 65535 :
(val <= 0.0f) ? 0 :
(val * 65535.0f + 0.5f));
}
#define unit_float_to_ushort_clamp(val) \
((CHECK_TYPE_INLINE_NONCONST(val, float)), unit_float_to_ushort_clamp(val))
MINLINE unsigned char unit_ushort_to_uchar(unsigned short val)
{
return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8);
}
#define unit_ushort_to_uchar(val) \
((CHECK_TYPE_INLINE_NONCONST(val, unsigned short)), unit_ushort_to_uchar(val))
#define unit_float_to_uchar_clamp_v3(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
} \
((void)0)
#define unit_float_to_uchar_clamp_v4(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
(v1)[3] = unit_float_to_uchar_clamp((v2[3])); \
} \
((void)0)
#ifdef __cplusplus
}
#endif
#endif /* __MATH_BASE_INLINE_C__ */