Files
test2/source/blender/blenlib/intern/math_solvers.c
Sergey Sharybin c1bc70b711 Cleanup: Add a copyright notice to files and use SPDX format
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.

This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.

Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.

Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:

    https://reuse.software/faq/
2023-05-31 16:19:06 +02:00

236 lines
5.8 KiB
C

/* SPDX-FileCopyrightText: 2015 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
#include "eigen_capi.h"
/********************************** Eigen Solvers *********************************/
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
float r_eigen_values[3],
float r_eigen_vectors[3][3])
{
#ifndef NDEBUG
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
if ((m3[0][1] != m3[1][0]) || (m3[0][2] != m3[2][0]) || (m3[1][2] != m3[2][1])) {
BLI_assert(0);
}
#endif
return EIG_self_adjoint_eigen_solve(
3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
}
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
{
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
}
/***************************** Simple Solvers ************************************/
bool BLI_tridiagonal_solve(
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
if (count < 1) {
return false;
}
size_t bytes = sizeof(double) * (uint)count;
double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
double *d1 = c1 + count;
if (!c1) {
return false;
}
int i;
double c_prev, d_prev, x_prev;
/* forward pass */
c1[0] = c_prev = ((double)c[0]) / b[0];
d1[0] = d_prev = ((double)d[0]) / b[0];
for (i = 1; i < count; i++) {
double denum = b[i] - a[i] * c_prev;
c1[i] = c_prev = c[i] / denum;
d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
}
/* back pass */
x_prev = d_prev;
r_x[--i] = ((float)x_prev);
while (--i >= 0) {
x_prev = d1[i] - c1[i] * x_prev;
r_x[i] = ((float)x_prev);
}
MEM_freeN(c1);
return isfinite(x_prev);
}
bool BLI_tridiagonal_solve_cyclic(
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
if (count < 1) {
return false;
}
/* Degenerate case not handled correctly by the generic formula. */
if (count == 1) {
r_x[0] = d[0] / (a[0] + b[0] + c[0]);
return isfinite(r_x[0]);
}
/* Degenerate case that works but can be simplified. */
if (count == 2) {
const float a2[2] = {0, a[1] + c[1]};
const float c2[2] = {a[0] + c[0], 0};
return BLI_tridiagonal_solve(a2, b, c2, d, r_x, count);
}
/* If not really cyclic, fall back to the simple solver. */
float a0 = a[0], cN = c[count - 1];
if (a0 == 0.0f && cN == 0.0f) {
return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
}
size_t bytes = sizeof(float) * (uint)count;
float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
float *b2 = tmp + count;
if (!tmp) {
return false;
}
/* Prepare the non-cyclic system; relies on tridiagonal_solve ignoring values. */
memcpy(b2, b, bytes);
b2[0] -= a0;
b2[count - 1] -= cN;
memset(tmp, 0, bytes);
tmp[0] = a0;
tmp[count - 1] = cN;
/* solve for partial solution and adjustment vector */
bool success = BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
BLI_tridiagonal_solve(a, b2, c, d, r_x, count);
/* apply adjustment */
if (success) {
float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);
for (int i = 0; i < count; i++) {
r_x[i] -= coeff * tmp[i];
}
}
MEM_freeN(tmp);
return success;
}
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
Newton3D_JacobianFunc func_jacobian,
Newton3D_CorrectionFunc func_correction,
void *userdata,
float epsilon,
int max_iterations,
bool trace,
const float x_init[3],
float result[3])
{
float fdelta[3], fdeltav, next_fdeltav;
float jacobian[3][3], step[3], x[3], x_next[3];
epsilon *= epsilon;
copy_v3_v3(x, x_init);
func_delta(userdata, x, fdelta);
fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("START (%g, %g, %g) %g %g\n", x[0], x[1], x[2], fdeltav, epsilon);
}
for (int i = 0; i == 0 || (i < max_iterations && fdeltav > epsilon); i++) {
/* Newton's method step. */
func_jacobian(userdata, x, jacobian);
if (!invert_m3(jacobian)) {
return false;
}
mul_v3_m3v3(step, jacobian, fdelta);
sub_v3_v3v3(x_next, x, step);
/* Custom out-of-bounds value correction. */
if (func_correction) {
if (trace) {
printf("%3d * (%g, %g, %g)\n", i, x_next[0], x_next[1], x_next[2]);
}
if (!func_correction(userdata, x, step, x_next)) {
return false;
}
}
func_delta(userdata, x_next, fdelta);
next_fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("%3d ? (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
}
/* Line search correction. */
while (next_fdeltav > fdeltav && next_fdeltav > epsilon) {
float g0 = sqrtf(fdeltav), g1 = sqrtf(next_fdeltav);
float g01 = -g0 / len_v3(step);
float det = 2.0f * (g1 - g0 - g01);
float l = (det == 0.0f) ? 0.1f : -g01 / det;
CLAMP_MIN(l, 0.1f);
mul_v3_fl(step, l);
sub_v3_v3v3(x_next, x, step);
func_delta(userdata, x_next, fdelta);
next_fdeltav = len_squared_v3(fdelta);
if (trace) {
printf("%3d . (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
}
}
copy_v3_v3(x, x_next);
fdeltav = next_fdeltav;
}
bool success = (fdeltav <= epsilon);
if (trace) {
printf("%s (%g, %g, %g) %g\n", success ? "OK " : "FAIL", x[0], x[1], x[2], fdeltav);
}
copy_v3_v3(result, x);
return success;
}