Files
test2/source/blender/modifiers/intern/MOD_cast.cc
Hans Goudey 91b27ab637 Refactor: Simplify mesh edit mode modifier evaluation
Instead of keeping track of a local array of positions in the modifier
stack itself, use the existing edit mode SoA "edit cache" which already
contains a contiguous array of positions. Combined with positions as a
generic attribute, this means the state is contained just in the mesh
(and the geometry set) making the code much easier to follow.

To do this we make more use of the mesh wrapper system, where we can
pass a `Mesh` that's actually stored with a `BMesh` and the extra
cached array of positions. This also resolves some confusion-- it was
weird to have the mesh wrapper system for this purpose but not use it.

Since we always created a wrapped mesh in edit mode, there's no need
for `MOD_deform_mesh_eval_get` at all anymore. That function was quite
confusing with "eval" in its name when it really retrieved the original
mesh.

Many deform modifiers had placeholder edit mode evaluation functions.
Since these didn't do anything and since the priority is node-based
deformation now, I removed these. The case is documented more in the
modifier type struct callbacks.

Pull Request: https://projects.blender.org/blender/blender/pulls/108637
2023-07-07 13:07:15 +02:00

547 lines
14 KiB
C++

/* SPDX-FileCopyrightText: 2005 Blender Foundation
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup modifiers
*/
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLT_translation.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "BKE_context.h"
#include "BKE_deform.h"
#include "BKE_editmesh.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_mesh_wrapper.h"
#include "BKE_modifier.h"
#include "BKE_screen.h"
#include "UI_interface.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "RNA_prototypes.h"
#include "DEG_depsgraph_query.h"
#include "MOD_ui_common.hh"
#include "MOD_util.hh"
static void initData(ModifierData *md)
{
CastModifierData *cmd = (CastModifierData *)md;
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(cmd, modifier));
MEMCPY_STRUCT_AFTER(cmd, DNA_struct_default_get(CastModifierData), modifier);
}
static bool isDisabled(const Scene * /*scene*/, ModifierData *md, bool /*useRenderParams*/)
{
CastModifierData *cmd = (CastModifierData *)md;
short flag;
flag = cmd->flag & (MOD_CAST_X | MOD_CAST_Y | MOD_CAST_Z);
if ((cmd->fac == 0.0f) || flag == 0) {
return true;
}
return false;
}
static void requiredDataMask(ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
{
CastModifierData *cmd = (CastModifierData *)md;
/* Ask for vertex-groups if we need them. */
if (cmd->defgrp_name[0] != '\0') {
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
}
}
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
{
CastModifierData *cmd = (CastModifierData *)md;
walk(userData, ob, (ID **)&cmd->object, IDWALK_CB_NOP);
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
CastModifierData *cmd = (CastModifierData *)md;
if (cmd->object != nullptr) {
DEG_add_object_relation(ctx->node, cmd->object, DEG_OB_COMP_TRANSFORM, "Cast Modifier");
DEG_add_depends_on_transform_relation(ctx->node, "Cast Modifier");
}
}
static void sphere_do(CastModifierData *cmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
float (*vertexCos)[3],
int verts_num)
{
const MDeformVert *dvert = nullptr;
const bool invert_vgroup = (cmd->flag & MOD_CAST_INVERT_VGROUP) != 0;
Object *ctrl_ob = nullptr;
int i, defgrp_index;
bool has_radius = false;
short flag, type;
float len = 0.0f;
float fac = cmd->fac;
float facm = 1.0f - fac;
const float fac_orig = fac;
float vec[3], center[3] = {0.0f, 0.0f, 0.0f};
float mat[4][4], imat[4][4];
flag = cmd->flag;
type = cmd->type; /* projection type: sphere or cylinder */
if (type == MOD_CAST_TYPE_CYLINDER) {
flag &= ~MOD_CAST_Z;
}
ctrl_ob = cmd->object;
/* The spheres center is {0, 0, 0} (the ob's own center in its local space),
* by default, but if the user defined a control object,
* we use its location, transformed to ob's local space. */
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
invert_m4_m4(imat, ctrl_ob->object_to_world);
mul_m4_m4m4(mat, imat, ob->object_to_world);
invert_m4_m4(imat, mat);
}
invert_m4_m4(ob->world_to_object, ob->object_to_world);
mul_v3_m4v3(center, ob->world_to_object, ctrl_ob->object_to_world[3]);
}
/* now we check which options the user wants */
/* 1) (flag was checked in the "if (ctrl_ob)" block above) */
/* 2) cmd->radius > 0.0f: only the vertices within this radius from
* the center of the effect should be deformed */
if (cmd->radius > FLT_EPSILON) {
has_radius = 1;
}
/* 3) if we were given a vertex group name,
* only those vertices should be affected */
if (cmd->defgrp_name[0] != '\0') {
MOD_get_vgroup(ob, mesh, cmd->defgrp_name, &dvert, &defgrp_index);
}
if (flag & MOD_CAST_SIZE_FROM_RADIUS) {
len = cmd->radius;
}
else {
len = cmd->size;
}
if (len <= 0) {
for (i = 0; i < verts_num; i++) {
len += len_v3v3(center, vertexCos[i]);
}
len /= verts_num;
if (len == 0.0f) {
len = 10.0f;
}
}
for (i = 0; i < verts_num; i++) {
float tmp_co[3];
copy_v3_v3(tmp_co, vertexCos[i]);
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
mul_m4_v3(mat, tmp_co);
}
else {
sub_v3_v3(tmp_co, center);
}
}
copy_v3_v3(vec, tmp_co);
if (type == MOD_CAST_TYPE_CYLINDER) {
vec[2] = 0.0f;
}
if (has_radius) {
if (len_v3(vec) > cmd->radius) {
continue;
}
}
if (dvert) {
const float weight = invert_vgroup ?
1.0f - BKE_defvert_find_weight(&dvert[i], defgrp_index) :
BKE_defvert_find_weight(&dvert[i], defgrp_index);
if (weight == 0.0f) {
continue;
}
fac = fac_orig * weight;
facm = 1.0f - fac;
}
normalize_v3(vec);
if (flag & MOD_CAST_X) {
tmp_co[0] = fac * vec[0] * len + facm * tmp_co[0];
}
if (flag & MOD_CAST_Y) {
tmp_co[1] = fac * vec[1] * len + facm * tmp_co[1];
}
if (flag & MOD_CAST_Z) {
tmp_co[2] = fac * vec[2] * len + facm * tmp_co[2];
}
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
mul_m4_v3(imat, tmp_co);
}
else {
add_v3_v3(tmp_co, center);
}
}
copy_v3_v3(vertexCos[i], tmp_co);
}
}
static void cuboid_do(CastModifierData *cmd,
const ModifierEvalContext * /*ctx*/,
Object *ob,
Mesh *mesh,
float (*vertexCos)[3],
int verts_num)
{
const MDeformVert *dvert = nullptr;
int defgrp_index;
const bool invert_vgroup = (cmd->flag & MOD_CAST_INVERT_VGROUP) != 0;
Object *ctrl_ob = nullptr;
int i;
bool has_radius = false;
short flag;
float fac = cmd->fac;
float facm = 1.0f - fac;
const float fac_orig = fac;
float min[3], max[3], bb[8][3];
float center[3] = {0.0f, 0.0f, 0.0f};
float mat[4][4], imat[4][4];
flag = cmd->flag;
ctrl_ob = cmd->object;
/* now we check which options the user wants */
/* 1) (flag was checked in the "if (ctrl_ob)" block above) */
/* 2) cmd->radius > 0.0f: only the vertices within this radius from
* the center of the effect should be deformed */
if (cmd->radius > FLT_EPSILON) {
has_radius = 1;
}
/* 3) if we were given a vertex group name,
* only those vertices should be affected */
if (cmd->defgrp_name[0] != '\0') {
MOD_get_vgroup(ob, mesh, cmd->defgrp_name, &dvert, &defgrp_index);
}
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
invert_m4_m4(imat, ctrl_ob->object_to_world);
mul_m4_m4m4(mat, imat, ob->object_to_world);
invert_m4_m4(imat, mat);
}
invert_m4_m4(ob->world_to_object, ob->object_to_world);
mul_v3_m4v3(center, ob->world_to_object, ctrl_ob->object_to_world[3]);
}
if ((flag & MOD_CAST_SIZE_FROM_RADIUS) && has_radius) {
for (i = 0; i < 3; i++) {
min[i] = -cmd->radius;
max[i] = cmd->radius;
}
}
else if (!(flag & MOD_CAST_SIZE_FROM_RADIUS) && cmd->size > 0) {
for (i = 0; i < 3; i++) {
min[i] = -cmd->size;
max[i] = cmd->size;
}
}
else {
/* get bound box */
/* We can't use the object's bound box because other modifiers
* may have changed the vertex data. */
INIT_MINMAX(min, max);
/* Cast's center is the ob's own center in its local space,
* by default, but if the user defined a control object, we use
* its location, transformed to ob's local space. */
if (ctrl_ob) {
float vec[3];
/* let the center of the ctrl_ob be part of the bound box: */
minmax_v3v3_v3(min, max, center);
for (i = 0; i < verts_num; i++) {
sub_v3_v3v3(vec, vertexCos[i], center);
minmax_v3v3_v3(min, max, vec);
}
}
else {
for (i = 0; i < verts_num; i++) {
minmax_v3v3_v3(min, max, vertexCos[i]);
}
}
/* we want a symmetric bound box around the origin */
if (fabsf(min[0]) > fabsf(max[0])) {
max[0] = fabsf(min[0]);
}
if (fabsf(min[1]) > fabsf(max[1])) {
max[1] = fabsf(min[1]);
}
if (fabsf(min[2]) > fabsf(max[2])) {
max[2] = fabsf(min[2]);
}
min[0] = -max[0];
min[1] = -max[1];
min[2] = -max[2];
}
/* building our custom bounding box */
bb[0][0] = bb[2][0] = bb[4][0] = bb[6][0] = min[0];
bb[1][0] = bb[3][0] = bb[5][0] = bb[7][0] = max[0];
bb[0][1] = bb[1][1] = bb[4][1] = bb[5][1] = min[1];
bb[2][1] = bb[3][1] = bb[6][1] = bb[7][1] = max[1];
bb[0][2] = bb[1][2] = bb[2][2] = bb[3][2] = min[2];
bb[4][2] = bb[5][2] = bb[6][2] = bb[7][2] = max[2];
/* ready to apply the effect, one vertex at a time */
for (i = 0; i < verts_num; i++) {
int octant, coord;
float d[3], dmax, apex[3], fbb;
float tmp_co[3];
copy_v3_v3(tmp_co, vertexCos[i]);
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
mul_m4_v3(mat, tmp_co);
}
else {
sub_v3_v3(tmp_co, center);
}
}
if (has_radius) {
if (fabsf(tmp_co[0]) > cmd->radius || fabsf(tmp_co[1]) > cmd->radius ||
fabsf(tmp_co[2]) > cmd->radius)
{
continue;
}
}
if (dvert) {
const float weight = invert_vgroup ?
1.0f - BKE_defvert_find_weight(&dvert[i], defgrp_index) :
BKE_defvert_find_weight(&dvert[i], defgrp_index);
if (weight == 0.0f) {
continue;
}
fac = fac_orig * weight;
facm = 1.0f - fac;
}
/* The algorithm used to project the vertices to their
* bounding box (bb) is pretty simple:
* for each vertex v:
* 1) find in which octant v is in;
* 2) find which outer "wall" of that octant is closer to v;
* 3) calculate factor (var fbb) to project v to that wall;
* 4) project. */
/* find in which octant this vertex is in */
octant = 0;
if (tmp_co[0] > 0.0f) {
octant += 1;
}
if (tmp_co[1] > 0.0f) {
octant += 2;
}
if (tmp_co[2] > 0.0f) {
octant += 4;
}
/* apex is the bb's vertex at the chosen octant */
copy_v3_v3(apex, bb[octant]);
/* find which bb plane is closest to this vertex ... */
d[0] = tmp_co[0] / apex[0];
d[1] = tmp_co[1] / apex[1];
d[2] = tmp_co[2] / apex[2];
/* ... (the closest has the higher (closer to 1) d value) */
dmax = d[0];
coord = 0;
if (d[1] > dmax) {
dmax = d[1];
coord = 1;
}
if (d[2] > dmax) {
// dmax = d[2]; /* commented, we don't need it */
coord = 2;
}
/* ok, now we know which coordinate of the vertex to use */
if (fabsf(tmp_co[coord]) < FLT_EPSILON) { /* avoid division by zero */
continue;
}
/* finally, this is the factor we wanted, to project the vertex
* to its bounding box (bb) */
fbb = apex[coord] / tmp_co[coord];
/* calculate the new vertex position */
if (flag & MOD_CAST_X) {
tmp_co[0] = facm * tmp_co[0] + fac * tmp_co[0] * fbb;
}
if (flag & MOD_CAST_Y) {
tmp_co[1] = facm * tmp_co[1] + fac * tmp_co[1] * fbb;
}
if (flag & MOD_CAST_Z) {
tmp_co[2] = facm * tmp_co[2] + fac * tmp_co[2] * fbb;
}
if (ctrl_ob) {
if (flag & MOD_CAST_USE_OB_TRANSFORM) {
mul_m4_v3(imat, tmp_co);
}
else {
add_v3_v3(tmp_co, center);
}
}
copy_v3_v3(vertexCos[i], tmp_co);
}
}
static void deformVerts(ModifierData *md,
const ModifierEvalContext *ctx,
Mesh *mesh,
float (*vertexCos)[3],
int verts_num)
{
CastModifierData *cmd = (CastModifierData *)md;
if (cmd->type == MOD_CAST_TYPE_CUBOID) {
cuboid_do(cmd, ctx, ctx->object, mesh, vertexCos, verts_num);
}
else { /* MOD_CAST_TYPE_SPHERE or MOD_CAST_TYPE_CYLINDER */
sphere_do(cmd, ctx, ctx->object, mesh, vertexCos, verts_num);
}
}
static void panel_draw(const bContext * /*C*/, Panel *panel)
{
uiLayout *row;
uiLayout *layout = panel->layout;
int toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE;
PointerRNA ob_ptr;
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
PointerRNA cast_object_ptr = RNA_pointer_get(ptr, "object");
uiLayoutSetPropSep(layout, true);
uiItemR(layout, ptr, "cast_type", 0, nullptr, ICON_NONE);
row = uiLayoutRowWithHeading(layout, true, IFACE_("Axis"));
uiItemR(row, ptr, "use_x", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "use_y", toggles_flag, nullptr, ICON_NONE);
uiItemR(row, ptr, "use_z", toggles_flag, nullptr, ICON_NONE);
uiItemR(layout, ptr, "factor", 0, nullptr, ICON_NONE);
uiItemR(layout, ptr, "radius", 0, nullptr, ICON_NONE);
uiItemR(layout, ptr, "size", 0, nullptr, ICON_NONE);
uiItemR(layout, ptr, "use_radius_as_size", 0, nullptr, ICON_NONE);
modifier_vgroup_ui(layout, ptr, &ob_ptr, "vertex_group", "invert_vertex_group", nullptr);
uiItemR(layout, ptr, "object", 0, nullptr, ICON_NONE);
if (!RNA_pointer_is_null(&cast_object_ptr)) {
uiItemR(layout, ptr, "use_transform", 0, nullptr, ICON_NONE);
}
modifier_panel_end(layout, ptr);
}
static void panelRegister(ARegionType *region_type)
{
modifier_panel_register(region_type, eModifierType_Cast, panel_draw);
}
ModifierTypeInfo modifierType_Cast = {
/*name*/ N_("Cast"),
/*structName*/ "CastModifierData",
/*structSize*/ sizeof(CastModifierData),
/*srna*/ &RNA_CastModifier,
/*type*/ eModifierTypeType_OnlyDeform,
/*flags*/ eModifierTypeFlag_AcceptsCVs | eModifierTypeFlag_AcceptsVertexCosOnly |
eModifierTypeFlag_SupportsEditmode,
/*icon*/ ICON_MOD_CAST,
/*copyData*/ BKE_modifier_copydata_generic,
/*deformVerts*/ deformVerts,
/*deformMatrices*/ nullptr,
/*deformVertsEM*/ nullptr,
/*deformMatricesEM*/ nullptr,
/*modifyMesh*/ nullptr,
/*modifyGeometrySet*/ nullptr,
/*initData*/ initData,
/*requiredDataMask*/ requiredDataMask,
/*freeData*/ nullptr,
/*isDisabled*/ isDisabled,
/*updateDepsgraph*/ updateDepsgraph,
/*dependsOnTime*/ nullptr,
/*dependsOnNormals*/ nullptr,
/*foreachIDLink*/ foreachIDLink,
/*foreachTexLink*/ nullptr,
/*freeRuntimeData*/ nullptr,
/*panelRegister*/ panelRegister,
/*blendWrite*/ nullptr,
/*blendRead*/ nullptr,
};