Files
test2/source/blender/gpu/vulkan/vk_buffer.cc
Jeroen Bakker f35b0373d6 Vulkan: Separate DataTransfer, Compute, Graphics Commands
Goal is to reduce the number of command buffer flushes by tracking what is
happening in the different command queues. This is an initial step towards
advanced queue-ing strategies.

The new (intermediate) strategy records commands to different command
buffers based on what they do. There is a command buffer for data transfers,
compute pipelines and graphics pipelines.

When a compute command is recorded it ensures that all graphic commands
are finished. When a graphic command is recorded it ensures all compute
commands are finished. When a graphic or compute command is scheduled
all recorded data transfer commands are scheduled as well.

Some improvements are expected as multiple compute and data transfers
commands can now be scheduled at the same time and don't need to unbind
and rebind render passes. Especially when using EEVEE-Next which is
compute centric the performance change is visible for the user.

Pull Request: https://projects.blender.org/blender/blender/pulls/114104
2023-10-30 14:21:14 +01:00

154 lines
4.3 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup gpu
*/
#include "vk_buffer.hh"
#include "vk_backend.hh"
#include "vk_context.hh"
namespace blender::gpu {
VKBuffer::~VKBuffer()
{
if (is_allocated()) {
free();
}
}
bool VKBuffer::is_allocated() const
{
return allocation_ != VK_NULL_HANDLE;
}
static VmaAllocationCreateFlagBits vma_allocation_flags(GPUUsageType usage)
{
switch (usage) {
case GPU_USAGE_STATIC:
case GPU_USAGE_DYNAMIC:
case GPU_USAGE_STREAM:
return static_cast<VmaAllocationCreateFlagBits>(
VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT);
case GPU_USAGE_DEVICE_ONLY:
return static_cast<VmaAllocationCreateFlagBits>(
VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT);
case GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY:
break;
}
BLI_assert_msg(false, "Unimplemented GPUUsageType");
return static_cast<VmaAllocationCreateFlagBits>(VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
VMA_ALLOCATION_CREATE_MAPPED_BIT);
}
bool VKBuffer::create(int64_t size_in_bytes,
GPUUsageType usage,
VkBufferUsageFlagBits buffer_usage)
{
BLI_assert(!is_allocated());
BLI_assert(vk_buffer_ == VK_NULL_HANDLE);
BLI_assert(mapped_memory_ == nullptr);
size_in_bytes_ = size_in_bytes;
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
VkBufferCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
create_info.flags = 0;
/*
* Vulkan doesn't allow empty buffers but some areas (DrawManager Instance data, PyGPU) create
* them.
*/
create_info.size = max_ii(size_in_bytes, 1);
create_info.usage = buffer_usage;
/* We use the same command queue for the compute and graphics pipeline, so it is safe to use
* exclusive resource handling. */
create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
create_info.queueFamilyIndexCount = 1;
create_info.pQueueFamilyIndices = device.queue_family_ptr_get();
VmaAllocationCreateInfo vma_create_info = {};
vma_create_info.flags = vma_allocation_flags(usage);
vma_create_info.priority = 1.0f;
vma_create_info.usage = VMA_MEMORY_USAGE_AUTO;
VkResult result = vmaCreateBuffer(
allocator, &create_info, &vma_create_info, &vk_buffer_, &allocation_, nullptr);
if (result != VK_SUCCESS) {
return false;
}
/* All buffers are mapped to virtual memory. */
return map();
}
void VKBuffer::update(const void *data) const
{
BLI_assert_msg(is_mapped(), "Cannot update a non-mapped buffer.");
memcpy(mapped_memory_, data, size_in_bytes_);
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
vmaFlushAllocation(allocator, allocation_, 0, max_ii(size_in_bytes(), 1));
}
void VKBuffer::clear(VKContext &context, uint32_t clear_value)
{
VKCommandBuffers &command_buffers = context.command_buffers_get();
command_buffers.fill(*this, clear_value);
}
void VKBuffer::read(void *data) const
{
BLI_assert_msg(is_mapped(), "Cannot read a non-mapped buffer.");
memcpy(data, mapped_memory_, size_in_bytes_);
}
void *VKBuffer::mapped_memory_get() const
{
BLI_assert_msg(is_mapped(), "Cannot access a non-mapped buffer.");
return mapped_memory_;
}
bool VKBuffer::is_mapped() const
{
return mapped_memory_ != nullptr;
}
bool VKBuffer::map()
{
BLI_assert(!is_mapped());
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
VkResult result = vmaMapMemory(allocator, allocation_, &mapped_memory_);
return result == VK_SUCCESS;
}
void VKBuffer::unmap()
{
BLI_assert(is_mapped());
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
vmaUnmapMemory(allocator, allocation_);
mapped_memory_ = nullptr;
}
bool VKBuffer::free()
{
if (is_mapped()) {
unmap();
}
VKDevice &device = VKBackend::get().device_get();
device.discard_buffer(vk_buffer_, allocation_);
allocation_ = VK_NULL_HANDLE;
vk_buffer_ = VK_NULL_HANDLE;
return true;
}
} // namespace blender::gpu