Files
test2/intern/cycles/kernel/device/gpu/kernel.h
Sahar A. Kashi 557a245dd5 Cycles: add HIP RT device, for AMD hardware ray tracing on Windows
HIP RT enables AMD hardware ray tracing on RDNA2 and above, and falls back to a
to shader implementation for older graphics cards. It offers an average 25%
sample rendering rate improvement in Cycles benchmarks, on a W6800 card.

The ray tracing feature functions are accessed through HIP RT SDK, available on
GPUOpen. HIP RT traversal functionality is pre-compiled in bitcode format and
shipped with the SDK.

This is not yet enabled as there are issues to be resolved, but landing the
code now makes testing and further changes easier.

Known limitations:
* Not working yet with current public AMD drivers.
* Visual artifact in motion blur.
* One of the buffers allocated for traversal has a static size. Allocating it
  dynamically would reduce memory usage.
* This is for Windows only currently, no Linux support.

Co-authored-by: Brecht Van Lommel <brecht@blender.org>

Ref #105538
2023-04-25 20:19:43 +02:00

1094 lines
40 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
/* Common GPU kernels. */
#include "kernel/device/gpu/parallel_active_index.h"
#include "kernel/device/gpu/parallel_prefix_sum.h"
#include "kernel/device/gpu/parallel_sorted_index.h"
#include "kernel/sample/lcg.h"
/* Include constant tables before entering Metal's context class scope (context_begin.h) */
#include "kernel/tables.h"
#ifdef __KERNEL_METAL__
# include "kernel/device/metal/context_begin.h"
#elif defined(__KERNEL_ONEAPI__)
# include "kernel/device/oneapi/context_begin.h"
#endif
#include "kernel/device/gpu/work_stealing.h"
#include "kernel/integrator/state.h"
#include "kernel/integrator/state_flow.h"
#include "kernel/integrator/state_util.h"
#include "kernel/integrator/init_from_bake.h"
#include "kernel/integrator/init_from_camera.h"
#include "kernel/integrator/intersect_closest.h"
#include "kernel/integrator/intersect_shadow.h"
#include "kernel/integrator/intersect_subsurface.h"
#include "kernel/integrator/intersect_volume_stack.h"
#include "kernel/integrator/shade_background.h"
#include "kernel/integrator/shade_light.h"
#include "kernel/integrator/shade_shadow.h"
#include "kernel/integrator/shade_surface.h"
#include "kernel/integrator/shade_volume.h"
#include "kernel/bake/bake.h"
#include "kernel/film/adaptive_sampling.h"
#ifdef __KERNEL_METAL__
# include "kernel/device/metal/context_end.h"
#elif defined(__KERNEL_ONEAPI__)
# include "kernel/device/oneapi/context_end.h"
#endif
#include "kernel/film/read.h"
#if defined(__HIPRT__)
# include "kernel/device/hiprt/hiprt_kernels.h"
#endif
/* --------------------------------------------------------------------
* Integrator.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_reset, int num_states)
{
const int state = ccl_gpu_global_id_x();
if (state < num_states) {
INTEGRATOR_STATE_WRITE(state, path, queued_kernel) = 0;
INTEGRATOR_STATE_WRITE(state, shadow_path, queued_kernel) = 0;
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_init_from_camera,
ccl_global KernelWorkTile *tiles,
const int num_tiles,
ccl_global float *render_buffer,
const int max_tile_work_size)
{
const int work_index = ccl_gpu_global_id_x();
if (work_index >= max_tile_work_size * num_tiles) {
return;
}
const int tile_index = work_index / max_tile_work_size;
const int tile_work_index = work_index - tile_index * max_tile_work_size;
ccl_global const KernelWorkTile *tile = &tiles[tile_index];
if (tile_work_index >= tile->work_size) {
return;
}
const int state = tile->path_index_offset + tile_work_index;
uint x, y, sample;
ccl_gpu_kernel_call(get_work_pixel(tile, tile_work_index, &x, &y, &sample));
ccl_gpu_kernel_call(
integrator_init_from_camera(nullptr, state, tile, render_buffer, x, y, sample));
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_init_from_bake,
ccl_global KernelWorkTile *tiles,
const int num_tiles,
ccl_global float *render_buffer,
const int max_tile_work_size)
{
const int work_index = ccl_gpu_global_id_x();
if (work_index >= max_tile_work_size * num_tiles) {
return;
}
const int tile_index = work_index / max_tile_work_size;
const int tile_work_index = work_index - tile_index * max_tile_work_size;
ccl_global const KernelWorkTile *tile = &tiles[tile_index];
if (tile_work_index >= tile->work_size) {
return;
}
const int state = tile->path_index_offset + tile_work_index;
uint x, y, sample;
ccl_gpu_kernel_call(get_work_pixel(tile, tile_work_index, &x, &y, &sample));
ccl_gpu_kernel_call(
integrator_init_from_bake(nullptr, state, tile, render_buffer, x, y, sample));
}
ccl_gpu_kernel_postfix
#if !defined(__HIPRT__)
/* Intersection kernels need access to the kernel handler for specialization constants to work
* properly. */
# ifdef __KERNEL_ONEAPI__
# include "kernel/device/oneapi/context_intersect_begin.h"
# endif
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_intersect_closest,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_intersect_closest(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_intersect_shadow,
ccl_global const int *path_index_array,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_intersect_shadow(NULL, state));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_intersect_subsurface,
ccl_global const int *path_index_array,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_intersect_subsurface(NULL, state));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_intersect_volume_stack,
ccl_global const int *path_index_array,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_intersect_volume_stack(NULL, state));
}
}
ccl_gpu_kernel_postfix
# ifdef __KERNEL_ONEAPI__
# include "kernel/device/oneapi/context_intersect_end.h"
# endif
#endif
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_background,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_background(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_light,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_light(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_shadow,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_shadow(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_surface,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_surface(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
#if defined(__KERNEL_METAL_APPLE__) && defined(__METALRT__)
constant int __dummy_constant [[function_constant(Kernel_DummyConstant)]];
#endif
#if !defined(__HIPRT__)
/* Kernels using intersections need access to the kernel handler for specialization constants to
* work properly. */
# ifdef __KERNEL_ONEAPI__
# include "kernel/device/oneapi/context_intersect_begin.h"
# endif
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_surface_raytrace,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
# if defined(__KERNEL_METAL_APPLE__) && defined(__METALRT__)
KernelGlobals kg = NULL;
/* Workaround Ambient Occlusion and Bevel nodes not working with Metal.
* Dummy offset should not affect result, but somehow fixes bug! */
kg += __dummy_constant;
ccl_gpu_kernel_call(integrator_shade_surface_raytrace(kg, state, render_buffer));
# else
ccl_gpu_kernel_call(integrator_shade_surface_raytrace(NULL, state, render_buffer));
# endif
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_surface_mnee,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_surface_mnee(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
# ifdef __KERNEL_ONEAPI__
# include "kernel/device/oneapi/context_intersect_end.h"
# endif
#endif
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shade_volume,
ccl_global const int *path_index_array,
ccl_global float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
ccl_gpu_kernel_call(integrator_shade_volume(NULL, state, render_buffer));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_queued_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int kernel_index)
{
ccl_gpu_kernel_lambda(INTEGRATOR_STATE(state, path, queued_kernel) == kernel_index,
int kernel_index);
ccl_gpu_kernel_lambda_pass.kernel_index = kernel_index;
gpu_parallel_active_index_array(num_states, indices, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_queued_shadow_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int kernel_index)
{
ccl_gpu_kernel_lambda(INTEGRATOR_STATE(state, shadow_path, queued_kernel) == kernel_index,
int kernel_index);
ccl_gpu_kernel_lambda_pass.kernel_index = kernel_index;
gpu_parallel_active_index_array(num_states, indices, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_active_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices)
{
ccl_gpu_kernel_lambda(INTEGRATOR_STATE(state, path, queued_kernel) != 0);
gpu_parallel_active_index_array(num_states, indices, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_terminated_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int indices_offset)
{
ccl_gpu_kernel_lambda(INTEGRATOR_STATE(state, path, queued_kernel) == 0);
gpu_parallel_active_index_array(
num_states, indices + indices_offset, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_terminated_shadow_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int indices_offset)
{
ccl_gpu_kernel_lambda(INTEGRATOR_STATE(state, shadow_path, queued_kernel) == 0);
gpu_parallel_active_index_array(
num_states, indices + indices_offset, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_sorted_paths_array,
int num_states,
int num_states_limit,
ccl_global int *indices,
ccl_global int *num_indices,
ccl_global int *key_counter,
ccl_global int *key_prefix_sum,
int kernel_index)
{
ccl_gpu_kernel_lambda((INTEGRATOR_STATE(state, path, queued_kernel) == kernel_index) ?
INTEGRATOR_STATE(state, path, shader_sort_key) :
GPU_PARALLEL_SORTED_INDEX_INACTIVE_KEY,
int kernel_index);
ccl_gpu_kernel_lambda_pass.kernel_index = kernel_index;
const uint state_index = ccl_gpu_global_id_x();
gpu_parallel_sorted_index_array(state_index,
num_states,
num_states_limit,
indices,
num_indices,
key_counter,
key_prefix_sum,
ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_sort_bucket_pass,
int num_states,
int partition_size,
int num_states_limit,
ccl_global int *indices,
int kernel_index)
{
#if defined(__KERNEL_LOCAL_ATOMIC_SORT__)
int max_shaders = context.launch_params_metal.data.max_shaders;
ccl_global ushort *d_queued_kernel = (ccl_global ushort *)
kernel_integrator_state.path.queued_kernel;
ccl_global uint *d_shader_sort_key = (ccl_global uint *)
kernel_integrator_state.path.shader_sort_key;
ccl_global int *key_offsets = (ccl_global int *)
kernel_integrator_state.sort_partition_key_offsets;
gpu_parallel_sort_bucket_pass(num_states,
partition_size,
max_shaders,
kernel_index,
d_queued_kernel,
d_shader_sort_key,
key_offsets,
(threadgroup int *)threadgroup_array,
metal_local_id,
metal_local_size,
metal_grid_id);
#endif
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_sort_write_pass,
int num_states,
int partition_size,
int num_states_limit,
ccl_global int *indices,
int kernel_index)
{
#if defined(__KERNEL_LOCAL_ATOMIC_SORT__)
int max_shaders = context.launch_params_metal.data.max_shaders;
ccl_global ushort *d_queued_kernel = (ccl_global ushort *)
kernel_integrator_state.path.queued_kernel;
ccl_global uint *d_shader_sort_key = (ccl_global uint *)
kernel_integrator_state.path.shader_sort_key;
ccl_global int *key_offsets = (ccl_global int *)
kernel_integrator_state.sort_partition_key_offsets;
gpu_parallel_sort_write_pass(num_states,
partition_size,
max_shaders,
kernel_index,
num_states_limit,
indices,
d_queued_kernel,
d_shader_sort_key,
key_offsets,
(threadgroup int *)threadgroup_array,
metal_local_id,
metal_local_size,
metal_grid_id);
#endif
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_compact_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int num_active_paths)
{
ccl_gpu_kernel_lambda((state >= num_active_paths) &&
(INTEGRATOR_STATE(state, path, queued_kernel) != 0),
int num_active_paths);
ccl_gpu_kernel_lambda_pass.num_active_paths = num_active_paths;
gpu_parallel_active_index_array(num_states, indices, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_compact_states,
ccl_global const int *active_terminated_states,
const int active_states_offset,
const int terminated_states_offset,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int from_state = active_terminated_states[active_states_offset + global_index];
const int to_state = active_terminated_states[terminated_states_offset + global_index];
ccl_gpu_kernel_call(integrator_state_move(NULL, to_state, from_state));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_compact_shadow_paths_array,
int num_states,
ccl_global int *indices,
ccl_global int *num_indices,
int num_active_paths)
{
ccl_gpu_kernel_lambda((state >= num_active_paths) &&
(INTEGRATOR_STATE(state, shadow_path, queued_kernel) != 0),
int num_active_paths);
ccl_gpu_kernel_lambda_pass.num_active_paths = num_active_paths;
gpu_parallel_active_index_array(num_states, indices, num_indices, ccl_gpu_kernel_lambda_pass);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_compact_shadow_states,
ccl_global const int *active_terminated_states,
const int active_states_offset,
const int terminated_states_offset,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (ccl_gpu_kernel_within_bounds(global_index, work_size)) {
const int from_state = active_terminated_states[active_states_offset + global_index];
const int to_state = active_terminated_states[terminated_states_offset + global_index];
ccl_gpu_kernel_call(integrator_shadow_state_move(NULL, to_state, from_state));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_PREFIX_SUM_DEFAULT_BLOCK_SIZE) ccl_gpu_kernel_signature(
prefix_sum, ccl_global int *counter, ccl_global int *prefix_sum, int num_values)
{
gpu_parallel_prefix_sum(ccl_gpu_global_id_x(), counter, prefix_sum, num_values);
}
ccl_gpu_kernel_postfix
/* --------------------------------------------------------------------
* Adaptive sampling.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(adaptive_sampling_convergence_check,
ccl_global float *render_buffer,
int sx,
int sy,
int sw,
int sh,
float threshold,
bool reset,
int offset,
int stride,
ccl_global uint *num_active_pixels)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / sw;
const int x = work_index - y * sw;
bool converged = true;
if (x < sw && y < sh) {
converged = ccl_gpu_kernel_call(film_adaptive_sampling_convergence_check(
nullptr, render_buffer, sx + x, sy + y, threshold, reset, offset, stride));
}
/* NOTE: All threads specified in the mask must execute the intrinsic. */
const auto num_active_pixels_mask = ccl_gpu_ballot(!converged);
const int lane_id = ccl_gpu_thread_idx_x % ccl_gpu_warp_size;
if (lane_id == 0) {
atomic_fetch_and_add_uint32(num_active_pixels, popcount(num_active_pixels_mask));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(adaptive_sampling_filter_x,
ccl_global float *render_buffer,
int sx,
int sy,
int sw,
int sh,
int offset,
int stride)
{
const int y = ccl_gpu_global_id_x();
if (y < sh) {
ccl_gpu_kernel_call(
film_adaptive_sampling_filter_x(NULL, render_buffer, sy + y, sx, sw, offset, stride));
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(adaptive_sampling_filter_y,
ccl_global float *render_buffer,
int sx,
int sy,
int sw,
int sh,
int offset,
int stride)
{
const int x = ccl_gpu_global_id_x();
if (x < sw) {
ccl_gpu_kernel_call(
film_adaptive_sampling_filter_y(NULL, render_buffer, sx + x, sy, sh, offset, stride));
}
}
ccl_gpu_kernel_postfix
/* --------------------------------------------------------------------
* Cryptomatte.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(cryptomatte_postprocess,
ccl_global float *render_buffer,
int num_pixels)
{
const int pixel_index = ccl_gpu_global_id_x();
if (pixel_index < num_pixels) {
ccl_gpu_kernel_call(film_cryptomatte_post(nullptr, render_buffer, pixel_index));
}
}
ccl_gpu_kernel_postfix
/* --------------------------------------------------------------------
* Film.
*/
ccl_device_inline void kernel_gpu_film_convert_half_write(ccl_global uchar4 *rgba,
const int rgba_offset,
const int rgba_stride,
const int x,
const int y,
const half4 half_pixel)
{
/* Work around HIP issue with half float display, see #92972. */
#ifdef __KERNEL_HIP__
ccl_global half *out = ((ccl_global half *)rgba) + (rgba_offset + y * rgba_stride + x) * 4;
out[0] = half_pixel.x;
out[1] = half_pixel.y;
out[2] = half_pixel.z;
out[3] = half_pixel.w;
#else
ccl_global half4 *out = ((ccl_global half4 *)rgba) + rgba_offset + y * rgba_stride + x;
*out = half_pixel;
#endif
}
#ifdef __KERNEL_METAL__
/* Fetch into a local variable on Metal - there is minimal overhead. Templating the
* film_get_pass_pixel_... functions works on MSL, but not on other compilers. */
# define FILM_GET_PASS_PIXEL_F32(variant, input_channel_count) \
float local_pixel[4]; \
film_get_pass_pixel_##variant(&kfilm_convert, buffer, local_pixel); \
if (input_channel_count >= 1) { \
pixel[0] = local_pixel[0]; \
} \
if (input_channel_count >= 2) { \
pixel[1] = local_pixel[1]; \
} \
if (input_channel_count >= 3) { \
pixel[2] = local_pixel[2]; \
} \
if (input_channel_count >= 4) { \
pixel[3] = local_pixel[3]; \
}
#else
# define FILM_GET_PASS_PIXEL_F32(variant, input_channel_count) \
film_get_pass_pixel_##variant(&kfilm_convert, buffer, pixel);
#endif
#define KERNEL_FILM_CONVERT_VARIANT(variant, input_channel_count) \
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS) \
ccl_gpu_kernel_signature(film_convert_##variant, \
const KernelFilmConvert kfilm_convert, \
ccl_global float *pixels, \
ccl_global float *render_buffer, \
int num_pixels, \
int width, \
int offset, \
int stride, \
int rgba_offset, \
int rgba_stride) \
{ \
const int render_pixel_index = ccl_gpu_global_id_x(); \
if (render_pixel_index >= num_pixels) { \
return; \
} \
\
const int x = render_pixel_index % width; \
const int y = render_pixel_index / width; \
\
const uint64_t buffer_pixel_index = x + y * stride; \
ccl_global const float *buffer = render_buffer + offset + \
buffer_pixel_index * kfilm_convert.pass_stride; \
\
ccl_global float *pixel = pixels + \
(render_pixel_index + rgba_offset) * kfilm_convert.pixel_stride; \
\
FILM_GET_PASS_PIXEL_F32(variant, input_channel_count); \
} \
ccl_gpu_kernel_postfix \
\
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS) \
ccl_gpu_kernel_signature(film_convert_##variant##_half_rgba, \
const KernelFilmConvert kfilm_convert, \
ccl_global uchar4 *rgba, \
ccl_global float *render_buffer, \
int num_pixels, \
int width, \
int offset, \
int stride, \
int rgba_offset, \
int rgba_stride) \
{ \
const int render_pixel_index = ccl_gpu_global_id_x(); \
if (render_pixel_index >= num_pixels) { \
return; \
} \
\
const int x = render_pixel_index % width; \
const int y = render_pixel_index / width; \
\
const uint64_t buffer_pixel_index = x + y * stride; \
ccl_global const float *buffer = render_buffer + offset + \
buffer_pixel_index * kfilm_convert.pass_stride; \
\
float pixel[4]; \
film_get_pass_pixel_##variant(&kfilm_convert, buffer, pixel); \
\
if (input_channel_count == 1) { \
pixel[1] = pixel[2] = pixel[0]; \
} \
if (input_channel_count <= 3) { \
pixel[3] = 1.0f; \
} \
\
film_apply_pass_pixel_overlays_rgba(&kfilm_convert, buffer, pixel); \
\
const half4 half_pixel = float4_to_half4_display( \
make_float4(pixel[0], pixel[1], pixel[2], pixel[3])); \
kernel_gpu_film_convert_half_write(rgba, rgba_offset, rgba_stride, x, y, half_pixel); \
} \
ccl_gpu_kernel_postfix
/* 1 channel inputs */
KERNEL_FILM_CONVERT_VARIANT(depth, 1)
KERNEL_FILM_CONVERT_VARIANT(mist, 1)
KERNEL_FILM_CONVERT_VARIANT(sample_count, 1)
KERNEL_FILM_CONVERT_VARIANT(float, 1)
/* 3 channel inputs */
KERNEL_FILM_CONVERT_VARIANT(light_path, 3)
KERNEL_FILM_CONVERT_VARIANT(float3, 3)
/* 4 channel inputs */
KERNEL_FILM_CONVERT_VARIANT(motion, 4)
KERNEL_FILM_CONVERT_VARIANT(cryptomatte, 4)
KERNEL_FILM_CONVERT_VARIANT(shadow_catcher, 4)
KERNEL_FILM_CONVERT_VARIANT(shadow_catcher_matte_with_shadow, 4)
KERNEL_FILM_CONVERT_VARIANT(combined, 4)
KERNEL_FILM_CONVERT_VARIANT(float4, 4)
#undef KERNEL_FILM_CONVERT_VARIANT
/* --------------------------------------------------------------------
* Shader evaluation.
*/
/* Displacement */
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(shader_eval_displace,
ccl_global KernelShaderEvalInput *input,
ccl_global float *output,
const int offset,
const int work_size)
{
int i = ccl_gpu_global_id_x();
if (i < work_size) {
ccl_gpu_kernel_call(kernel_displace_evaluate(NULL, input, output, offset + i));
}
}
ccl_gpu_kernel_postfix
/* Background */
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(shader_eval_background,
ccl_global KernelShaderEvalInput *input,
ccl_global float *output,
const int offset,
const int work_size)
{
int i = ccl_gpu_global_id_x();
if (i < work_size) {
ccl_gpu_kernel_call(kernel_background_evaluate(NULL, input, output, offset + i));
}
}
ccl_gpu_kernel_postfix
/* Curve Shadow Transparency */
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(shader_eval_curve_shadow_transparency,
ccl_global KernelShaderEvalInput *input,
ccl_global float *output,
const int offset,
const int work_size)
{
int i = ccl_gpu_global_id_x();
if (i < work_size) {
ccl_gpu_kernel_call(
kernel_curve_shadow_transparency_evaluate(NULL, input, output, offset + i));
}
}
ccl_gpu_kernel_postfix
/* --------------------------------------------------------------------
* Denoising.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(filter_color_preprocess,
ccl_global float *render_buffer,
int full_x,
int full_y,
int width,
int height,
int offset,
int stride,
int pass_stride,
int pass_denoised)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t render_pixel_index = offset + (x + full_x) + (y + full_y) * stride;
ccl_global float *buffer = render_buffer + render_pixel_index * pass_stride;
ccl_global float *color_out = buffer + pass_denoised;
color_out[0] = clamp(color_out[0], 0.0f, 10000.0f);
color_out[1] = clamp(color_out[1], 0.0f, 10000.0f);
color_out[2] = clamp(color_out[2], 0.0f, 10000.0f);
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(filter_guiding_preprocess,
ccl_global float *guiding_buffer,
int guiding_pass_stride,
int guiding_pass_albedo,
int guiding_pass_normal,
int guiding_pass_flow,
ccl_global const float *render_buffer,
int render_offset,
int render_stride,
int render_pass_stride,
int render_pass_sample_count,
int render_pass_denoising_albedo,
int render_pass_denoising_normal,
int render_pass_motion,
int full_x,
int full_y,
int width,
int height,
int num_samples)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t guiding_pixel_index = x + y * width;
ccl_global float *guiding_pixel = guiding_buffer + guiding_pixel_index * guiding_pass_stride;
const uint64_t render_pixel_index = render_offset + (x + full_x) + (y + full_y) * render_stride;
ccl_global const float *buffer = render_buffer + render_pixel_index * render_pass_stride;
float pixel_scale;
if (render_pass_sample_count == PASS_UNUSED) {
pixel_scale = 1.0f / num_samples;
}
else {
pixel_scale = 1.0f / __float_as_uint(buffer[render_pass_sample_count]);
}
/* Albedo pass. */
if (guiding_pass_albedo != PASS_UNUSED) {
kernel_assert(render_pass_denoising_albedo != PASS_UNUSED);
ccl_global const float *aledo_in = buffer + render_pass_denoising_albedo;
ccl_global float *albedo_out = guiding_pixel + guiding_pass_albedo;
albedo_out[0] = aledo_in[0] * pixel_scale;
albedo_out[1] = aledo_in[1] * pixel_scale;
albedo_out[2] = aledo_in[2] * pixel_scale;
}
/* Normal pass. */
if (guiding_pass_normal != PASS_UNUSED) {
kernel_assert(render_pass_denoising_normal != PASS_UNUSED);
ccl_global const float *normal_in = buffer + render_pass_denoising_normal;
ccl_global float *normal_out = guiding_pixel + guiding_pass_normal;
normal_out[0] = normal_in[0] * pixel_scale;
normal_out[1] = normal_in[1] * pixel_scale;
normal_out[2] = normal_in[2] * pixel_scale;
}
/* Flow pass. */
if (guiding_pass_flow != PASS_UNUSED) {
kernel_assert(render_pass_motion != PASS_UNUSED);
ccl_global const float *motion_in = buffer + render_pass_motion;
ccl_global float *flow_out = guiding_pixel + guiding_pass_flow;
flow_out[0] = -motion_in[0] * pixel_scale;
flow_out[1] = -motion_in[1] * pixel_scale;
}
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(filter_guiding_set_fake_albedo,
ccl_global float *guiding_buffer,
int guiding_pass_stride,
int guiding_pass_albedo,
int width,
int height)
{
kernel_assert(guiding_pass_albedo != PASS_UNUSED);
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t guiding_pixel_index = x + y * width;
ccl_global float *guiding_pixel = guiding_buffer + guiding_pixel_index * guiding_pass_stride;
ccl_global float *albedo_out = guiding_pixel + guiding_pass_albedo;
albedo_out[0] = 0.5f;
albedo_out[1] = 0.5f;
albedo_out[2] = 0.5f;
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(filter_color_postprocess,
ccl_global float *render_buffer,
int full_x,
int full_y,
int width,
int height,
int offset,
int stride,
int pass_stride,
int num_samples,
int pass_noisy,
int pass_denoised,
int pass_sample_count,
int num_components,
bool use_compositing)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t render_pixel_index = offset + (x + full_x) + (y + full_y) * stride;
ccl_global float *buffer = render_buffer + render_pixel_index * pass_stride;
float pixel_scale;
if (pass_sample_count == PASS_UNUSED) {
pixel_scale = num_samples;
}
else {
pixel_scale = __float_as_uint(buffer[pass_sample_count]);
}
ccl_global float *denoised_pixel = buffer + pass_denoised;
denoised_pixel[0] *= pixel_scale;
denoised_pixel[1] *= pixel_scale;
denoised_pixel[2] *= pixel_scale;
if (num_components == 3) {
/* Pass without alpha channel. */
}
else if (!use_compositing) {
/* Currently compositing passes are either 3-component (derived by dividing light passes)
* or do not have transparency (shadow catcher). Implicitly rely on this logic, as it
* simplifies logic and avoids extra memory allocation. */
ccl_global const float *noisy_pixel = buffer + pass_noisy;
denoised_pixel[3] = noisy_pixel[3];
}
else {
/* Assigning to zero since this is a default alpha value for 3-component passes, and it
* is an opaque pixel for 4 component passes. */
denoised_pixel[3] = 0;
}
}
ccl_gpu_kernel_postfix
/* --------------------------------------------------------------------
* Shadow catcher.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
ccl_gpu_kernel_signature(integrator_shadow_catcher_count_possible_splits,
int num_states,
ccl_global uint *num_possible_splits)
{
const int state = ccl_gpu_global_id_x();
bool can_split = false;
if (state < num_states) {
can_split = ccl_gpu_kernel_call(kernel_shadow_catcher_path_can_split(nullptr, state));
}
/* NOTE: All threads specified in the mask must execute the intrinsic. */
const auto can_split_mask = ccl_gpu_ballot(can_split);
const int lane_id = ccl_gpu_thread_idx_x % ccl_gpu_warp_size;
if (lane_id == 0) {
atomic_fetch_and_add_uint32(num_possible_splits, popcount(can_split_mask));
}
}
ccl_gpu_kernel_postfix