Files
test2/intern/cycles/util/math_intersect.h
Weizhen Huang 082b68fcb9 Cycles: improve equiangular sampling in volume
By restricting the sample range along the ray to the valid segment.

Supports

**Mesh Light**
- [x] restrict the ray segment to the side with MIS

**Area Light**
- [x] when the spread is zero, find the intersection of the ray and the bounding box/cylinder of the rectangle/ellipse area light beam
- [x] when the spread is non-zero, find the intersection of the ray and the minimal enclosing cone of the area light beam
*note the result is also unbiased when we just consider the cone from the sampled point in volume segment. Far away from the light source it's less noisy than the current solution, but near the light source it's much noisier. We have to restrict the sample region on the area light to the part that lits the ray then, I haven't tried yet to see if it would be less noisy.*

**Point Light**
- [x] the complete ray segment should be valid.

**Spot Light**
- [x] intersect the ray with the spot light cone
- [x] support non-zero radius

Pull Request: https://projects.blender.org/blender/blender/pulls/119438
2024-03-25 13:02:02 +01:00

442 lines
15 KiB
C

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifndef __UTIL_MATH_INTERSECT_H__
#define __UTIL_MATH_INTERSECT_H__
CCL_NAMESPACE_BEGIN
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(float3 ray_P,
float3 ray_D,
float ray_tmin,
float ray_tmax,
float3 sphere_P,
float sphere_radius,
ccl_private float3 *isect_P,
ccl_private float *isect_t)
{
const float3 d_vec = sphere_P - ray_P;
const float r_sq = sphere_radius * sphere_radius;
const float d_sq = dot(d_vec, d_vec);
const float d_cos_theta = dot(d_vec, ray_D);
if (d_sq > r_sq && d_cos_theta < 0.0f) {
/* Ray origin outside sphere and points away from sphere. */
return false;
}
const float d_sin_theta_sq = len_squared(d_vec - d_cos_theta * ray_D);
if (d_sin_theta_sq > r_sq) {
/* Closest point on ray outside sphere. */
return false;
}
/* Law of cosines. */
const float t = d_cos_theta - copysignf(sqrtf(r_sq - d_sin_theta_sq), d_sq - r_sq);
if (t > ray_tmin && t < ray_tmax) {
*isect_t = t;
*isect_P = ray_P + ray_D * t;
return true;
}
return false;
}
ccl_device bool ray_aligned_disk_intersect(float3 ray_P,
float3 ray_D,
float ray_tmin,
float ray_tmax,
float3 disk_P,
float disk_radius,
ccl_private float3 *isect_P,
ccl_private float *isect_t)
{
/* Aligned disk normal. */
float disk_t;
const float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
const float div = dot(ray_D, disk_N);
if (UNLIKELY(div == 0.0f)) {
return false;
}
/* Compute t to intersection point. */
const float t = -disk_t / div;
if (!(t > ray_tmin && t < ray_tmax)) {
return false;
}
/* Test if within radius. */
float3 P = ray_P + ray_D * t;
if (len_squared(P - disk_P) > disk_radius * disk_radius) {
return false;
}
*isect_P = P;
*isect_t = t;
return true;
}
ccl_device bool ray_disk_intersect(float3 ray_P,
float3 ray_D,
float ray_tmin,
float ray_tmax,
float3 disk_P,
float3 disk_N,
float disk_radius,
ccl_private float3 *isect_P,
ccl_private float *isect_t)
{
const float3 vp = ray_P - disk_P;
const float dp = dot(vp, disk_N);
const float cos_angle = dot(disk_N, -ray_D);
if (dp * cos_angle > 0.f) // front of light
{
float t = dp / cos_angle;
if (t < 0.f) { /* Ray points away from the light. */
return false;
}
float3 P = ray_P + t * ray_D;
float3 T = P - disk_P;
if (dot(T, T) < sqr(disk_radius) && (t > ray_tmin && t < ray_tmax)) {
*isect_P = ray_P + t * ray_D;
*isect_t = t;
return true;
}
}
return false;
}
/* Custom rcp, cross and dot implementations that match Embree bit for bit. */
ccl_device_forceinline float ray_triangle_rcp(const float x)
{
#ifdef __KERNEL_NEON__
/* Move scalar to vector register and do rcp. */
__m128 a = {0};
a = vsetq_lane_f32(x, a, 0);
float32x4_t reciprocal = vrecpeq_f32(a);
reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
reciprocal = vmulq_f32(vrecpsq_f32(a, reciprocal), reciprocal);
return vgetq_lane_f32(reciprocal, 0);
#elif defined(__KERNEL_SSE__)
const __m128 a = _mm_set_ss(x);
const __m128 r = _mm_rcp_ss(a);
# ifdef __KERNEL_AVX2_
return _mm_cvtss_f32(_mm_mul_ss(r, _mm_fnmadd_ss(r, a, _mm_set_ss(2.0f))));
# else
return _mm_cvtss_f32(_mm_mul_ss(r, _mm_sub_ss(_mm_set_ss(2.0f), _mm_mul_ss(r, a))));
# endif
#else
return 1.0f / x;
#endif
}
ccl_device_inline float ray_triangle_dot(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return madd(make_float4(a.x),
make_float4(b.x),
madd(make_float4(a.y), make_float4(b.y), make_float4(a.z) * make_float4(b.z)))[0];
#else
return a.x * b.x + a.y * b.y + a.z * b.z;
#endif
}
ccl_device_inline float3 ray_triangle_cross(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return make_float3(
msub(make_float4(a.y), make_float4(b.z), make_float4(a.z) * make_float4(b.y))[0],
msub(make_float4(a.z), make_float4(b.x), make_float4(a.x) * make_float4(b.z))[0],
msub(make_float4(a.x), make_float4(b.y), make_float4(a.y) * make_float4(b.x))[0]);
#else
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
#endif
}
ccl_device_forceinline bool ray_triangle_intersect(const float3 ray_P,
const float3 ray_D,
const float ray_tmin,
const float ray_tmax,
const float3 tri_a,
const float3 tri_b,
const float3 tri_c,
ccl_private float *isect_u,
ccl_private float *isect_v,
ccl_private float *isect_t)
{
/* This implementation matches the Plücker coordinates triangle intersection
* in Embree. */
/* Calculate vertices relative to ray origin. */
const float3 v0 = tri_a - ray_P;
const float3 v1 = tri_b - ray_P;
const float3 v2 = tri_c - ray_P;
/* Calculate triangle edges. */
const float3 e0 = v2 - v0;
const float3 e1 = v0 - v1;
const float3 e2 = v1 - v2;
/* Perform edge tests. */
const float U = ray_triangle_dot(ray_triangle_cross(e0, v2 + v0), ray_D);
const float V = ray_triangle_dot(ray_triangle_cross(e1, v0 + v1), ray_D);
const float W = ray_triangle_dot(ray_triangle_cross(e2, v1 + v2), ray_D);
const float UVW = U + V + W;
const float eps = FLT_EPSILON * fabsf(UVW);
const float minUVW = min(U, min(V, W));
const float maxUVW = max(U, max(V, W));
if (!(minUVW >= -eps || maxUVW <= eps)) {
return false;
}
/* Calculate geometry normal and denominator. */
const float3 Ng1 = ray_triangle_cross(e1, e0);
const float3 Ng = Ng1 + Ng1;
const float den = dot(Ng, ray_D);
/* Avoid division by 0. */
if (UNLIKELY(den == 0.0f)) {
return false;
}
/* Perform depth test. */
const float T = dot(v0, Ng);
const float t = T / den;
if (!(t >= ray_tmin && t <= ray_tmax)) {
return false;
}
const float rcp_uvw = (fabsf(UVW) < 1e-18f) ? 0.0f : ray_triangle_rcp(UVW);
*isect_u = min(U * rcp_uvw, 1.0f);
*isect_v = min(V * rcp_uvw, 1.0f);
*isect_t = t;
return true;
}
ccl_device_forceinline bool ray_triangle_intersect_self(const float3 ray_P,
const float3 ray_D,
const float3 verts[3])
{
/* Matches logic in ray_triangle_intersect, self intersection test to validate
* if a ray is going to hit self or might incorrectly hit a neighboring triangle. */
/* Calculate vertices relative to ray origin. */
const float3 v0 = verts[0] - ray_P;
const float3 v1 = verts[1] - ray_P;
const float3 v2 = verts[2] - ray_P;
/* Calculate triangle edges. */
const float3 e0 = v2 - v0;
const float3 e1 = v0 - v1;
const float3 e2 = v1 - v2;
/* Perform edge tests. */
const float U = ray_triangle_dot(ray_triangle_cross(v2 + v0, e0), ray_D);
const float V = ray_triangle_dot(ray_triangle_cross(v0 + v1, e1), ray_D);
const float W = ray_triangle_dot(ray_triangle_cross(v1 + v2, e2), ray_D);
const float eps = FLT_EPSILON * fabsf(U + V + W);
const float minUVW = min(U, min(V, W));
const float maxUVW = max(U, max(V, W));
/* Note the extended epsilon compared to ray_triangle_intersect, to account
* for intersections with neighboring triangles that have an epsilon. */
return (minUVW >= eps || maxUVW <= -eps);
}
/* Tests for an intersection between a ray and a quad defined by
* its midpoint, normal and sides.
* If ellipse is true, hits outside the ellipse that's enclosed by the
* quad are rejected.
*/
ccl_device bool ray_quad_intersect(float3 ray_P,
float3 ray_D,
float ray_tmin,
float ray_tmax,
float3 quad_P,
float3 inv_quad_u,
float3 inv_quad_v,
float3 quad_n,
ccl_private float3 *isect_P,
ccl_private float *isect_t,
ccl_private float *isect_u,
ccl_private float *isect_v,
bool ellipse)
{
/* Perform intersection test. */
float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
if (!(t > ray_tmin && t < ray_tmax)) {
return false;
}
const float3 hit = ray_P + t * ray_D;
const float3 inplane = hit - quad_P;
const float u = dot(inplane, inv_quad_u);
if (u < -0.5f || u > 0.5f) {
return false;
}
const float v = dot(inplane, inv_quad_v);
if (v < -0.5f || v > 0.5f) {
return false;
}
if (ellipse && (u * u + v * v > 0.25f)) {
return false;
}
/* Store the result. */
/* TODO(sergey): Check whether we can avoid some checks here. */
if (isect_P != NULL)
*isect_P = hit;
if (isect_t != NULL)
*isect_t = t;
/* NOTE: Return barycentric coordinates in the same notation as Embree and OptiX. */
if (isect_u != NULL)
*isect_u = v + 0.5f;
if (isect_v != NULL)
*isect_v = -u - v;
return true;
}
/* Find the ray segment that lies in the same side as the normal `N` of the plane.
* `P` is the vector pointing from any point on the plane to the ray origin. */
ccl_device bool ray_plane_intersect(const float3 N,
const float3 P,
const float3 ray_D,
ccl_private float2 *t_range)
{
const float DN = dot(ray_D, N);
/* Distance from P to the plane. */
const float t = -dot(P, N) / DN;
/* Limit the range to the positive side. */
if (DN > 0.0f) {
t_range->x = fmaxf(t_range->x, t);
}
else {
t_range->y = fminf(t_range->y, t);
}
return t_range->x < t_range->y;
}
/* Find the ray segment inside an axis-aligned bounding box. */
ccl_device bool ray_aabb_intersect(const float3 bbox_min,
const float3 bbox_max,
const float3 ray_P,
const float3 ray_D,
ccl_private float2 *t_range)
{
const float3 inv_ray_D = rcp(ray_D);
/* Absolute distances to lower and upper box coordinates; */
const float3 t_lower = (bbox_min - ray_P) * inv_ray_D;
const float3 t_upper = (bbox_max - ray_P) * inv_ray_D;
/* The four t-intervals (for x-/y-/z-slabs, and ray p(t)). */
const float4 tmins = float3_to_float4(min(t_lower, t_upper), t_range->x);
const float4 tmaxes = float3_to_float4(max(t_lower, t_upper), t_range->y);
/* Max of mins and min of maxes. */
const float tmin = reduce_max(tmins);
const float tmax = reduce_min(tmaxes);
*t_range = make_float2(tmin, tmax);
return tmin < tmax;
}
/* Find the segment of a ray defined by P + D * t that lies inside a cylinder defined by
* (x / len_u)^2 + (y / len_v)^2 = 1. */
ccl_device_inline bool ray_infinite_cylinder_intersect(const float3 P,
const float3 D,
const float len_u,
const float len_v,
ccl_private float2 *t_range)
{
/* Convert to a 2D problem. */
const float2 inv_len = 1.0f / make_float2(len_u, len_v);
float2 P_proj = float3_to_float2(P) * inv_len;
const float2 D_proj = float3_to_float2(D) * inv_len;
/* Solve quadratic equation a*t^2 + 2b*t + c = 0. */
const float a = dot(D_proj, D_proj);
float b = dot(P_proj, D_proj);
/* Move ray origin closer to the cylinder to prevent precision issue when the ray is far away. */
const float t_mid = -b / a;
P_proj += D_proj * t_mid;
/* Recompute b from the shifted origin. */
b = dot(P_proj, D_proj);
const float c = dot(P_proj, P_proj) - 1.0f;
float tmin, tmax;
const bool valid = solve_quadratic(a, 2.0f * b, c, tmin, tmax);
return valid && intervals_intersect(t_range, make_float2(tmin, tmax) + t_mid);
}
/* *
* Find the ray segment inside a single-sided cone.
*
* \param axis: a unit-length direction around which the cone has a circular symmetry
* \param P: the vector pointing from the cone apex to the ray origin
* \param D: the direction of the ray, does not need to have unit-length
* \param cos_angle_sq: `sqr(cos(half_aperture_of_the_cone))`
* \param t_range: the lower and upper bounds between which the ray lies inside the cone
* \return whether the intersection exists and is in the provided range
*
* See https://www.geometrictools.com/Documentation/IntersectionLineCone.pdf for illustration
*/
ccl_device_inline bool ray_cone_intersect(const float3 axis,
const float3 P,
float3 D,
const float cos_angle_sq,
ccl_private float2 *t_range)
{
if (cos_angle_sq < 1e-4f) {
/* The cone is nearly a plane. */
return ray_plane_intersect(axis, P, D, t_range);
}
const float inv_len = inversesqrtf(len_squared(D));
D *= inv_len;
const float AD = dot(axis, D);
const float AP = dot(axis, P);
const float a = sqr(AD) - cos_angle_sq;
const float b = 2.0f * (AD * AP - cos_angle_sq * dot(D, P));
const float c = sqr(AP) - cos_angle_sq * dot(P, P);
float tmin = 0.0f, tmax = FLT_MAX;
bool valid = solve_quadratic(a, b, c, tmin, tmax);
/* Check if the intersections are in the same hemisphere as the cone. */
const bool tmin_valid = AP + tmin * AD > 0.0f;
const bool tmax_valid = AP + tmax * AD > 0.0f;
valid &= (tmin_valid || tmax_valid);
if (!tmax_valid) {
tmax = tmin;
tmin = 0.0f;
}
else if (!tmin_valid) {
tmin = tmax;
tmax = FLT_MAX;
}
return valid && intervals_intersect(t_range, make_float2(tmin, tmax) * inv_len);
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_INTERSECT_H__ */