The compositor sometimes produces straight alpha even though premultiplied alpha is expected. Moreover, there is an inconsistency between the CPU and GPU compositors. For the GPU compositor, this is because GPU textures sometimes store straight alpha, while the compositor always expects premultiplied alpha, so we need to premultiply the alpha in those cases. For the CPU compositor, this is because the image operation didn't premultiply the alpha of byte textures, so we need to ensure premultiplied alpha in those cases. There is a data loss issue in case of byte images, since the IMB module unpremultiplies premultiplied images then the compositor premultiplies it again. But this will be handled in a different patch since it require some design and refactoring first. Pull Request: https://projects.blender.org/blender/blender/pulls/114305
739 lines
20 KiB
C++
739 lines
20 KiB
C++
/* SPDX-FileCopyrightText: 2011 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
#include "COM_BufferArea.h"
|
|
#include "COM_BufferRange.h"
|
|
#include "COM_BuffersIterator.h"
|
|
#include "COM_Enums.h"
|
|
|
|
#include "BLI_math_interp.h"
|
|
#include "BLI_math_vector.h"
|
|
#include "BLI_rect.h"
|
|
|
|
struct ColormanageProcessor;
|
|
struct ImBuf;
|
|
|
|
namespace blender::compositor {
|
|
|
|
/**
|
|
* \brief state of a memory buffer
|
|
* \ingroup Memory
|
|
*/
|
|
enum class MemoryBufferState {
|
|
/** \brief memory has been allocated on creator device and CPU machine,
|
|
* but kernel has not been executed */
|
|
Default = 0,
|
|
/** \brief chunk is consolidated from other chunks. special state. */
|
|
Temporary = 6,
|
|
};
|
|
|
|
enum class MemoryBufferExtend {
|
|
Clip,
|
|
Extend,
|
|
Repeat,
|
|
};
|
|
|
|
class MemoryProxy;
|
|
|
|
/**
|
|
* \brief a MemoryBuffer contains access to the data of a chunk
|
|
*/
|
|
class MemoryBuffer {
|
|
public:
|
|
/**
|
|
* Offset between elements.
|
|
*
|
|
* Should always be used for the x dimension when calculating buffer offsets.
|
|
* It will be 0 when is_a_single_elem=true.
|
|
* e.g: buffer_index = y * buffer.row_stride + x * buffer.elem_stride
|
|
*/
|
|
int elem_stride;
|
|
|
|
/**
|
|
* Offset between rows.
|
|
*
|
|
* Should always be used for the y dimension when calculating buffer offsets.
|
|
* It will be 0 when is_a_single_elem=true.
|
|
* e.g: buffer_index = y * buffer.row_stride + x * buffer.elem_stride
|
|
*/
|
|
int row_stride;
|
|
|
|
private:
|
|
/**
|
|
* \brief proxy of the memory (same for all chunks in the same buffer)
|
|
*/
|
|
MemoryProxy *memory_proxy_;
|
|
|
|
/**
|
|
* \brief the type of buffer DataType::Value, DataType::Vector, DataType::Color
|
|
*/
|
|
DataType datatype_;
|
|
|
|
/**
|
|
* \brief region of this buffer inside relative to the MemoryProxy
|
|
*/
|
|
rcti rect_;
|
|
|
|
/**
|
|
* \brief state of the buffer
|
|
*/
|
|
MemoryBufferState state_;
|
|
|
|
/**
|
|
* \brief the actual float buffer/data
|
|
*/
|
|
float *buffer_;
|
|
|
|
/**
|
|
* \brief the number of channels of a single value in the buffer.
|
|
* For value buffers this is 1, vector 3 and color 4
|
|
*/
|
|
uint8_t num_channels_;
|
|
|
|
/**
|
|
* Whether buffer is a single element in memory.
|
|
*/
|
|
bool is_a_single_elem_;
|
|
|
|
/**
|
|
* Whether MemoryBuffer owns buffer data.
|
|
*/
|
|
bool owns_data_;
|
|
|
|
/** Stride to make any x coordinate within buffer positive (non-zero). */
|
|
int to_positive_x_stride_;
|
|
|
|
/** Stride to make any y coordinate within buffer positive (non-zero). */
|
|
int to_positive_y_stride_;
|
|
|
|
public:
|
|
/**
|
|
* \brief construct new temporarily MemoryBuffer for an area
|
|
*/
|
|
MemoryBuffer(MemoryProxy *memory_proxy, const rcti &rect, MemoryBufferState state);
|
|
|
|
/**
|
|
* \brief construct new temporarily MemoryBuffer for an area
|
|
*/
|
|
MemoryBuffer(DataType data_type, const rcti &rect, bool is_a_single_elem = false);
|
|
|
|
/**
|
|
* Construct MemoryBuffer from a float buffer. MemoryBuffer is not responsible for
|
|
* freeing it.
|
|
*/
|
|
MemoryBuffer(
|
|
float *buffer, int num_channels, int width, int height, bool is_a_single_elem = false);
|
|
|
|
/**
|
|
* Construct MemoryBuffer from a float buffer area. MemoryBuffer is not responsible for
|
|
* freeing given buffer.
|
|
*/
|
|
MemoryBuffer(float *buffer, int num_channels, const rcti &rect, bool is_a_single_elem = false);
|
|
|
|
/**
|
|
* Copy constructor
|
|
*/
|
|
MemoryBuffer(const MemoryBuffer &src);
|
|
|
|
/**
|
|
* \brief destructor
|
|
*/
|
|
~MemoryBuffer();
|
|
|
|
/**
|
|
* Whether buffer is a single element in memory independently of its resolution. True for set
|
|
* operations buffers.
|
|
*/
|
|
bool is_a_single_elem() const
|
|
{
|
|
return is_a_single_elem_;
|
|
}
|
|
|
|
float &operator[](int index)
|
|
{
|
|
BLI_assert(is_a_single_elem_ ? index < num_channels_ :
|
|
index < get_coords_offset(get_width(), get_height()));
|
|
return buffer_[index];
|
|
}
|
|
|
|
const float &operator[](int index) const
|
|
{
|
|
BLI_assert(is_a_single_elem_ ? index < num_channels_ :
|
|
index < get_coords_offset(get_width(), get_height()));
|
|
return buffer_[index];
|
|
}
|
|
|
|
/**
|
|
* Get offset needed to jump from buffer start to given coordinates.
|
|
*/
|
|
intptr_t get_coords_offset(int x, int y) const
|
|
{
|
|
return ((intptr_t)y - rect_.ymin) * row_stride + ((intptr_t)x - rect_.xmin) * elem_stride;
|
|
}
|
|
|
|
/**
|
|
* Get buffer element at given coordinates.
|
|
*/
|
|
float *get_elem(int x, int y)
|
|
{
|
|
BLI_assert(has_coords(x, y));
|
|
return buffer_ + get_coords_offset(x, y);
|
|
}
|
|
|
|
/**
|
|
* Get buffer element at given coordinates.
|
|
*/
|
|
const float *get_elem(int x, int y) const
|
|
{
|
|
BLI_assert(has_coords(x, y));
|
|
return buffer_ + get_coords_offset(x, y);
|
|
}
|
|
|
|
void read_elem(int x, int y, float *out) const
|
|
{
|
|
memcpy(out, get_elem(x, y), get_elem_bytes_len());
|
|
}
|
|
|
|
void read_elem_checked(int x, int y, float *out) const
|
|
{
|
|
if (!has_coords(x, y)) {
|
|
clear_elem(out);
|
|
}
|
|
else {
|
|
read_elem(x, y, out);
|
|
}
|
|
}
|
|
|
|
void read_elem_checked(float x, float y, float *out) const
|
|
{
|
|
read_elem_checked(floor_x(x), floor_y(y), out);
|
|
}
|
|
|
|
void read_elem_bilinear(float x, float y, float *out) const
|
|
{
|
|
/* Only clear past +/-1 borders to be able to smooth edges. */
|
|
if (x <= rect_.xmin - 1.0f || x >= rect_.xmax || y <= rect_.ymin - 1.0f || y >= rect_.ymax) {
|
|
clear_elem(out);
|
|
return;
|
|
}
|
|
|
|
if (is_a_single_elem_) {
|
|
if (x >= rect_.xmin && x < rect_.xmax - 1.0f && y >= rect_.ymin && y < rect_.ymax - 1.0f) {
|
|
memcpy(out, buffer_, get_elem_bytes_len());
|
|
return;
|
|
}
|
|
|
|
/* Do sampling at borders to smooth edges. */
|
|
const float last_x = get_width() - 1.0f;
|
|
const float rel_x = get_relative_x(x);
|
|
float single_x = 0.0f;
|
|
if (rel_x < 0.0f) {
|
|
single_x = rel_x;
|
|
}
|
|
else if (rel_x > last_x) {
|
|
single_x = rel_x - last_x;
|
|
}
|
|
|
|
const float last_y = get_height() - 1.0f;
|
|
const float rel_y = get_relative_y(y);
|
|
float single_y = 0.0f;
|
|
if (rel_y < 0.0f) {
|
|
single_y = rel_y;
|
|
}
|
|
else if (rel_y > last_y) {
|
|
single_y = rel_y - last_y;
|
|
}
|
|
|
|
BLI_bilinear_interpolation_fl(buffer_, out, 1, 1, num_channels_, single_x, single_y);
|
|
return;
|
|
}
|
|
|
|
BLI_bilinear_interpolation_fl(buffer_,
|
|
out,
|
|
get_width(),
|
|
get_height(),
|
|
num_channels_,
|
|
get_relative_x(x),
|
|
get_relative_y(y));
|
|
}
|
|
|
|
void read_elem_sampled(float x, float y, PixelSampler sampler, float *out) const
|
|
{
|
|
switch (sampler) {
|
|
case PixelSampler::Nearest:
|
|
read_elem_checked(x, y, out);
|
|
break;
|
|
case PixelSampler::Bilinear:
|
|
case PixelSampler::Bicubic:
|
|
/* No bicubic. Current implementation produces fuzzy results. */
|
|
read_elem_bilinear(x, y, out);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void read_elem_filtered(float x, float y, float dx[2], float dy[2], float *out) const;
|
|
|
|
/**
|
|
* Get channel value at given coordinates.
|
|
*/
|
|
float &get_value(int x, int y, int channel)
|
|
{
|
|
BLI_assert(has_coords(x, y) && channel >= 0 && channel < num_channels_);
|
|
return buffer_[get_coords_offset(x, y) + channel];
|
|
}
|
|
|
|
/**
|
|
* Get channel value at given coordinates.
|
|
*/
|
|
const float &get_value(int x, int y, int channel) const
|
|
{
|
|
BLI_assert(has_coords(x, y) && channel >= 0 && channel < num_channels_);
|
|
return buffer_[get_coords_offset(x, y) + channel];
|
|
}
|
|
|
|
/**
|
|
* Get the buffer row end.
|
|
*/
|
|
const float *get_row_end(int y) const
|
|
{
|
|
BLI_assert(has_y(y));
|
|
return buffer_ + (is_a_single_elem() ? num_channels_ : get_coords_offset(get_width(), y));
|
|
}
|
|
|
|
/**
|
|
* Get the number of elements in memory for a row. For single element buffers it will always
|
|
* be 1.
|
|
*/
|
|
int get_memory_width() const
|
|
{
|
|
return is_a_single_elem() ? 1 : get_width();
|
|
}
|
|
|
|
/**
|
|
* Get number of elements in memory for a column. For single element buffers it will
|
|
* always be 1.
|
|
*/
|
|
int get_memory_height() const
|
|
{
|
|
return is_a_single_elem() ? 1 : get_height();
|
|
}
|
|
|
|
uint8_t get_num_channels() const
|
|
{
|
|
return num_channels_;
|
|
}
|
|
|
|
uint8_t get_elem_bytes_len() const
|
|
{
|
|
return num_channels_ * sizeof(float);
|
|
}
|
|
|
|
/**
|
|
* Get all buffer elements as a range with no offsets.
|
|
*/
|
|
BufferRange<float> as_range()
|
|
{
|
|
return BufferRange<float>(buffer_, 0, buffer_len(), elem_stride);
|
|
}
|
|
|
|
BufferRange<const float> as_range() const
|
|
{
|
|
return BufferRange<const float>(buffer_, 0, buffer_len(), elem_stride);
|
|
}
|
|
|
|
BufferArea<float> get_buffer_area(const rcti &area)
|
|
{
|
|
return BufferArea<float>(buffer_, get_width(), area, elem_stride);
|
|
}
|
|
|
|
BufferArea<const float> get_buffer_area(const rcti &area) const
|
|
{
|
|
return BufferArea<const float>(buffer_, get_width(), area, elem_stride);
|
|
}
|
|
|
|
BuffersIterator<float> iterate_with(Span<MemoryBuffer *> inputs);
|
|
BuffersIterator<float> iterate_with(Span<MemoryBuffer *> inputs, const rcti &area);
|
|
|
|
/**
|
|
* \brief get the data of this MemoryBuffer
|
|
* \note buffer should already be available in memory
|
|
*/
|
|
float *get_buffer()
|
|
{
|
|
return buffer_;
|
|
}
|
|
|
|
float *release_ownership_buffer()
|
|
{
|
|
owns_data_ = false;
|
|
return buffer_;
|
|
}
|
|
|
|
/**
|
|
* Converts a single elem buffer to a full size buffer (allocates memory for all
|
|
* elements in resolution).
|
|
*/
|
|
MemoryBuffer *inflate() const;
|
|
|
|
inline void wrap_pixel(int &x, int &y, MemoryBufferExtend extend_x, MemoryBufferExtend extend_y)
|
|
{
|
|
const int w = get_width();
|
|
const int h = get_height();
|
|
x = x - rect_.xmin;
|
|
y = y - rect_.ymin;
|
|
|
|
switch (extend_x) {
|
|
case MemoryBufferExtend::Clip:
|
|
break;
|
|
case MemoryBufferExtend::Extend:
|
|
if (x < 0) {
|
|
x = 0;
|
|
}
|
|
if (x >= w) {
|
|
x = w - 1;
|
|
}
|
|
break;
|
|
case MemoryBufferExtend::Repeat:
|
|
x %= w;
|
|
if (x < 0) {
|
|
x += w;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (extend_y) {
|
|
case MemoryBufferExtend::Clip:
|
|
break;
|
|
case MemoryBufferExtend::Extend:
|
|
if (y < 0) {
|
|
y = 0;
|
|
}
|
|
if (y >= h) {
|
|
y = h - 1;
|
|
}
|
|
break;
|
|
case MemoryBufferExtend::Repeat:
|
|
y %= h;
|
|
if (y < 0) {
|
|
y += h;
|
|
}
|
|
break;
|
|
}
|
|
|
|
x = x + rect_.xmin;
|
|
y = y + rect_.ymin;
|
|
}
|
|
|
|
inline void wrap_pixel(float &x,
|
|
float &y,
|
|
MemoryBufferExtend extend_x,
|
|
MemoryBufferExtend extend_y) const
|
|
{
|
|
const float w = (float)get_width();
|
|
const float h = (float)get_height();
|
|
x = x - rect_.xmin;
|
|
y = y - rect_.ymin;
|
|
|
|
switch (extend_x) {
|
|
case MemoryBufferExtend::Clip:
|
|
break;
|
|
case MemoryBufferExtend::Extend:
|
|
if (x < 0) {
|
|
x = 0.0f;
|
|
}
|
|
if (x >= w) {
|
|
x = w - 1;
|
|
}
|
|
break;
|
|
case MemoryBufferExtend::Repeat:
|
|
x = fmodf(x, w);
|
|
if (x < 0.0f) {
|
|
x += w;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (extend_y) {
|
|
case MemoryBufferExtend::Clip:
|
|
break;
|
|
case MemoryBufferExtend::Extend:
|
|
if (y < 0) {
|
|
y = 0.0f;
|
|
}
|
|
if (y >= h) {
|
|
y = h - 1;
|
|
}
|
|
break;
|
|
case MemoryBufferExtend::Repeat:
|
|
y = fmodf(y, h);
|
|
if (y < 0.0f) {
|
|
y += h;
|
|
}
|
|
break;
|
|
}
|
|
|
|
x = x + rect_.xmin;
|
|
y = y + rect_.ymin;
|
|
}
|
|
|
|
/* TODO(manzanilla): to be removed with tiled implementation. For applying #MemoryBufferExtend
|
|
* use #wrap_pixel. */
|
|
inline void read(float *result,
|
|
int x,
|
|
int y,
|
|
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
|
|
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip)
|
|
{
|
|
bool clip_x = (extend_x == MemoryBufferExtend::Clip && (x < rect_.xmin || x >= rect_.xmax));
|
|
bool clip_y = (extend_y == MemoryBufferExtend::Clip && (y < rect_.ymin || y >= rect_.ymax));
|
|
if (clip_x || clip_y) {
|
|
/* clip result outside rect is zero */
|
|
memset(result, 0, num_channels_ * sizeof(float));
|
|
}
|
|
else {
|
|
int u = x;
|
|
int v = y;
|
|
this->wrap_pixel(u, v, extend_x, extend_y);
|
|
const int offset = get_coords_offset(u, v);
|
|
float *buffer = &buffer_[offset];
|
|
memcpy(result, buffer, sizeof(float) * num_channels_);
|
|
}
|
|
}
|
|
|
|
/* TODO(manzanilla): to be removed with tiled implementation. */
|
|
inline void read_no_check(float *result,
|
|
int x,
|
|
int y,
|
|
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
|
|
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip)
|
|
{
|
|
int u = x;
|
|
int v = y;
|
|
|
|
this->wrap_pixel(u, v, extend_x, extend_y);
|
|
const int offset = get_coords_offset(u, v);
|
|
|
|
BLI_assert(offset >= 0);
|
|
BLI_assert(offset < this->buffer_len() * num_channels_);
|
|
BLI_assert(!(extend_x == MemoryBufferExtend::Clip && (u < rect_.xmin || u >= rect_.xmax)) &&
|
|
!(extend_y == MemoryBufferExtend::Clip && (v < rect_.ymin || v >= rect_.ymax)));
|
|
float *buffer = &buffer_[offset];
|
|
memcpy(result, buffer, sizeof(float) * num_channels_);
|
|
}
|
|
|
|
void write_pixel(int x, int y, const float color[4]);
|
|
void add_pixel(int x, int y, const float color[4]);
|
|
inline void read_bilinear(float *result,
|
|
float x,
|
|
float y,
|
|
MemoryBufferExtend extend_x = MemoryBufferExtend::Clip,
|
|
MemoryBufferExtend extend_y = MemoryBufferExtend::Clip) const
|
|
{
|
|
float u = x;
|
|
float v = y;
|
|
this->wrap_pixel(u, v, extend_x, extend_y);
|
|
if ((extend_x != MemoryBufferExtend::Repeat && (u < 0.0f || u >= get_width())) ||
|
|
(extend_y != MemoryBufferExtend::Repeat && (v < 0.0f || v >= get_height())))
|
|
{
|
|
copy_vn_fl(result, num_channels_, 0.0f);
|
|
return;
|
|
}
|
|
if (is_a_single_elem_) {
|
|
memcpy(result, buffer_, sizeof(float) * num_channels_);
|
|
}
|
|
else {
|
|
BLI_bilinear_interpolation_wrap_fl(buffer_,
|
|
result,
|
|
get_width(),
|
|
get_height(),
|
|
num_channels_,
|
|
u,
|
|
v,
|
|
extend_x == MemoryBufferExtend::Repeat,
|
|
extend_y == MemoryBufferExtend::Repeat);
|
|
}
|
|
}
|
|
|
|
void readEWA(float *result, const float uv[2], const float derivatives[2][2]);
|
|
|
|
/**
|
|
* \brief is this MemoryBuffer a temporarily buffer (based on an area, not on a chunk)
|
|
*/
|
|
inline bool is_temporarily() const
|
|
{
|
|
return state_ == MemoryBufferState::Temporary;
|
|
}
|
|
|
|
/**
|
|
* \brief Apply a color processor on the given area.
|
|
*/
|
|
void apply_processor(ColormanageProcessor &processor, const rcti area);
|
|
|
|
void copy_from(const MemoryBuffer *src, const rcti &area);
|
|
void copy_from(const MemoryBuffer *src, const rcti &area, int to_x, int to_y);
|
|
void copy_from(const MemoryBuffer *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_channel_offset);
|
|
void copy_from(const MemoryBuffer *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_x,
|
|
int to_y,
|
|
int to_channel_offset);
|
|
void copy_from(const uchar *src, const rcti &area);
|
|
void copy_from(const uchar *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int elem_stride,
|
|
int row_stride,
|
|
int to_channel_offset);
|
|
void copy_from(const uchar *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int elem_stride,
|
|
int row_stride,
|
|
int to_x,
|
|
int to_y,
|
|
int to_channel_offset);
|
|
void copy_from(const struct ImBuf *src,
|
|
const rcti &area,
|
|
bool ensure_premultiplied = false,
|
|
bool ensure_linear_space = false);
|
|
void copy_from(const struct ImBuf *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_channel_offset,
|
|
bool ensure_premultiplied = false,
|
|
bool ensure_linear_space = false);
|
|
void copy_from(const struct ImBuf *src,
|
|
const rcti &src_area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_x,
|
|
int to_y,
|
|
int to_channel_offset,
|
|
bool ensure_premultiplied = false,
|
|
bool ensure_linear_space = false);
|
|
|
|
void fill(const rcti &area, const float *value);
|
|
void fill(const rcti &area, int channel_offset, const float *value, int value_size);
|
|
/**
|
|
* \brief add the content from other_buffer to this MemoryBuffer
|
|
* \param other_buffer: source buffer
|
|
*
|
|
* \note take care when running this on a new buffer since it won't fill in
|
|
* uninitialized values in areas where the buffers don't overlap.
|
|
*/
|
|
void fill_from(const MemoryBuffer &src);
|
|
|
|
/**
|
|
* \brief get the rect of this MemoryBuffer
|
|
*/
|
|
const rcti &get_rect() const
|
|
{
|
|
return rect_;
|
|
}
|
|
|
|
/**
|
|
* \brief get the width of this MemoryBuffer
|
|
*/
|
|
const int get_width() const
|
|
{
|
|
return BLI_rcti_size_x(&rect_);
|
|
}
|
|
|
|
/**
|
|
* \brief get the height of this MemoryBuffer
|
|
*/
|
|
const int get_height() const
|
|
{
|
|
return BLI_rcti_size_y(&rect_);
|
|
}
|
|
|
|
/**
|
|
* \brief clear the buffer. Make all pixels black transparent.
|
|
*/
|
|
void clear();
|
|
|
|
float get_max_value() const;
|
|
float get_max_value(const rcti &rect) const;
|
|
|
|
private:
|
|
void set_strides();
|
|
const int buffer_len() const
|
|
{
|
|
return get_memory_width() * get_memory_height();
|
|
}
|
|
|
|
void clear_elem(float *out) const
|
|
{
|
|
memset(out, 0, num_channels_ * sizeof(float));
|
|
}
|
|
|
|
template<typename T> T get_relative_x(T x) const
|
|
{
|
|
return x - rect_.xmin;
|
|
}
|
|
|
|
template<typename T> T get_relative_y(T y) const
|
|
{
|
|
return y - rect_.ymin;
|
|
}
|
|
|
|
template<typename T> bool has_coords(T x, T y) const
|
|
{
|
|
return has_x(x) && has_y(y);
|
|
}
|
|
|
|
template<typename T> bool has_x(T x) const
|
|
{
|
|
return x >= rect_.xmin && x < rect_.xmax;
|
|
}
|
|
|
|
template<typename T> bool has_y(T y) const
|
|
{
|
|
return y >= rect_.ymin && y < rect_.ymax;
|
|
}
|
|
|
|
/* Fast `floor(..)` functions. The caller should check result is within buffer bounds.
|
|
* It `ceil(..)` in near cases and when given coordinate
|
|
* is negative and less than buffer rect `min - 1`. */
|
|
int floor_x(float x) const
|
|
{
|
|
return (int)(x + to_positive_x_stride_) - to_positive_x_stride_;
|
|
}
|
|
|
|
int floor_y(float y) const
|
|
{
|
|
return (int)(y + to_positive_y_stride_) - to_positive_y_stride_;
|
|
}
|
|
|
|
void copy_single_elem_from(const MemoryBuffer *src,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_channel_offset);
|
|
void copy_rows_from(const MemoryBuffer *src, const rcti &src_area, int to_x, int to_y);
|
|
void copy_elems_from(const MemoryBuffer *src,
|
|
const rcti &area,
|
|
int channel_offset,
|
|
int elem_size,
|
|
int to_x,
|
|
int to_y,
|
|
int to_channel_offset);
|
|
|
|
#ifdef WITH_CXX_GUARDEDALLOC
|
|
MEM_CXX_CLASS_ALLOC_FUNCS("COM:MemoryBuffer")
|
|
#endif
|
|
};
|
|
|
|
} // namespace blender::compositor
|