Files
test2/source/blender/simulation/intern/ConstrainedConjugateGradient.h
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

316 lines
10 KiB
C++

/* SPDX-FileCopyrightText: Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup sim
*/
#include <Eigen/Core>
namespace Eigen {
namespace internal {
/**
* \internal Low-level conjugate gradient algorithm
* \param mat: The matrix A
* \param rhs: The right hand side vector b
* \param x: On input and initial solution, on output the computed solution.
* \param precond: A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters: On input the max number of iteration,
* on output the number of performed iterations.
* \param tol_error: On input the tolerance error,
* on output an estimation of the relative error.
*/
template<typename MatrixType,
typename Rhs,
typename Dest,
typename FilterMatrixType,
typename Preconditioner>
EIGEN_DONT_INLINE void constrained_conjugate_gradient(const MatrixType &mat,
const Rhs &rhs,
Dest &x,
const FilterMatrixType &filter,
const Preconditioner &precond,
int &iters,
typename Dest::RealScalar &tol_error)
{
using std::abs;
using std::sqrt;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType residual = filter * (rhs - mat * x); /* initial residual */
RealScalar rhsNorm2 = (filter * rhs).squaredNorm();
if (rhsNorm2 == 0) {
/* XXX TODO: set constrained result here. */
x.setZero();
iters = 0;
tol_error = 0;
return;
}
RealScalar threshold = tol * tol * rhsNorm2;
RealScalar residualNorm2 = residual.squaredNorm();
if (residualNorm2 < threshold) {
iters = 0;
tol_error = sqrt(residualNorm2 / rhsNorm2);
return;
}
VectorType p(n);
p = filter * precond.solve(residual); /* initial search direction */
VectorType z(n), tmp(n);
RealScalar absNew = numext::real(
residual.dot(p)); /* the square of the absolute value of r scaled by invM */
int i = 0;
while (i < maxIters) {
tmp.noalias() = filter * (mat * p); /* the bottleneck of the algorithm */
Scalar alpha = absNew / p.dot(tmp); /* the amount we travel on dir */
x += alpha * p; /* update solution */
residual -= alpha * tmp; /* update residue */
residualNorm2 = residual.squaredNorm();
if (residualNorm2 < threshold) {
break;
}
z = precond.solve(residual); /* approximately solve for "A z = residual" */
RealScalar absOld = absNew;
absNew = numext::real(residual.dot(z)); /* update the absolute value of r */
/* Calculate the Gram-Schmidt value used to create the new search direction. */
RealScalar beta = absNew / absOld;
p = filter * (z + beta * p); /* update search direction */
i++;
}
tol_error = sqrt(residualNorm2 / rhsNorm2);
iters = i;
}
} // namespace internal
#if 0 /* unused */
template<typename MatrixType> struct MatrixFilter {
MatrixFilter() : m_cmat(NULL) {}
MatrixFilter(const MatrixType &cmat) : m_cmat(&cmat) {}
void setMatrix(const MatrixType &cmat)
{
m_cmat = &cmat;
}
template<typename VectorType> void apply(VectorType v) const
{
v = (*m_cmat) * v;
}
protected:
const MatrixType *m_cmat;
};
#endif
template<typename _MatrixType,
int _UpLo = Lower,
typename _FilterMatrixType = _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar>>
class ConstrainedConjugateGradient;
namespace internal {
template<typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
struct traits<
ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> {
typedef _MatrixType MatrixType;
typedef _FilterMatrixType FilterMatrixType;
typedef _Preconditioner Preconditioner;
};
} // namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \brief A conjugate gradient solver for sparse self-adjoint problems with additional constraints
*
* This class allows to solve for A.x = b sparse linear problems using a conjugate gradient
* algorithm. The sparse matrix A must be self-adjoint. The vectors x and b can be either dense or
* sparse.
*
* \tparam _MatrixType: the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _UpLo: the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Preconditioner: the type of the pre-conditioner. Default is #DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the
* setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the
* maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* ConjugateGradient<SparseMatrix<double> > cg;
* cg.compute(A);
* x = cg.solve(b);
* std::cout << "#iterations: " << cg.iterations() << std::endl;
* std::cout << "estimated error: " << cg.error() << std::endl;
* // update b, and solve again
* x = cg.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method. Here is a step by
* step execution example starting with a random guess and printing the evolution
* of the estimated error:
* * \code
* x = VectorXd::Random(n);
* cg.setMaxIterations(1);
* int i = 0;
* do {
* x = cg.solveWithGuess(b,x);
* std::cout << i << " : " << cg.error() << std::endl;
* ++i;
* } while (cg.info()!=Success && i<100);
* \endcode
* Note that such a step by step execution is slightly slower.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template<typename _MatrixType, int _UpLo, typename _FilterMatrixType, typename _Preconditioner>
class ConstrainedConjugateGradient
: public IterativeSolverBase<
ConstrainedConjugateGradient<_MatrixType, _UpLo, _FilterMatrixType, _Preconditioner>> {
typedef IterativeSolverBase<ConstrainedConjugateGradient> Base;
using Base::m_error;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_iterations;
using Base::mp_matrix;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _FilterMatrixType FilterMatrixType;
typedef _Preconditioner Preconditioner;
enum { UpLo = _UpLo };
public:
/** Default constructor. */
ConstrainedConjugateGradient() : Base() {}
/**
* Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConstrainedConjugateGradient(const MatrixType &A) : Base(A) {}
~ConstrainedConjugateGradient() {}
FilterMatrixType &filter()
{
return m_filter;
}
const FilterMatrixType &filter() const
{
return m_filter;
}
/**
* \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
* \sa compute()
*/
template<typename Rhs, typename Guess>
inline const internal::solve_retval_with_guess<ConstrainedConjugateGradient, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs> &b, const Guess &x0) const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
eigen_assert(
Base::rows() == b.rows() &&
"ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval_with_guess<ConstrainedConjugateGradient, Rhs, Guess>(
*this, b.derived(), x0);
}
/** \internal */
template<typename Rhs, typename Dest> void _solveWithGuess(const Rhs &b, Dest &x) const
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
for (int j = 0; j < b.cols(); j++) {
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x, j);
internal::constrained_conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(),
b.col(j),
xj,
m_filter,
Base::m_preconditioner,
m_iterations,
m_error);
}
m_isInitialized = true;
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
}
/** \internal */
template<typename Rhs, typename Dest> void _solve(const Rhs &b, Dest &x) const
{
x.setOnes();
_solveWithGuess(b, x);
}
protected:
FilterMatrixType m_filter;
};
namespace internal {
template<typename _MatrixType, int _UpLo, typename _Filter, typename _Preconditioner, typename Rhs>
struct solve_retval<ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner>,
Rhs>
: solve_retval_base<ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner>,
Rhs> {
typedef ConstrainedConjugateGradient<_MatrixType, _UpLo, _Filter, _Preconditioner> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec, Rhs)
template<typename Dest> void evalTo(Dest &dst) const
{
dec()._solve(rhs(), dst);
}
};
} // end namespace internal
} // end namespace Eigen