Files
test2/intern/cycles/integrator/denoiser_optix.cpp
Nikita Sirgienko 4651f8a08f Fix: Respect Blender Cycles setting for GPU denoising
Previously, GPU denoisers were ignoring settings about render
configuration and were using any available GPU. With these changes,
GPU denoisers will use the device selected in Blender Cycles
settings.
This allows any GPU denoiser to be used with CPU rendering.

Pull Request: https://projects.blender.org/blender/blender/pulls/118841
2024-06-03 22:41:25 +02:00

434 lines
18 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifdef WITH_OPTIX
# include "integrator/denoiser_optix.h"
# include "integrator/pass_accessor_gpu.h"
# include "device/optix/device_impl.h"
# include "device/optix/queue.h"
# include <optix_denoiser_tiling.h>
CCL_NAMESPACE_BEGIN
# if OPTIX_ABI_VERSION >= 60
using ::optixUtilDenoiserInvokeTiled;
# else
// A minimal copy of functionality `optix_denoiser_tiling.h` which allows to fix integer overflow
// issues without bumping SDK or driver requirement.
//
// The original code is Copyright NVIDIA Corporation, BSD-3-Clause.
static OptixResult optixUtilDenoiserSplitImage(const OptixImage2D &input,
const OptixImage2D &output,
unsigned int overlapWindowSizeInPixels,
unsigned int tileWidth,
unsigned int tileHeight,
std::vector<OptixUtilDenoiserImageTile> &tiles)
{
if (tileWidth == 0 || tileHeight == 0)
return OPTIX_ERROR_INVALID_VALUE;
unsigned int inPixelStride = optixUtilGetPixelStride(input);
unsigned int outPixelStride = optixUtilGetPixelStride(output);
int inp_w = std::min(tileWidth + 2 * overlapWindowSizeInPixels, input.width);
int inp_h = std::min(tileHeight + 2 * overlapWindowSizeInPixels, input.height);
int inp_y = 0, copied_y = 0;
do {
int inputOffsetY = inp_y == 0 ? 0 :
std::max((int)overlapWindowSizeInPixels,
inp_h - ((int)input.height - inp_y));
int copy_y = inp_y == 0 ? std::min(input.height, tileHeight + overlapWindowSizeInPixels) :
std::min(tileHeight, input.height - copied_y);
int inp_x = 0, copied_x = 0;
do {
int inputOffsetX = inp_x == 0 ? 0 :
std::max((int)overlapWindowSizeInPixels,
inp_w - ((int)input.width - inp_x));
int copy_x = inp_x == 0 ? std::min(input.width, tileWidth + overlapWindowSizeInPixels) :
std::min(tileWidth, input.width - copied_x);
OptixUtilDenoiserImageTile tile;
tile.input.data = input.data + (size_t)(inp_y - inputOffsetY) * input.rowStrideInBytes +
+(size_t)(inp_x - inputOffsetX) * inPixelStride;
tile.input.width = inp_w;
tile.input.height = inp_h;
tile.input.rowStrideInBytes = input.rowStrideInBytes;
tile.input.pixelStrideInBytes = input.pixelStrideInBytes;
tile.input.format = input.format;
tile.output.data = output.data + (size_t)inp_y * output.rowStrideInBytes +
(size_t)inp_x * outPixelStride;
tile.output.width = copy_x;
tile.output.height = copy_y;
tile.output.rowStrideInBytes = output.rowStrideInBytes;
tile.output.pixelStrideInBytes = output.pixelStrideInBytes;
tile.output.format = output.format;
tile.inputOffsetX = inputOffsetX;
tile.inputOffsetY = inputOffsetY;
tiles.push_back(tile);
inp_x += inp_x == 0 ? tileWidth + overlapWindowSizeInPixels : tileWidth;
copied_x += copy_x;
} while (inp_x < static_cast<int>(input.width));
inp_y += inp_y == 0 ? tileHeight + overlapWindowSizeInPixels : tileHeight;
copied_y += copy_y;
} while (inp_y < static_cast<int>(input.height));
return OPTIX_SUCCESS;
}
static OptixResult optixUtilDenoiserInvokeTiled(OptixDenoiser denoiser,
CUstream stream,
const OptixDenoiserParams *params,
CUdeviceptr denoiserState,
size_t denoiserStateSizeInBytes,
const OptixDenoiserGuideLayer *guideLayer,
const OptixDenoiserLayer *layers,
unsigned int numLayers,
CUdeviceptr scratch,
size_t scratchSizeInBytes,
unsigned int overlapWindowSizeInPixels,
unsigned int tileWidth,
unsigned int tileHeight)
{
if (!guideLayer || !layers)
return OPTIX_ERROR_INVALID_VALUE;
std::vector<std::vector<OptixUtilDenoiserImageTile>> tiles(numLayers);
std::vector<std::vector<OptixUtilDenoiserImageTile>> prevTiles(numLayers);
for (unsigned int l = 0; l < numLayers; l++) {
if (const OptixResult res = ccl::optixUtilDenoiserSplitImage(layers[l].input,
layers[l].output,
overlapWindowSizeInPixels,
tileWidth,
tileHeight,
tiles[l]))
return res;
if (layers[l].previousOutput.data) {
OptixImage2D dummyOutput = layers[l].previousOutput;
if (const OptixResult res = ccl::optixUtilDenoiserSplitImage(layers[l].previousOutput,
dummyOutput,
overlapWindowSizeInPixels,
tileWidth,
tileHeight,
prevTiles[l]))
return res;
}
}
std::vector<OptixUtilDenoiserImageTile> albedoTiles;
if (guideLayer->albedo.data) {
OptixImage2D dummyOutput = guideLayer->albedo;
if (const OptixResult res = ccl::optixUtilDenoiserSplitImage(guideLayer->albedo,
dummyOutput,
overlapWindowSizeInPixels,
tileWidth,
tileHeight,
albedoTiles))
return res;
}
std::vector<OptixUtilDenoiserImageTile> normalTiles;
if (guideLayer->normal.data) {
OptixImage2D dummyOutput = guideLayer->normal;
if (const OptixResult res = ccl::optixUtilDenoiserSplitImage(guideLayer->normal,
dummyOutput,
overlapWindowSizeInPixels,
tileWidth,
tileHeight,
normalTiles))
return res;
}
std::vector<OptixUtilDenoiserImageTile> flowTiles;
if (guideLayer->flow.data) {
OptixImage2D dummyOutput = guideLayer->flow;
if (const OptixResult res = ccl::optixUtilDenoiserSplitImage(guideLayer->flow,
dummyOutput,
overlapWindowSizeInPixels,
tileWidth,
tileHeight,
flowTiles))
return res;
}
for (size_t t = 0; t < tiles[0].size(); t++) {
std::vector<OptixDenoiserLayer> tlayers;
for (unsigned int l = 0; l < numLayers; l++) {
OptixDenoiserLayer layer = {};
layer.input = (tiles[l])[t].input;
layer.output = (tiles[l])[t].output;
if (layers[l].previousOutput.data)
layer.previousOutput = (prevTiles[l])[t].input;
tlayers.push_back(layer);
}
OptixDenoiserGuideLayer gl = {};
if (guideLayer->albedo.data)
gl.albedo = albedoTiles[t].input;
if (guideLayer->normal.data)
gl.normal = normalTiles[t].input;
if (guideLayer->flow.data)
gl.flow = flowTiles[t].input;
if (const OptixResult res = optixDenoiserInvoke(denoiser,
stream,
params,
denoiserState,
denoiserStateSizeInBytes,
&gl,
&tlayers[0],
numLayers,
(tiles[0])[t].inputOffsetX,
(tiles[0])[t].inputOffsetY,
scratch,
scratchSizeInBytes))
return res;
}
return OPTIX_SUCCESS;
}
# endif
OptiXDenoiser::OptiXDenoiser(Device *denoiser_device, const DenoiseParams &params)
: DenoiserGPU(denoiser_device, params), state_(denoiser_device, "__denoiser_state", true)
{
}
OptiXDenoiser::~OptiXDenoiser()
{
/* It is important that the OptixDenoiser handle is destroyed before the OptixDeviceContext
* handle, which is guaranteed since the local denoising device owning the OptiX device context
* is deleted as part of the Denoiser class destructor call after this. */
if (optix_denoiser_ != nullptr) {
optixDenoiserDestroy(optix_denoiser_);
}
}
uint OptiXDenoiser::get_device_type_mask() const
{
return DEVICE_MASK_OPTIX;
}
bool OptiXDenoiser::denoise_buffer(const DenoiseTask &task)
{
OptiXDevice *const optix_device = static_cast<OptiXDevice *>(denoiser_device_);
const CUDAContextScope scope(optix_device);
return DenoiserGPU::denoise_buffer(task);
}
bool OptiXDenoiser::denoise_create_if_needed(DenoiseContext &context)
{
const bool recreate_denoiser = (optix_denoiser_ == nullptr) ||
(use_pass_albedo_ != context.use_pass_albedo) ||
(use_pass_normal_ != context.use_pass_normal) ||
(use_pass_motion_ != context.use_pass_motion);
if (!recreate_denoiser) {
return true;
}
/* Destroy existing handle before creating new one. */
if (optix_denoiser_) {
optixDenoiserDestroy(optix_denoiser_);
}
/* Create OptiX denoiser handle on demand when it is first used. */
OptixDenoiserOptions denoiser_options = {};
denoiser_options.guideAlbedo = context.use_pass_albedo;
denoiser_options.guideNormal = context.use_pass_normal;
OptixDenoiserModelKind model = OPTIX_DENOISER_MODEL_KIND_HDR;
if (context.use_pass_motion) {
model = OPTIX_DENOISER_MODEL_KIND_TEMPORAL;
}
const OptixResult result = optixDenoiserCreate(
static_cast<OptiXDevice *>(denoiser_device_)->context,
model,
&denoiser_options,
&optix_denoiser_);
if (result != OPTIX_SUCCESS) {
set_error("Failed to create OptiX denoiser");
return false;
}
/* OptiX denoiser handle was created with the requested number of input passes. */
use_pass_albedo_ = context.use_pass_albedo;
use_pass_normal_ = context.use_pass_normal;
use_pass_motion_ = context.use_pass_motion;
/* OptiX denoiser has been created, but it needs configuration. */
is_configured_ = false;
return true;
}
bool OptiXDenoiser::denoise_configure_if_needed(DenoiseContext &context)
{
/* Limit maximum tile size denoiser can be invoked with. */
const int2 tile_size = make_int2(min(context.buffer_params.width, 4096),
min(context.buffer_params.height, 4096));
if (is_configured_ && (configured_size_.x == tile_size.x && configured_size_.y == tile_size.y)) {
return true;
}
optix_device_assert(
denoiser_device_,
optixDenoiserComputeMemoryResources(optix_denoiser_, tile_size.x, tile_size.y, &sizes_));
/* Allocate denoiser state if tile size has changed since last setup. */
state_.device = denoiser_device_;
state_.alloc_to_device(sizes_.stateSizeInBytes + sizes_.withOverlapScratchSizeInBytes);
/* Initialize denoiser state for the current tile size. */
const OptixResult result = optixDenoiserSetup(
optix_denoiser_,
0, /* Work around bug in r495 drivers that causes artifacts when denoiser setup is called
* on a stream that is not the default stream. */
tile_size.x + sizes_.overlapWindowSizeInPixels * 2,
tile_size.y + sizes_.overlapWindowSizeInPixels * 2,
state_.device_pointer,
sizes_.stateSizeInBytes,
state_.device_pointer + sizes_.stateSizeInBytes,
sizes_.withOverlapScratchSizeInBytes);
if (result != OPTIX_SUCCESS) {
set_error("Failed to set up OptiX denoiser");
return false;
}
cuda_device_assert(denoiser_device_, cuCtxSynchronize());
is_configured_ = true;
configured_size_ = tile_size;
return true;
}
bool OptiXDenoiser::denoise_run(const DenoiseContext &context, const DenoisePass &pass)
{
const BufferParams &buffer_params = context.buffer_params;
const int width = buffer_params.width;
const int height = buffer_params.height;
/* Set up input and output layer information. */
OptixImage2D color_layer = {0};
OptixImage2D albedo_layer = {0};
OptixImage2D normal_layer = {0};
OptixImage2D flow_layer = {0};
OptixImage2D output_layer = {0};
OptixImage2D prev_output_layer = {0};
/* Color pass. */
{
const int pass_denoised = pass.denoised_offset;
const int64_t pass_stride_in_bytes = context.buffer_params.pass_stride * sizeof(float);
color_layer.data = context.render_buffers->buffer.device_pointer +
pass_denoised * sizeof(float);
color_layer.width = width;
color_layer.height = height;
color_layer.rowStrideInBytes = pass_stride_in_bytes * context.buffer_params.stride;
color_layer.pixelStrideInBytes = pass_stride_in_bytes;
color_layer.format = OPTIX_PIXEL_FORMAT_FLOAT3;
}
/* Previous output. */
if (context.prev_output.offset != PASS_UNUSED) {
const int64_t pass_stride_in_bytes = context.prev_output.pass_stride * sizeof(float);
prev_output_layer.data = context.prev_output.device_pointer +
context.prev_output.offset * sizeof(float);
prev_output_layer.width = width;
prev_output_layer.height = height;
prev_output_layer.rowStrideInBytes = pass_stride_in_bytes * context.prev_output.stride;
prev_output_layer.pixelStrideInBytes = pass_stride_in_bytes;
prev_output_layer.format = OPTIX_PIXEL_FORMAT_FLOAT3;
}
/* Optional albedo and color passes. */
if (context.num_input_passes > 1) {
const device_ptr d_guiding_buffer = context.guiding_params.device_pointer;
const int64_t pixel_stride_in_bytes = context.guiding_params.pass_stride * sizeof(float);
const int64_t row_stride_in_bytes = context.guiding_params.stride * pixel_stride_in_bytes;
if (context.use_pass_albedo) {
albedo_layer.data = d_guiding_buffer + context.guiding_params.pass_albedo * sizeof(float);
albedo_layer.width = width;
albedo_layer.height = height;
albedo_layer.rowStrideInBytes = row_stride_in_bytes;
albedo_layer.pixelStrideInBytes = pixel_stride_in_bytes;
albedo_layer.format = OPTIX_PIXEL_FORMAT_FLOAT3;
}
if (context.use_pass_normal) {
normal_layer.data = d_guiding_buffer + context.guiding_params.pass_normal * sizeof(float);
normal_layer.width = width;
normal_layer.height = height;
normal_layer.rowStrideInBytes = row_stride_in_bytes;
normal_layer.pixelStrideInBytes = pixel_stride_in_bytes;
normal_layer.format = OPTIX_PIXEL_FORMAT_FLOAT3;
}
if (context.use_pass_motion) {
flow_layer.data = d_guiding_buffer + context.guiding_params.pass_flow * sizeof(float);
flow_layer.width = width;
flow_layer.height = height;
flow_layer.rowStrideInBytes = row_stride_in_bytes;
flow_layer.pixelStrideInBytes = pixel_stride_in_bytes;
flow_layer.format = OPTIX_PIXEL_FORMAT_FLOAT2;
}
}
/* Denoise in-place of the noisy input in the render buffers. */
output_layer = color_layer;
OptixDenoiserGuideLayer guide_layers = {};
guide_layers.albedo = albedo_layer;
guide_layers.normal = normal_layer;
guide_layers.flow = flow_layer;
OptixDenoiserLayer image_layers = {};
image_layers.input = color_layer;
image_layers.previousOutput = prev_output_layer;
image_layers.output = output_layer;
/* Finally run denoising. */
OptixDenoiserParams params = {}; /* All parameters are disabled/zero. */
optix_device_assert(denoiser_device_,
ccl::optixUtilDenoiserInvokeTiled(
optix_denoiser_,
static_cast<OptiXDeviceQueue *>(denoiser_queue_.get())->stream(),
&params,
state_.device_pointer,
sizes_.stateSizeInBytes,
&guide_layers,
&image_layers,
1,
state_.device_pointer + sizes_.stateSizeInBytes,
sizes_.withOverlapScratchSizeInBytes,
sizes_.overlapWindowSizeInPixels,
configured_size_.x,
configured_size_.y));
return true;
}
CCL_NAMESPACE_END
#endif