Files
test2/extern/solid/src/complex/DT_Complex.cpp
2007-08-28 10:07:08 +00:00

328 lines
13 KiB
C++

/*
* SOLID - Software Library for Interference Detection
*
* Copyright (C) 2001-2003 Dtecta. All rights reserved.
*
* This library may be distributed under the terms of the Q Public License
* (QPL) as defined by Trolltech AS of Norway and appearing in the file
* LICENSE.QPL included in the packaging of this file.
*
* This library may be distributed and/or modified under the terms of the
* GNU General Public License (GPL) version 2 as published by the Free Software
* Foundation and appearing in the file LICENSE.GPL included in the
* packaging of this file.
*
* This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Commercial use or any other use of this library not covered by either
* the QPL or the GPL requires an additional license from Dtecta.
* Please contact info@dtecta.com for enquiries about the terms of commercial
* use of this library.
*/
#include <new>
#include <fstream>
#include "DT_Complex.h"
#include "DT_Minkowski.h"
#include "DT_Sphere.h"
#include "DT_Transform.h"
DT_Complex::DT_Complex(const DT_VertexBase *base)
: m_base(base),
m_count(0),
m_leaves(0),
m_nodes(0)
{
assert(base);
base->addComplex(this);
}
DT_Complex::~DT_Complex()
{
DT_Index i;
for (i = 0; i != m_count; ++i)
{
delete m_leaves[i];
}
delete [] m_leaves;
delete [] m_nodes;
m_base->removeComplex(this);
if (m_base->isOwner())
{
delete m_base;
}
}
void DT_Complex::finish(DT_Count n, const DT_Convex *p[])
{
m_count = n;
assert(n >= 1);
m_leaves = new const DT_Convex *[n];
assert(m_leaves);
DT_CBox *boxes = new DT_CBox[n];
DT_Index *indices = new DT_Index[n];
assert(boxes);
DT_Index i;
for (i = 0; i != n; ++i)
{
m_leaves[i] = p[i];
boxes[i].set(p[i]->bbox());
indices[i] = i;
}
m_cbox = boxes[0];
for (i = 1; i != n; ++i)
{
m_cbox = m_cbox.hull(boxes[i]);
}
if (n == 1)
{
m_nodes = 0;
m_type = DT_BBoxTree::LEAF;
}
else
{
m_nodes = new DT_BBoxNode[n - 1];
assert(m_nodes);
int num_nodes = 0;
new(&m_nodes[num_nodes++]) DT_BBoxNode(0, n, num_nodes, m_nodes, boxes, indices, m_cbox);
assert(num_nodes == n - 1);
m_type = DT_BBoxTree::INTERNAL;
}
delete [] boxes;
}
MT_BBox DT_Complex::bbox(const MT_Transform& t, MT_Scalar margin) const
{
MT_Matrix3x3 abs_b = t.getBasis().absolute();
MT_Point3 center = t(m_cbox.getCenter());
MT_Vector3 extent(margin + abs_b[0].dot(m_cbox.getExtent()),
margin + abs_b[1].dot(m_cbox.getExtent()),
margin + abs_b[2].dot(m_cbox.getExtent()));
return MT_BBox(center - extent, center + extent);
}
inline DT_CBox computeCBox(const DT_Convex *p)
{
return DT_CBox(p->bbox());
}
inline DT_CBox computeCBox(MT_Scalar margin, const MT_Transform& xform)
{
const MT_Matrix3x3& basis = xform.getBasis();
return DT_CBox(MT_Point3(MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(0.0)),
MT_Vector3(basis[0].length() * margin,
basis[1].length() * margin,
basis[2].length() * margin));
}
void DT_Complex::refit()
{
DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);
DT_Index i = m_count - 1;
while (i--)
{
::refit(m_nodes[i], rd);
}
m_cbox = m_type == DT_BBoxTree::LEAF ? computeCBox(m_leaves[0]) : m_nodes[0].hull();
}
inline bool ray_cast(const DT_RootData<const DT_Convex *>& rd, DT_Index index, const MT_Point3& source, const MT_Point3& target,
MT_Scalar& lambda, MT_Vector3& normal)
{
return rd.m_leaves[index]->ray_cast(source, target, lambda, normal);
}
bool DT_Complex::ray_cast(const MT_Point3& source, const MT_Point3& target,
MT_Scalar& lambda, MT_Vector3& normal) const
{
DT_RootData<const DT_Convex *> rd(m_nodes, m_leaves);
return ::ray_cast(DT_BBoxTree(m_cbox, 0, m_type), rd, source, target, lambda, normal);
}
inline bool intersect(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
return ::intersect((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
pack.m_b, v);
}
bool intersect(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Convex& b, MT_Vector3& v)
{
DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v);
}
inline bool intersect(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
MT_Scalar b_margin = pack.m_b.m_plus;
return ::intersect((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
(b_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
static_cast<const DT_Convex&>(tb)),
v);
}
bool intersect(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin, MT_Vector3& v)
{
DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
return intersect(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v);
}
inline bool common_point(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
return ::common_point((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
pack.m_b, v, pa, pb);
}
bool common_point(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Convex& b, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pb, pa);
}
inline bool common_point(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
MT_Scalar b_margin = pack.m_b.m_plus;
return ::common_point((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
(b_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
static_cast<const DT_Convex&>(tb)),
v, pa, pb);
}
bool common_point(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
return common_point(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v, pa, pb);
}
inline bool penetration_depth(const DT_HybridPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, pack.m_b, pack.m_margin, v, pa, pb);
}
bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Convex& b, MT_Scalar b_margin, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_HybridPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b, b_margin);
MT_Scalar max_pen_len = MT_Scalar(0.0);
return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, v, pa, pb, max_pen_len);
}
inline bool penetration_depth(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
return ::hybrid_penetration_depth(ta, pack.m_a.m_plus, tb, pack.m_a.m_plus, v, pa, pb);
}
bool penetration_depth(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
MT_Vector3& v, MT_Point3& pa, MT_Point3& pb)
{
DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
MT_Scalar max_pen_len = MT_Scalar(0.0);
return penetration_depth(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, v, pa, pb, max_pen_len);
}
inline MT_Scalar closest_points(const DT_Pack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
return ::closest_points((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
pack.m_b, max_dist2, pa, pb);
}
MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Convex& b, MT_Point3& pa, MT_Point3& pb)
{
DT_Pack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin), b);
return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type), pack, MT_INFINITY, pa, pb);
}
inline MT_Scalar closest_points(const DT_DuoPack<const DT_Convex *, MT_Scalar>& pack, DT_Index a_index, DT_Index b_index, MT_Scalar max_dist2, MT_Point3& pa, MT_Point3& pb)
{
DT_Transform ta = DT_Transform(pack.m_a.m_xform, *pack.m_a.m_leaves[a_index]);
MT_Scalar a_margin = pack.m_a.m_plus;
DT_Transform tb = DT_Transform(pack.m_b.m_xform, *pack.m_b.m_leaves[b_index]);
MT_Scalar b_margin = pack.m_b.m_plus;
return ::closest_points((a_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(ta, DT_Sphere(a_margin))) :
static_cast<const DT_Convex&>(ta)),
(b_margin > MT_Scalar(0.0) ?
static_cast<const DT_Convex&>(DT_Minkowski(tb, DT_Sphere(b_margin))) :
static_cast<const DT_Convex&>(tb)), max_dist2, pa, pb);
}
MT_Scalar closest_points(const DT_Complex& a, const MT_Transform& a2w, MT_Scalar a_margin,
const DT_Complex& b, const MT_Transform& b2w, MT_Scalar b_margin,
MT_Point3& pa, MT_Point3& pb)
{
DT_DuoPack<const DT_Convex *, MT_Scalar> pack(DT_ObjectData<const DT_Convex *, MT_Scalar>(a.m_nodes, a.m_leaves, a2w, a_margin),
DT_ObjectData<const DT_Convex *, MT_Scalar>(b.m_nodes, b.m_leaves, b2w, b_margin));
return closest_points(DT_BBoxTree(a.m_cbox + pack.m_a.m_added, 0, a.m_type),
DT_BBoxTree(b.m_cbox + pack.m_b.m_added, 0, b.m_type), pack, MT_INFINITY, pa, pb);
}