Files
test2/source/blender/blenkernel/intern/node_tree_update.cc
Hans Goudey 4f372d64d4 Geometry Nodes: Initial very basic list support
This includes a new list structure type and socket shape, a node
to create lists, a node to retrieve values from lists, and a node to
retrieve the length of lists. It also implements multi-function support
so that function nodes work on lists.

There are three nodes included in this PR.
- **List** Creates a list of elements with a given size. The values
  are computed with a field that can use the index as an input.
- **Get List Item** A field node that retrieves an element from a
  a list at a given index. The index input is dynamic, so if the input
  is a list, the output will be a list too.
- **List Length** Just gives the length of a list.

When a function node is used with multiple list inputs, the shorter
lists are repeated to extend it to the length of the longest.

The list nodes and structure type are hidden behind an experimental
feature until we can be sure they're useful for an actual use case.

Pull Request: https://projects.blender.org/blender/blender/pulls/140679
2025-07-24 16:16:40 +02:00

2081 lines
70 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include <fmt/format.h>
#include "BLI_listbase.h"
#include "BLI_map.hh"
#include "BLI_multi_value_map.hh"
#include "BLI_noise.hh"
#include "BLI_rand.hh"
#include "BLI_set.hh"
#include "BLI_stack.hh"
#include "BLI_string.h"
#include "BLI_string_utf8_symbols.h"
#include "BLI_vector_set.hh"
#include "DNA_anim_types.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "BKE_anim_data.hh"
#include "BKE_image.hh"
#include "BKE_lib_id.hh"
#include "BKE_main.hh"
#include "BKE_node.hh"
#include "BKE_node_enum.hh"
#include "BKE_node_legacy_types.hh"
#include "BKE_node_runtime.hh"
#include "BKE_node_tree_reference_lifetimes.hh"
#include "BKE_node_tree_update.hh"
#include "MOD_nodes.hh"
#include "NOD_geo_closure.hh"
#include "NOD_geometry_nodes_dependencies.hh"
#include "NOD_geometry_nodes_gizmos.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
#include "NOD_node_declaration.hh"
#include "NOD_socket.hh"
#include "NOD_socket_declarations.hh"
#include "NOD_texture.h"
#include "DEG_depsgraph_build.hh"
#include "BLT_translation.hh"
using namespace blender::nodes;
/**
* These flags are used by the `changed_flag` field in #bNodeTree, #bNode and #bNodeSocket.
* This enum is not part of the public API. It should be used through the `BKE_ntree_update_tag_*`
* API.
*/
enum eNodeTreeChangedFlag {
NTREE_CHANGED_NOTHING = 0,
NTREE_CHANGED_ANY = (1 << 1),
NTREE_CHANGED_NODE_PROPERTY = (1 << 2),
NTREE_CHANGED_NODE_OUTPUT = (1 << 3),
NTREE_CHANGED_LINK = (1 << 4),
NTREE_CHANGED_REMOVED_NODE = (1 << 5),
NTREE_CHANGED_REMOVED_SOCKET = (1 << 6),
NTREE_CHANGED_SOCKET_PROPERTY = (1 << 7),
NTREE_CHANGED_INTERNAL_LINK = (1 << 8),
NTREE_CHANGED_PARENT = (1 << 9),
NTREE_CHANGED_ALL = -1,
};
static void add_tree_tag(bNodeTree *ntree, const eNodeTreeChangedFlag flag)
{
ntree->runtime->changed_flag |= flag;
ntree->runtime->topology_cache_mutex.tag_dirty();
ntree->runtime->tree_zones_cache_mutex.tag_dirty();
ntree->runtime->inferenced_input_socket_usage_mutex.tag_dirty();
}
static void add_node_tag(bNodeTree *ntree, bNode *node, const eNodeTreeChangedFlag flag)
{
add_tree_tag(ntree, flag);
node->runtime->changed_flag |= flag;
}
static void add_socket_tag(bNodeTree *ntree, bNodeSocket *socket, const eNodeTreeChangedFlag flag)
{
add_tree_tag(ntree, flag);
socket->runtime->changed_flag |= flag;
}
namespace blender::bke {
/**
* Common datatype priorities, works for compositor, shader and texture nodes alike
* defines priority of datatype connection based on output type (to):
* `< 0`: never connect these types.
* `>= 0`: priority of connection (higher values chosen first).
*/
static int get_internal_link_type_priority(const bNodeSocketType *from, const bNodeSocketType *to)
{
switch (to->type) {
case SOCK_RGBA:
switch (from->type) {
case SOCK_RGBA:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_INT:
return 2;
case SOCK_BOOLEAN:
return 1;
default:
return -1;
}
case SOCK_VECTOR:
switch (from->type) {
case SOCK_VECTOR:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_INT:
return 2;
case SOCK_BOOLEAN:
return 1;
default:
return -1;
}
case SOCK_FLOAT:
switch (from->type) {
case SOCK_FLOAT:
return 5;
case SOCK_INT:
return 4;
case SOCK_BOOLEAN:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
default:
return -1;
}
case SOCK_INT:
switch (from->type) {
case SOCK_INT:
return 5;
case SOCK_FLOAT:
return 4;
case SOCK_BOOLEAN:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
default:
return -1;
}
case SOCK_BOOLEAN:
switch (from->type) {
case SOCK_BOOLEAN:
return 5;
case SOCK_INT:
return 4;
case SOCK_FLOAT:
return 3;
case SOCK_RGBA:
return 2;
case SOCK_VECTOR:
return 1;
default:
return -1;
}
case SOCK_ROTATION:
switch (from->type) {
case SOCK_ROTATION:
return 3;
case SOCK_VECTOR:
return 2;
case SOCK_FLOAT:
return 1;
default:
return -1;
}
default:
break;
}
/* The rest of the socket types only allow an internal link if both the input and output socket
* have the same type. If the sockets are custom, we check the idname instead. */
if (to->type == from->type && (to->type != SOCK_CUSTOM || to->idname == from->idname)) {
return 1;
}
return -1;
}
/* Check both the tree's own tags and the interface tags. */
static bool is_tree_changed(const bNodeTree &tree)
{
return tree.runtime->changed_flag != NTREE_CHANGED_NOTHING || tree.tree_interface.is_changed();
}
using TreeNodePair = std::pair<bNodeTree *, bNode *>;
using ObjectModifierPair = std::pair<Object *, ModifierData *>;
using NodeSocketPair = std::pair<bNode *, bNodeSocket *>;
/**
* Cache common data about node trees from the #Main database that is expensive to retrieve on
* demand every time.
*/
struct NodeTreeRelations {
private:
Main *bmain_;
std::optional<Vector<bNodeTree *>> all_trees_;
std::optional<MultiValueMap<bNodeTree *, TreeNodePair>> group_node_users_;
std::optional<MultiValueMap<bNodeTree *, ObjectModifierPair>> modifiers_users_;
public:
NodeTreeRelations(Main *bmain) : bmain_(bmain) {}
void ensure_all_trees()
{
if (all_trees_.has_value()) {
return;
}
all_trees_.emplace();
if (bmain_ == nullptr) {
return;
}
FOREACH_NODETREE_BEGIN (bmain_, ntree, id) {
all_trees_->append(ntree);
}
FOREACH_NODETREE_END;
}
void ensure_group_node_users()
{
if (group_node_users_.has_value()) {
return;
}
group_node_users_.emplace();
if (bmain_ == nullptr) {
return;
}
this->ensure_all_trees();
for (bNodeTree *ntree : *all_trees_) {
for (bNode *node : ntree->all_nodes()) {
if (node->id == nullptr) {
continue;
}
ID *id = node->id;
if (GS(id->name) == ID_NT) {
bNodeTree *group = (bNodeTree *)id;
group_node_users_->add(group, {ntree, node});
}
}
}
}
void ensure_modifier_users()
{
if (modifiers_users_.has_value()) {
return;
}
modifiers_users_.emplace();
if (bmain_ == nullptr) {
return;
}
LISTBASE_FOREACH (Object *, object, &bmain_->objects) {
LISTBASE_FOREACH (ModifierData *, md, &object->modifiers) {
if (md->type == eModifierType_Nodes) {
NodesModifierData *nmd = (NodesModifierData *)md;
if (nmd->node_group != nullptr) {
modifiers_users_->add(nmd->node_group, {object, md});
}
}
}
}
}
Span<ObjectModifierPair> get_modifier_users(bNodeTree *ntree)
{
BLI_assert(modifiers_users_.has_value());
return modifiers_users_->lookup(ntree);
}
Span<TreeNodePair> get_group_node_users(bNodeTree *ntree)
{
BLI_assert(group_node_users_.has_value());
return group_node_users_->lookup(ntree);
}
};
struct TreeUpdateResult {
bool interface_changed = false;
bool output_changed = false;
};
class NodeTreeMainUpdater {
private:
Main *bmain_;
const NodeTreeUpdateExtraParams &params_;
Map<bNodeTree *, TreeUpdateResult> update_result_by_tree_;
NodeTreeRelations relations_;
bool needs_relations_update_ = false;
public:
NodeTreeMainUpdater(Main *bmain, const NodeTreeUpdateExtraParams &params)
: bmain_(bmain), params_(params), relations_(bmain)
{
}
void update()
{
Vector<bNodeTree *> changed_ntrees;
FOREACH_NODETREE_BEGIN (bmain_, ntree, id) {
if (is_tree_changed(*ntree)) {
changed_ntrees.append(ntree);
}
}
FOREACH_NODETREE_END;
this->update_rooted(changed_ntrees);
}
void update_rooted(Span<bNodeTree *> root_ntrees)
{
if (root_ntrees.is_empty()) {
return;
}
bool is_single_tree_update = false;
if (root_ntrees.size() == 1) {
bNodeTree *ntree = root_ntrees[0];
if (!is_tree_changed(*ntree)) {
return;
}
const TreeUpdateResult result = this->update_tree(*ntree);
update_result_by_tree_.add_new(ntree, result);
if (!result.interface_changed && !result.output_changed) {
is_single_tree_update = true;
}
}
if (!is_single_tree_update) {
Vector<bNodeTree *> ntrees_in_order = this->get_tree_update_order(root_ntrees);
for (bNodeTree *ntree : ntrees_in_order) {
if (!is_tree_changed(*ntree)) {
continue;
}
if (!update_result_by_tree_.contains(ntree)) {
const TreeUpdateResult result = this->update_tree(*ntree);
update_result_by_tree_.add_new(ntree, result);
}
const TreeUpdateResult result = update_result_by_tree_.lookup(ntree);
Span<TreeNodePair> dependent_trees = relations_.get_group_node_users(ntree);
if (result.output_changed) {
for (const TreeNodePair &pair : dependent_trees) {
add_node_tag(pair.first, pair.second, NTREE_CHANGED_NODE_OUTPUT);
}
}
if (result.interface_changed) {
for (const TreeNodePair &pair : dependent_trees) {
add_node_tag(pair.first, pair.second, NTREE_CHANGED_NODE_PROPERTY);
}
}
}
}
for (const auto item : update_result_by_tree_.items()) {
bNodeTree *ntree = item.key;
const TreeUpdateResult &result = item.value;
this->reset_changed_flags(*ntree);
if (result.interface_changed) {
if (ntree->type == NTREE_GEOMETRY) {
relations_.ensure_modifier_users();
for (const ObjectModifierPair &pair : relations_.get_modifier_users(ntree)) {
Object *object = pair.first;
ModifierData *md = pair.second;
if (md->type == eModifierType_Nodes) {
MOD_nodes_update_interface(object, (NodesModifierData *)md);
}
}
}
}
if (result.output_changed) {
ntree->runtime->geometry_nodes_lazy_function_graph_info.reset();
}
ID *owner_id = BKE_id_owner_get(&ntree->id);
ID &owner_or_self_id = owner_id ? *owner_id : ntree->id;
if (params_.tree_changed_fn) {
params_.tree_changed_fn(*ntree, owner_or_self_id);
}
if (params_.tree_output_changed_fn && result.output_changed) {
params_.tree_output_changed_fn(*ntree, owner_or_self_id);
}
}
if (needs_relations_update_) {
if (bmain_) {
DEG_relations_tag_update(bmain_);
}
}
}
private:
enum class ToposortMark {
None,
Temporary,
Permanent,
};
using ToposortMarkMap = Map<bNodeTree *, ToposortMark>;
/**
* Finds all trees that depend on the given trees (through node groups). Then those trees are
* ordered such that all trees used by one tree come before it.
*/
Vector<bNodeTree *> get_tree_update_order(Span<bNodeTree *> root_ntrees)
{
relations_.ensure_group_node_users();
Set<bNodeTree *> trees_to_update = get_trees_to_update(root_ntrees);
Vector<bNodeTree *> sorted_ntrees;
ToposortMarkMap marks;
for (bNodeTree *ntree : trees_to_update) {
marks.add_new(ntree, ToposortMark::None);
}
for (bNodeTree *ntree : trees_to_update) {
if (marks.lookup(ntree) == ToposortMark::None) {
const bool cycle_detected = !this->get_tree_update_order__visit_recursive(
ntree, marks, sorted_ntrees);
/* This should be prevented by higher level operators. */
BLI_assert(!cycle_detected);
UNUSED_VARS_NDEBUG(cycle_detected);
}
}
std::reverse(sorted_ntrees.begin(), sorted_ntrees.end());
return sorted_ntrees;
}
bool get_tree_update_order__visit_recursive(bNodeTree *ntree,
ToposortMarkMap &marks,
Vector<bNodeTree *> &sorted_ntrees)
{
ToposortMark &mark = marks.lookup(ntree);
if (mark == ToposortMark::Permanent) {
return true;
}
if (mark == ToposortMark::Temporary) {
/* There is a dependency cycle. */
return false;
}
mark = ToposortMark::Temporary;
for (const TreeNodePair &pair : relations_.get_group_node_users(ntree)) {
this->get_tree_update_order__visit_recursive(pair.first, marks, sorted_ntrees);
}
sorted_ntrees.append(ntree);
mark = ToposortMark::Permanent;
return true;
}
Set<bNodeTree *> get_trees_to_update(Span<bNodeTree *> root_ntrees)
{
relations_.ensure_group_node_users();
Set<bNodeTree *> reachable_trees;
VectorSet<bNodeTree *> trees_to_check = root_ntrees;
while (!trees_to_check.is_empty()) {
bNodeTree *ntree = trees_to_check.pop();
if (reachable_trees.add(ntree)) {
for (const TreeNodePair &pair : relations_.get_group_node_users(ntree)) {
trees_to_check.add(pair.first);
}
}
}
return reachable_trees;
}
TreeUpdateResult update_tree(bNodeTree &ntree)
{
TreeUpdateResult result;
ntree.runtime->link_errors.clear();
ntree.runtime->invalid_zone_output_node_ids.clear();
if (this->update_panel_toggle_names(ntree)) {
result.interface_changed = true;
}
this->update_socket_link_and_use(ntree);
this->update_individual_nodes(ntree);
this->update_internal_links(ntree);
this->update_generic_callback(ntree);
this->remove_unused_previews_when_necessary(ntree);
this->make_node_previews_dirty(ntree);
this->propagate_runtime_flags(ntree);
if (ELEM(ntree.type, NTREE_GEOMETRY, NTREE_COMPOSIT)) {
if (this->propagate_enum_definitions(ntree)) {
result.interface_changed = true;
}
}
if (ntree.type == NTREE_GEOMETRY) {
if (node_field_inferencing::update_field_inferencing(ntree)) {
result.interface_changed = true;
}
}
if (ELEM(ntree.type, NTREE_GEOMETRY, NTREE_COMPOSIT)) {
if (node_structure_type_inferencing::update_structure_type_interface(ntree)) {
result.interface_changed = true;
}
}
if (ntree.type == NTREE_GEOMETRY) {
this->update_from_field_inference(ntree);
if (node_tree_reference_lifetimes::analyse_reference_lifetimes(ntree)) {
result.interface_changed = true;
}
if (gizmos::update_tree_gizmo_propagation(ntree)) {
result.interface_changed = true;
}
}
if (ELEM(ntree.type, NTREE_GEOMETRY, NTREE_COMPOSIT)) {
this->update_socket_shapes(ntree);
}
if (ntree.type == NTREE_GEOMETRY) {
this->update_eval_dependencies(ntree);
}
result.output_changed = this->check_if_output_changed(ntree);
this->update_socket_link_and_use(ntree);
this->update_link_validation(ntree);
if (this->update_nested_node_refs(ntree)) {
result.interface_changed = true;
}
if (ntree.type == NTREE_TEXTURE) {
ntreeTexCheckCyclics(&ntree);
}
if (ntree.tree_interface.is_changed()) {
result.interface_changed = true;
}
#ifndef NDEBUG
/* Check the uniqueness of node identifiers. */
Set<int32_t> node_identifiers;
const Span<const bNode *> nodes = ntree.all_nodes();
for (const int i : nodes.index_range()) {
const bNode &node = *nodes[i];
BLI_assert(node.identifier > 0);
node_identifiers.add_new(node.identifier);
BLI_assert(node.runtime->index_in_tree == i);
}
#endif
return result;
}
void update_socket_link_and_use(bNodeTree &tree)
{
tree.ensure_topology_cache();
for (bNodeSocket *socket : tree.all_input_sockets()) {
if (socket->directly_linked_links().is_empty()) {
socket->link = nullptr;
}
else {
socket->link = socket->directly_linked_links()[0];
}
}
this->update_socket_used_tags(tree);
}
void update_socket_used_tags(bNodeTree &tree)
{
tree.ensure_topology_cache();
for (bNodeSocket *socket : tree.all_sockets()) {
const bool socket_is_linked = !socket->directly_linked_links().is_empty();
SET_FLAG_FROM_TEST(socket->flag, socket_is_linked, SOCK_IS_LINKED);
}
}
void update_individual_nodes(bNodeTree &ntree)
{
for (bNode *node : ntree.all_nodes()) {
bke::node_declaration_ensure(ntree, *node);
if (this->should_update_individual_node(ntree, *node)) {
bke::bNodeType &ntype = *node->typeinfo;
if (ntype.declare) {
/* Should have been created when the node was registered. */
BLI_assert(ntype.static_declaration != nullptr);
if (ntype.static_declaration->is_context_dependent) {
nodes::update_node_declaration_and_sockets(ntree, *node);
}
}
else if (node->is_undefined()) {
/* If a node has become undefined (it generally was unregistered from Python), it does
* not have a declaration anymore. */
delete node->runtime->declaration;
node->runtime->declaration = nullptr;
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
socket->runtime->declaration = nullptr;
}
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
socket->runtime->declaration = nullptr;
}
}
if (ntype.updatefunc) {
ntype.updatefunc(&ntree, node);
}
}
}
}
bool should_update_individual_node(const bNodeTree &ntree, const bNode &node)
{
if (ntree.runtime->changed_flag & NTREE_CHANGED_ANY) {
return true;
}
if (node.runtime->changed_flag & NTREE_CHANGED_NODE_PROPERTY) {
return true;
}
if (ntree.runtime->changed_flag & NTREE_CHANGED_LINK) {
/* Currently we have no way to tell if a node needs to be updated when a link changed. */
return true;
}
if (ntree.tree_interface.is_changed()) {
if (node.is_group_input() || node.is_group_output()) {
return true;
}
}
/* Check paired simulation zone nodes. */
if (all_zone_input_node_types().contains(node.type_legacy)) {
const bNodeZoneType &zone_type = *zone_type_by_node_type(node.type_legacy);
if (const bNode *output_node = zone_type.get_corresponding_output(ntree, node)) {
if (output_node->runtime->changed_flag & NTREE_CHANGED_NODE_PROPERTY) {
return true;
}
}
}
return false;
}
struct InternalLink {
bNodeSocket *from;
bNodeSocket *to;
int multi_input_sort_id = 0;
BLI_STRUCT_EQUALITY_OPERATORS_3(InternalLink, from, to, multi_input_sort_id);
};
const bNodeLink *first_non_dangling_link(const bNodeTree & /*ntree*/,
const Span<const bNodeLink *> links) const
{
for (const bNodeLink *link : links) {
if (!link->fromnode->is_dangling_reroute()) {
return link;
}
}
return nullptr;
}
void update_internal_links(bNodeTree &ntree)
{
bke::node_tree_runtime::AllowUsingOutdatedInfo allow_outdated_info{ntree};
ntree.ensure_topology_cache();
for (bNode *node : ntree.all_nodes()) {
if (!this->should_update_individual_node(ntree, *node)) {
continue;
}
/* Find all expected internal links. */
Vector<InternalLink> expected_internal_links;
for (const bNodeSocket *output_socket : node->output_sockets()) {
if (!output_socket->is_available()) {
continue;
}
if (output_socket->flag & SOCK_NO_INTERNAL_LINK) {
continue;
}
const bNodeSocket *input_socket = this->find_internally_linked_input(ntree, output_socket);
if (input_socket == nullptr) {
continue;
}
const Span<const bNodeLink *> connected_links = input_socket->directly_linked_links();
const bNodeLink *connected_link = first_non_dangling_link(ntree, connected_links);
const int index = connected_link ? connected_link->multi_input_sort_id :
std::max<int>(0, connected_links.size() - 1);
expected_internal_links.append(InternalLink{const_cast<bNodeSocket *>(input_socket),
const_cast<bNodeSocket *>(output_socket),
index});
}
/* Rebuilt internal links if they have changed. */
if (node->runtime->internal_links.size() != expected_internal_links.size()) {
this->update_internal_links_in_node(ntree, *node, expected_internal_links);
continue;
}
const bool all_expected_internal_links_exist = std::all_of(
node->runtime->internal_links.begin(),
node->runtime->internal_links.end(),
[&](const bNodeLink &link) {
const InternalLink internal_link{link.fromsock, link.tosock, link.multi_input_sort_id};
return expected_internal_links.as_span().contains(internal_link);
});
if (all_expected_internal_links_exist) {
continue;
}
this->update_internal_links_in_node(ntree, *node, expected_internal_links);
}
}
const bNodeSocket *find_internally_linked_input(const bNodeTree &ntree,
const bNodeSocket *output_socket)
{
const bNode &node = output_socket->owner_node();
if (node.typeinfo->internally_linked_input) {
return node.typeinfo->internally_linked_input(ntree, node, *output_socket);
}
const bNodeSocket *selected_socket = nullptr;
int selected_priority = -1;
bool selected_is_linked = false;
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (!input_socket->is_available()) {
continue;
}
if (input_socket->flag & SOCK_NO_INTERNAL_LINK) {
continue;
}
const int priority = get_internal_link_type_priority(input_socket->typeinfo,
output_socket->typeinfo);
if (priority < 0) {
continue;
}
const bool is_linked = input_socket->is_directly_linked();
const bool is_preferred = priority > selected_priority || (is_linked && !selected_is_linked);
if (!is_preferred) {
continue;
}
selected_socket = input_socket;
selected_priority = priority;
selected_is_linked = is_linked;
}
return selected_socket;
}
void update_internal_links_in_node(bNodeTree &ntree,
bNode &node,
Span<InternalLink> internal_links)
{
node.runtime->internal_links.clear();
node.runtime->internal_links.reserve(internal_links.size());
for (const InternalLink &internal_link : internal_links) {
bNodeLink link{};
link.fromnode = &node;
link.fromsock = internal_link.from;
link.tonode = &node;
link.tosock = internal_link.to;
link.multi_input_sort_id = internal_link.multi_input_sort_id;
link.flag |= NODE_LINK_VALID;
node.runtime->internal_links.append(link);
}
BKE_ntree_update_tag_node_internal_link(&ntree, &node);
}
void update_generic_callback(bNodeTree &ntree)
{
if (ntree.typeinfo->update == nullptr) {
return;
}
ntree.typeinfo->update(&ntree);
}
void remove_unused_previews_when_necessary(bNodeTree &ntree)
{
/* Don't trigger preview removal when only those flags are set. */
const uint32_t allowed_flags = NTREE_CHANGED_LINK | NTREE_CHANGED_SOCKET_PROPERTY |
NTREE_CHANGED_NODE_PROPERTY | NTREE_CHANGED_NODE_OUTPUT;
if ((ntree.runtime->changed_flag & allowed_flags) == ntree.runtime->changed_flag) {
return;
}
blender::bke::node_preview_remove_unused(&ntree);
}
void make_node_previews_dirty(bNodeTree &ntree)
{
ntree.runtime->previews_refresh_state++;
for (bNode *node : ntree.all_nodes()) {
if (!node->is_group()) {
continue;
}
if (bNodeTree *nested_tree = reinterpret_cast<bNodeTree *>(node->id)) {
this->make_node_previews_dirty(*nested_tree);
}
}
}
void propagate_runtime_flags(const bNodeTree &ntree)
{
ntree.ensure_topology_cache();
ntree.runtime->runtime_flag = 0;
for (const bNode *group_node : ntree.group_nodes()) {
const bNodeTree *group = reinterpret_cast<bNodeTree *>(group_node->id);
if (group != nullptr) {
ntree.runtime->runtime_flag |= group->runtime->runtime_flag;
}
}
if (ntree.type == NTREE_SHADER) {
/* Check if the tree itself has an animated image. */
for (const StringRefNull idname : {"ShaderNodeTexImage", "ShaderNodeTexEnvironment"}) {
for (const bNode *node : ntree.nodes_by_type(idname)) {
Image *image = reinterpret_cast<Image *>(node->id);
if (image != nullptr && BKE_image_is_animated(image)) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_IMAGE_ANIMATION;
break;
}
}
}
/* Check if the tree has a material output. */
for (const StringRefNull idname : {"ShaderNodeOutputMaterial",
"ShaderNodeOutputLight",
"ShaderNodeOutputWorld",
"ShaderNodeOutputAOV"})
{
const Span<const bNode *> nodes = ntree.nodes_by_type(idname);
if (!nodes.is_empty()) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_MATERIAL_OUTPUT;
break;
}
}
}
if (ntree.type == NTREE_GEOMETRY) {
/* Check if there is a simulation zone. */
if (!ntree.nodes_by_type("GeometryNodeSimulationOutput").is_empty()) {
ntree.runtime->runtime_flag |= NTREE_RUNTIME_FLAG_HAS_SIMULATION_ZONE;
}
}
}
void update_from_field_inference(bNodeTree &ntree)
{
/* Automatically tag a bake item as attribute when the input is a field. The flag should not be
* removed automatically even when the field input is disconnected because the baked data may
* still contain attribute data instead of a single value. */
for (bNode *node : ntree.nodes_by_type("GeometryNodeBake")) {
NodeGeometryBake &storage = *static_cast<NodeGeometryBake *>(node->storage);
for (const int i : IndexRange(storage.items_num)) {
const bNodeSocket &socket = node->input_socket(i);
NodeGeometryBakeItem &item = storage.items[i];
if (socket.may_be_field()) {
item.flag |= GEO_NODE_BAKE_ITEM_IS_ATTRIBUTE;
}
}
}
}
static int get_input_socket_shape(const SocketDeclaration &decl,
const StructureType structure_type)
{
if (decl.identifier == "__extend__") {
return SOCK_DISPLAY_SHAPE_CIRCLE;
}
switch (structure_type) {
case StructureType::Single:
return SOCK_DISPLAY_SHAPE_LINE;
case StructureType::Dynamic:
return SOCK_DISPLAY_SHAPE_CIRCLE;
case StructureType::Field:
return SOCK_DISPLAY_SHAPE_DIAMOND;
case StructureType::Grid:
return SOCK_DISPLAY_SHAPE_VOLUME_GRID;
case StructureType::List:
return SOCK_DISPLAY_SHAPE_LIST;
}
BLI_assert_unreachable();
return SOCK_DISPLAY_SHAPE_CIRCLE;
}
static int get_output_socket_shape(const SocketDeclaration &decl,
const StructureType structure_type)
{
if (decl.identifier == "__extend__") {
return SOCK_DISPLAY_SHAPE_CIRCLE;
}
switch (structure_type) {
case StructureType::Single: {
return SOCK_DISPLAY_SHAPE_LINE;
}
case StructureType::Dynamic: {
return SOCK_DISPLAY_SHAPE_CIRCLE;
}
case StructureType::Field: {
return SOCK_DISPLAY_SHAPE_DIAMOND;
}
case StructureType::Grid: {
return SOCK_DISPLAY_SHAPE_VOLUME_GRID;
}
case StructureType::List: {
return SOCK_DISPLAY_SHAPE_LIST;
}
}
BLI_assert_unreachable();
return SOCK_DISPLAY_SHAPE_CIRCLE;
}
void update_socket_shapes(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
if (U.experimental.use_socket_structure_type) {
for (bNode *node : ntree.all_nodes()) {
if (node->is_undefined()) {
continue;
}
/* For input/output nodes we use the inferred structure types. */
if (node->is_group_input() || node->is_group_output() ||
ELEM(node->type_legacy, GEO_NODE_CLOSURE_INPUT, GEO_NODE_CLOSURE_OUTPUT))
{
for (bNodeSocket *socket : node->input_sockets()) {
socket->display_shape = get_input_socket_shape(
*socket->runtime->declaration,
ntree.runtime->inferred_structure_types[socket->index_in_tree()]);
}
for (bNodeSocket *socket : node->output_sockets()) {
socket->display_shape = get_output_socket_shape(
*socket->runtime->declaration,
ntree.runtime->inferred_structure_types[socket->index_in_tree()]);
}
continue;
}
/* For other nodes we just use the static structure types defined in the declaration. */
for (bNodeSocket *socket : node->input_sockets()) {
if (const SocketDeclaration *declaration = socket->runtime->declaration) {
socket->display_shape = get_input_socket_shape(*declaration,
declaration->structure_type);
}
}
for (bNodeSocket *socket : node->output_sockets()) {
if (const SocketDeclaration *declaration = socket->runtime->declaration) {
socket->display_shape = get_output_socket_shape(*declaration,
declaration->structure_type);
}
}
}
}
else {
if (ntree.type == NTREE_GEOMETRY) {
const Span<bke::FieldSocketState> field_states = ntree.runtime->field_states;
for (bNodeSocket *socket : ntree.all_sockets()) {
switch (field_states[socket->index_in_tree()]) {
case bke::FieldSocketState::RequiresSingle:
socket->display_shape = SOCK_DISPLAY_SHAPE_CIRCLE;
break;
case bke::FieldSocketState::CanBeField:
socket->display_shape = SOCK_DISPLAY_SHAPE_DIAMOND_DOT;
break;
case bke::FieldSocketState::IsField:
socket->display_shape = SOCK_DISPLAY_SHAPE_DIAMOND;
break;
}
}
}
else if (ntree.type == NTREE_COMPOSIT) {
for (bNodeSocket *socket : ntree.all_sockets()) {
socket->display_shape = SOCK_DISPLAY_SHAPE_CIRCLE;
}
}
}
}
void update_eval_dependencies(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
nodes::GeometryNodesEvalDependencies new_deps =
nodes::gather_geometry_nodes_eval_dependencies_with_cache(ntree);
/* Check if the dependencies have changed. */
if (!ntree.runtime->geometry_nodes_eval_dependencies ||
new_deps != *ntree.runtime->geometry_nodes_eval_dependencies)
{
needs_relations_update_ = true;
ntree.runtime->geometry_nodes_eval_dependencies =
std::make_unique<nodes::GeometryNodesEvalDependencies>(std::move(new_deps));
}
}
bool propagate_enum_definitions(bNodeTree &ntree)
{
ntree.ensure_interface_cache();
/* Propagation from right to left to determine which enum
* definition to use for menu sockets. */
for (bNode *node : ntree.toposort_right_to_left()) {
const bool node_updated = this->should_update_individual_node(ntree, *node);
Vector<bNodeSocket *> locally_defined_enums;
if (node->is_type("GeometryNodeMenuSwitch")) {
bNodeSocket &enum_input = node->input_socket(0);
BLI_assert(enum_input.is_available() && enum_input.type == SOCK_MENU);
/* Generate new enum items when the node has changed, otherwise keep existing items. */
if (node_updated) {
const NodeMenuSwitch &storage = *static_cast<NodeMenuSwitch *>(node->storage);
const RuntimeNodeEnumItems *enum_items = this->create_runtime_enum_items(
storage.enum_definition);
this->set_enum_ptr(*enum_input.default_value_typed<bNodeSocketValueMenu>(), enum_items);
/* Remove initial user. */
enum_items->remove_user_and_delete_if_last();
}
locally_defined_enums.append(&enum_input);
}
else {
for (bNodeSocket *input_socket : node->input_sockets()) {
if (!input_socket->is_available()) {
continue;
}
if (input_socket->type != SOCK_MENU) {
continue;
}
const auto *socket_decl = dynamic_cast<const nodes::decl::Menu *>(
input_socket->runtime->declaration);
if (!socket_decl) {
continue;
}
this->set_enum_ptr(*input_socket->default_value_typed<bNodeSocketValueMenu>(),
socket_decl->items.get());
locally_defined_enums.append(input_socket);
}
}
/* Clear current enum references. */
for (bNodeSocket *socket : node->input_sockets()) {
if (socket->is_available() && socket->type == SOCK_MENU &&
!locally_defined_enums.contains(socket))
{
clear_enum_reference(*socket);
}
}
for (bNodeSocket *socket : node->output_sockets()) {
if (socket->is_available() && socket->type == SOCK_MENU) {
clear_enum_reference(*socket);
}
}
/* Propagate enum references from output links. */
for (bNodeSocket *output : node->output_sockets()) {
if (!output->is_available() || output->type != SOCK_MENU) {
continue;
}
for (const bNodeSocket *input : output->directly_linked_sockets()) {
if (!input->is_available() || input->type != SOCK_MENU) {
continue;
}
this->update_socket_enum_definition(*output->default_value_typed<bNodeSocketValueMenu>(),
*input->default_value_typed<bNodeSocketValueMenu>());
}
}
if (node->is_group()) {
/* Node groups expose internal enum definitions. */
if (node->id == nullptr) {
continue;
}
const bNodeTree *group_tree = reinterpret_cast<bNodeTree *>(node->id);
group_tree->ensure_interface_cache();
for (const int socket_i : group_tree->interface_inputs().index_range()) {
bNodeSocket &input = *node->input_sockets()[socket_i];
const bNodeTreeInterfaceSocket &iosocket = *group_tree->interface_inputs()[socket_i];
BLI_assert(STREQ(input.identifier, iosocket.identifier));
if (input.is_available() && input.type == SOCK_MENU) {
BLI_assert(STREQ(iosocket.socket_type, "NodeSocketMenu"));
this->update_socket_enum_definition(
*input.default_value_typed<bNodeSocketValueMenu>(),
*static_cast<bNodeSocketValueMenu *>(iosocket.socket_data));
}
}
}
else if (node->is_type("GeometryNodeMenuSwitch")) {
/* First input is always the node's own menu, propagate only to the enum case inputs. */
const bNodeSocket *output = node->output_sockets().first();
for (bNodeSocket *input : node->input_sockets().drop_front(1)) {
if (input->is_available() && input->type == SOCK_MENU) {
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
else if (node->is_type("GeometryNodeForeachGeometryElementInput")) {
/* Propagate menu from element inputs to field inputs. */
BLI_assert(node->input_sockets().size() == node->output_sockets().size());
/* Inputs Geometry, Selection and outputs Index, Element are ignored. */
const IndexRange sockets = node->input_sockets().index_range().drop_front(2);
for (const int socket_i : sockets) {
bNodeSocket *input = node->input_sockets()[socket_i];
bNodeSocket *output = node->output_sockets()[socket_i];
if (input->is_available() && input->type == SOCK_MENU && output->is_available() &&
output->type == SOCK_MENU)
{
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
else {
/* Propagate over internal relations. */
/* XXX Placeholder implementation just propagates all outputs
* to all inputs for built-in nodes This could perhaps use
* input/output relations to handle propagation generically? */
for (bNodeSocket *input : node->input_sockets()) {
if (input->is_available() && input->type == SOCK_MENU) {
for (const bNodeSocket *output : node->output_sockets()) {
if (output->is_available() && output->type == SOCK_MENU) {
this->update_socket_enum_definition(
*input->default_value_typed<bNodeSocketValueMenu>(),
*output->default_value_typed<bNodeSocketValueMenu>());
}
}
}
}
}
}
/* Find conflicts between on corresponding menu sockets on different group input nodes. */
const Span<bNode *> group_input_nodes = ntree.group_input_nodes();
for (const int interface_input_i : ntree.interface_inputs().index_range()) {
const bNodeTreeInterfaceSocket &interface_socket =
*ntree.interface_inputs()[interface_input_i];
if (interface_socket.socket_type != StringRef("NodeSocketMenu")) {
continue;
}
const RuntimeNodeEnumItems *found_enum_items = nullptr;
bool found_conflict = false;
for (bNode *input_node : group_input_nodes) {
const bNodeSocket &socket = input_node->output_socket(interface_input_i);
const auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.has_conflict()) {
found_conflict = true;
break;
}
if (found_enum_items == nullptr) {
found_enum_items = socket_value.enum_items;
}
else if (socket_value.enum_items != nullptr) {
if (found_enum_items != socket_value.enum_items) {
found_conflict = true;
break;
}
}
}
if (found_conflict) {
/* Make sure that all group input sockets know that there is a socket. */
for (bNode *input_node : group_input_nodes) {
bNodeSocket &socket = input_node->output_socket(interface_input_i);
auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.enum_items) {
socket_value.enum_items->remove_user_and_delete_if_last();
socket_value.enum_items = nullptr;
}
socket_value.runtime_flag |= NodeSocketValueMenuRuntimeFlag::NODE_MENU_ITEMS_CONFLICT;
}
}
else if (found_enum_items != nullptr) {
/* Make sure all corresponding menu sockets have the same menu reference. */
for (bNode *input_node : group_input_nodes) {
bNodeSocket &socket = input_node->output_socket(interface_input_i);
auto &socket_value = *socket.default_value_typed<bNodeSocketValueMenu>();
if (socket_value.enum_items == nullptr) {
found_enum_items->add_user();
socket_value.enum_items = found_enum_items;
}
}
}
}
/* Build list of new enum items for the node tree interface. */
Vector<bNodeSocketValueMenu> interface_enum_items(ntree.interface_inputs().size(), {0});
for (const bNode *group_input_node : ntree.group_input_nodes()) {
for (const int socket_i : ntree.interface_inputs().index_range()) {
const bNodeSocket &output = *group_input_node->output_sockets()[socket_i];
if (output.is_available() && output.type == SOCK_MENU) {
this->update_socket_enum_definition(interface_enum_items[socket_i],
*output.default_value_typed<bNodeSocketValueMenu>());
}
}
}
/* Move enum items to the interface and detect if anything changed. */
bool changed = false;
for (const int socket_i : ntree.interface_inputs().index_range()) {
bNodeTreeInterfaceSocket &iosocket = *ntree.interface_inputs()[socket_i];
if (STREQ(iosocket.socket_type, "NodeSocketMenu")) {
bNodeSocketValueMenu &dst = *static_cast<bNodeSocketValueMenu *>(iosocket.socket_data);
const bNodeSocketValueMenu &src = interface_enum_items[socket_i];
if (dst.enum_items != src.enum_items || dst.has_conflict() != src.has_conflict()) {
changed = true;
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
}
/* Items are moved, no need to change user count. */
dst.enum_items = src.enum_items;
SET_FLAG_FROM_TEST(dst.runtime_flag, src.has_conflict(), NODE_MENU_ITEMS_CONFLICT);
}
else {
/* If the item isn't move make sure it gets released again. */
if (src.enum_items) {
src.enum_items->remove_user_and_delete_if_last();
}
}
}
}
return changed;
}
/**
* Make a runtime copy of the DNA enum items.
* The runtime items list is shared by sockets.
*/
const RuntimeNodeEnumItems *create_runtime_enum_items(const NodeEnumDefinition &enum_def)
{
RuntimeNodeEnumItems *enum_items = new RuntimeNodeEnumItems();
enum_items->items.reinitialize(enum_def.items_num);
for (const int i : enum_def.items().index_range()) {
const NodeEnumItem &src = enum_def.items()[i];
RuntimeNodeEnumItem &dst = enum_items->items[i];
dst.identifier = src.identifier;
dst.name = src.name ? src.name : "";
dst.description = src.description ? src.description : "";
}
return enum_items;
}
void clear_enum_reference(bNodeSocket &socket)
{
BLI_assert(socket.is_available() && socket.type == SOCK_MENU);
bNodeSocketValueMenu &default_value = *socket.default_value_typed<bNodeSocketValueMenu>();
this->reset_enum_ptr(default_value);
default_value.runtime_flag &= ~NODE_MENU_ITEMS_CONFLICT;
}
void update_socket_enum_definition(bNodeSocketValueMenu &dst, const bNodeSocketValueMenu &src)
{
if (dst.has_conflict()) {
/* Target enum already has a conflict. */
BLI_assert(dst.enum_items == nullptr);
return;
}
if (src.has_conflict()) {
/* Target conflict if any source enum has a conflict. */
this->reset_enum_ptr(dst);
dst.runtime_flag |= NODE_MENU_ITEMS_CONFLICT;
}
else if (!dst.enum_items) {
/* First connection, set the reference. */
this->set_enum_ptr(dst, src.enum_items);
}
else if (src.enum_items && dst.enum_items != src.enum_items) {
/* Error if enum ref does not match other connections. */
this->reset_enum_ptr(dst);
dst.runtime_flag |= NODE_MENU_ITEMS_CONFLICT;
}
}
void reset_enum_ptr(bNodeSocketValueMenu &dst)
{
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
dst.enum_items = nullptr;
}
}
void set_enum_ptr(bNodeSocketValueMenu &dst, const RuntimeNodeEnumItems *enum_items)
{
if (dst.enum_items) {
dst.enum_items->remove_user_and_delete_if_last();
dst.enum_items = nullptr;
}
if (enum_items) {
enum_items->add_user();
dst.enum_items = enum_items;
}
}
void update_link_validation(bNodeTree &ntree)
{
/* Tests if enum references are undefined. */
const auto is_invalid_enum_ref = [](const bNodeSocket &socket) -> bool {
if (socket.type == SOCK_MENU) {
return socket.default_value_typed<bNodeSocketValueMenu>()->enum_items == nullptr;
}
return false;
};
const bNodeTreeZones *fallback_zones = nullptr;
if (ntree.type == NTREE_GEOMETRY && !ntree.zones() && ntree.runtime->last_valid_zones) {
fallback_zones = ntree.runtime->last_valid_zones.get();
}
LISTBASE_FOREACH (bNodeLink *, link, &ntree.links) {
link->flag |= NODE_LINK_VALID;
if (!link->fromsock->is_available() || !link->tosock->is_available()) {
link->flag &= ~NODE_LINK_VALID;
continue;
}
if (is_invalid_enum_ref(*link->fromsock) || is_invalid_enum_ref(*link->tosock)) {
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors.add(
NodeLinkKey{*link},
NodeLinkError{TIP_("Use node groups to reuse the same menu multiple times")});
continue;
}
if (ntree.type == NTREE_GEOMETRY) {
if (link->fromsock->may_be_field() && !link->tosock->may_be_field()) {
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors.add(
NodeLinkKey{*link}, NodeLinkError{TIP_("The node input does not support fields")});
continue;
}
}
const bNode &from_node = *link->fromnode;
const bNode &to_node = *link->tonode;
if (from_node.runtime->toposort_left_to_right_index >
to_node.runtime->toposort_left_to_right_index)
{
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors.add(
NodeLinkKey{*link},
NodeLinkError{TIP_("The links form a cycle which is not supported")});
continue;
}
if (ntree.typeinfo->validate_link) {
const eNodeSocketDatatype from_type = eNodeSocketDatatype(link->fromsock->type);
const eNodeSocketDatatype to_type = eNodeSocketDatatype(link->tosock->type);
if (!ntree.typeinfo->validate_link(from_type, to_type)) {
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors.add(
NodeLinkKey{*link},
NodeLinkError{fmt::format("{}: {} " BLI_STR_UTF8_BLACK_RIGHT_POINTING_SMALL_TRIANGLE
" {}",
TIP_("Conversion is not supported"),
TIP_(link->fromsock->typeinfo->label),
TIP_(link->tosock->typeinfo->label))});
continue;
}
}
if (fallback_zones) {
if (!fallback_zones->link_between_sockets_is_allowed(*link->fromsock, *link->tosock)) {
if (const bNodeTreeZone *from_zone = fallback_zones->get_zone_by_socket(*link->fromsock))
{
ntree.runtime->invalid_zone_output_node_ids.add(*from_zone->output_node_id);
}
link->flag &= ~NODE_LINK_VALID;
ntree.runtime->link_errors.add(
NodeLinkKey{*link},
NodeLinkError{TIP_("Links can only go into a zone but not out")});
continue;
}
}
}
}
bool check_if_output_changed(const bNodeTree &tree)
{
tree.ensure_topology_cache();
/* Compute a hash that represents the node topology connected to the output. This always has
* to be updated even if it is not used to detect changes right now. Otherwise
* #btree.runtime.output_topology_hash will go out of date. */
const Vector<const bNodeSocket *> tree_output_sockets = this->find_output_sockets(tree);
const uint32_t old_topology_hash = tree.runtime->output_topology_hash;
const uint32_t new_topology_hash = this->get_combined_socket_topology_hash(
tree, tree_output_sockets);
tree.runtime->output_topology_hash = new_topology_hash;
if (const AnimData *adt = BKE_animdata_from_id(&tree.id)) {
/* Drivers may copy values in the node tree around arbitrarily and may cause the output to
* change even if it wouldn't without drivers. Only some special drivers like `frame/5` can
* be used without causing updates all the time currently. In the future we could try to
* handle other drivers better as well.
* Note that this optimization only works in practice when the depsgraph didn't also get a
* copy-on-evaluation tag for the node tree (which happens when changing node properties). It
* does work in a few situations like adding reroutes and duplicating nodes though. */
LISTBASE_FOREACH (const FCurve *, fcurve, &adt->drivers) {
const ChannelDriver *driver = fcurve->driver;
const StringRef expression = driver->expression;
if (expression.startswith("frame")) {
const StringRef remaining_expression = expression.drop_known_prefix("frame");
if (remaining_expression.find_first_not_of(" */+-0123456789.") == StringRef::not_found) {
continue;
}
}
/* Unrecognized driver, assume that the output always changes. */
return true;
}
}
if (tree.runtime->changed_flag & NTREE_CHANGED_ANY) {
return true;
}
if (old_topology_hash != new_topology_hash) {
return true;
}
/* The topology hash can only be used when only topology-changing operations have been done.
*/
if (tree.runtime->changed_flag ==
(tree.runtime->changed_flag & (NTREE_CHANGED_LINK | NTREE_CHANGED_REMOVED_NODE)))
{
if (old_topology_hash == new_topology_hash) {
return false;
}
}
if (!this->check_if_socket_outputs_changed_based_on_flags(tree, tree_output_sockets)) {
return false;
}
return true;
}
Vector<const bNodeSocket *> find_output_sockets(const bNodeTree &tree)
{
Vector<const bNodeSocket *> sockets;
for (const bNode *node : tree.all_nodes()) {
if (!this->is_output_node(*node)) {
continue;
}
for (const bNodeSocket *socket : node->input_sockets()) {
if (!STREQ(socket->idname, "NodeSocketVirtual")) {
sockets.append(socket);
}
}
}
return sockets;
}
bool is_output_node(const bNode &node) const
{
if (node.typeinfo->nclass == NODE_CLASS_OUTPUT) {
return true;
}
if (node.is_group_output()) {
return true;
}
if (node.is_type("GeometryNodeWarning")) {
return true;
}
if (nodes::gizmos::is_builtin_gizmo_node(node)) {
return true;
}
/* Assume node groups without output sockets are outputs. */
if (node.is_group()) {
const bNodeTree *node_group = reinterpret_cast<const bNodeTree *>(node.id);
if (node_group != nullptr &&
node_group->runtime->runtime_flag & NTREE_RUNTIME_FLAG_HAS_MATERIAL_OUTPUT)
{
return true;
}
}
return false;
}
/**
* Computes a hash that changes when the node tree topology connected to an output node
* changes. Adding reroutes does not have an effect on the hash.
*/
uint32_t get_combined_socket_topology_hash(const bNodeTree &tree,
Span<const bNodeSocket *> sockets)
{
if (tree.has_available_link_cycle()) {
/* Return dummy value when the link has any cycles. The algorithm below could be improved
* to handle cycles more gracefully. */
return 0;
}
Array<uint32_t> hashes = this->get_socket_topology_hashes(tree, sockets);
uint32_t combined_hash = 0;
for (uint32_t hash : hashes) {
combined_hash = noise::hash(combined_hash, hash);
}
return combined_hash;
}
Array<uint32_t> get_socket_topology_hashes(const bNodeTree &tree,
const Span<const bNodeSocket *> sockets)
{
BLI_assert(!tree.has_available_link_cycle());
Array<std::optional<uint32_t>> hash_by_socket_id(tree.all_sockets().size());
Stack<const bNodeSocket *> sockets_to_check = sockets;
auto get_socket_ptr_hash = [&](const bNodeSocket &socket) {
const uint64_t socket_ptr = uintptr_t(&socket);
return noise::hash(socket_ptr, socket_ptr >> 32);
};
const bNodeTreeZones *zones = tree.zones();
while (!sockets_to_check.is_empty()) {
const bNodeSocket &socket = *sockets_to_check.peek();
const bNode &node = socket.owner_node();
if (hash_by_socket_id[socket.index_in_tree()].has_value()) {
sockets_to_check.pop();
/* Socket is handled already. */
continue;
}
uint32_t socket_hash = 0;
if (socket.is_input()) {
/* For input sockets, first compute the hashes of all linked sockets. */
bool all_origins_computed = true;
bool get_value_from_origin = false;
Vector<const bNodeSocket *, 16> origin_sockets;
for (const bNodeLink *link : socket.directly_linked_links()) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
origin_sockets.append(link->fromsock);
}
if (zones) {
if (const bNodeTreeZone *zone = zones->get_zone_by_socket(socket)) {
if (zone->output_node_id == node.identifier) {
if (const bNode *input_node = zone->input_node()) {
origin_sockets.extend(input_node->input_sockets());
}
}
}
}
for (const bNodeSocket *origin_socket : origin_sockets) {
const std::optional<uint32_t> origin_hash =
hash_by_socket_id[origin_socket->index_in_tree()];
if (origin_hash.has_value()) {
if (get_value_from_origin || socket.type != origin_socket->type) {
socket_hash = noise::hash(socket_hash, *origin_hash);
}
else {
/* Copy the socket hash because the link did not change it. */
socket_hash = *origin_hash;
}
get_value_from_origin = true;
}
else {
sockets_to_check.push(origin_socket);
all_origins_computed = false;
}
}
if (!all_origins_computed) {
continue;
}
if (!get_value_from_origin) {
socket_hash = get_socket_ptr_hash(socket);
}
}
else {
bool all_available_inputs_computed = true;
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
if (!hash_by_socket_id[input_socket->index_in_tree()].has_value()) {
sockets_to_check.push(input_socket);
all_available_inputs_computed = false;
}
}
}
if (!all_available_inputs_computed) {
continue;
}
if (node.is_reroute()) {
socket_hash = *hash_by_socket_id[node.input_socket(0).index_in_tree()];
}
else if (node.is_muted()) {
const bNodeSocket *internal_input = socket.internal_link_input();
if (internal_input == nullptr) {
socket_hash = get_socket_ptr_hash(socket);
}
else {
if (internal_input->type == socket.type) {
socket_hash = *hash_by_socket_id[internal_input->index_in_tree()];
}
else {
socket_hash = get_socket_ptr_hash(socket);
}
}
}
else {
socket_hash = get_socket_ptr_hash(socket);
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
const uint32_t input_socket_hash = *hash_by_socket_id[input_socket->index_in_tree()];
socket_hash = noise::hash(socket_hash, input_socket_hash);
}
}
/* The Image Texture node has a special case. The behavior of the color output changes
* depending on whether the Alpha output is linked. */
if (node.is_type("ShaderNodeTexImage") && socket.index() == 0) {
BLI_assert(STREQ(socket.name, "Color"));
const bNodeSocket &alpha_socket = node.output_socket(1);
BLI_assert(STREQ(alpha_socket.name, "Alpha"));
if (alpha_socket.is_directly_linked()) {
socket_hash = noise::hash(socket_hash);
}
}
}
}
hash_by_socket_id[socket.index_in_tree()] = socket_hash;
/* Check that nothing has been pushed in the meantime. */
BLI_assert(sockets_to_check.peek() == &socket);
sockets_to_check.pop();
}
/* Create output array. */
Array<uint32_t> hashes(sockets.size());
for (const int i : sockets.index_range()) {
hashes[i] = *hash_by_socket_id[sockets[i]->index_in_tree()];
}
return hashes;
}
/**
* Returns true when any of the provided sockets changed its values. A change is detected by
* checking the #changed_flag on connected sockets and nodes.
*/
bool check_if_socket_outputs_changed_based_on_flags(const bNodeTree &tree,
Span<const bNodeSocket *> sockets)
{
/* Avoid visiting the same socket twice when multiple links point to the same socket. */
Array<bool> pushed_by_socket_id(tree.all_sockets().size(), false);
Stack<const bNodeSocket *> sockets_to_check = sockets;
for (const bNodeSocket *socket : sockets) {
pushed_by_socket_id[socket->index_in_tree()] = true;
}
while (!sockets_to_check.is_empty()) {
const bNodeSocket &socket = *sockets_to_check.pop();
const bNode &node = socket.owner_node();
if (socket.runtime->changed_flag != NTREE_CHANGED_NOTHING) {
return true;
}
if (node.runtime->changed_flag != NTREE_CHANGED_NOTHING) {
const bool only_unused_internal_link_changed = !node.is_muted() &&
node.runtime->changed_flag ==
NTREE_CHANGED_INTERNAL_LINK;
const bool only_parent_changed = node.runtime->changed_flag == NTREE_CHANGED_PARENT;
const bool change_affects_output = !(only_unused_internal_link_changed ||
only_parent_changed);
if (change_affects_output) {
return true;
}
}
if (socket.is_input()) {
for (const bNodeSocket *origin_socket : socket.directly_linked_sockets()) {
bool &pushed = pushed_by_socket_id[origin_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(origin_socket);
pushed = true;
}
}
}
else {
for (const bNodeSocket *input_socket : node.input_sockets()) {
if (input_socket->is_available()) {
bool &pushed = pushed_by_socket_id[input_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(input_socket);
pushed = true;
}
}
}
/* Zones may propagate changes from the input node to the output node even though there is
* no explicit link. */
switch (node.type_legacy) {
case GEO_NODE_REPEAT_OUTPUT:
case GEO_NODE_SIMULATION_OUTPUT:
case GEO_NODE_FOREACH_GEOMETRY_ELEMENT_OUTPUT: {
const bNodeTreeZones *zones = tree.zones();
if (!zones) {
break;
}
const bNodeTreeZone *zone = zones->get_zone_by_node(node.identifier);
if (!zone->input_node()) {
break;
}
for (const bNodeSocket *input_socket : zone->input_node()->input_sockets()) {
if (input_socket->is_available()) {
bool &pushed = pushed_by_socket_id[input_socket->index_in_tree()];
if (!pushed) {
sockets_to_check.push(input_socket);
pushed = true;
}
}
}
break;
}
}
/* The Normal node has a special case, because the value stored in the first output
* socket is used as input in the node. */
if ((node.is_type("ShaderNodeNormal") || node.is_type("CompositorNodeNormal")) &&
socket.index() == 1)
{
BLI_assert(STREQ(socket.name, "Dot"));
const bNodeSocket &normal_output = node.output_socket(0);
BLI_assert(STREQ(normal_output.name, "Normal"));
bool &pushed = pushed_by_socket_id[normal_output.index_in_tree()];
if (!pushed) {
sockets_to_check.push(&normal_output);
pushed = true;
}
}
}
}
return false;
}
/**
* Make sure that the #bNodeTree::nested_node_refs is up to date. It's supposed to contain a
* reference to all (nested) simulation zones.
*/
bool update_nested_node_refs(bNodeTree &ntree)
{
ntree.ensure_topology_cache();
/* Simplify lookup of old ids. */
Map<bNestedNodePath, int32_t> old_id_by_path;
Set<int32_t> old_ids;
for (const bNestedNodeRef &ref : ntree.nested_node_refs_span()) {
old_id_by_path.add(ref.path, ref.id);
old_ids.add(ref.id);
}
Vector<bNestedNodePath> nested_node_paths;
/* Don't forget nested node refs just because the linked file is not available right now. */
for (const bNestedNodePath &path : old_id_by_path.keys()) {
const bNode *node = ntree.node_by_id(path.node_id);
if (node && node->is_group() && node->id) {
if (node->id->tag & ID_TAG_MISSING) {
nested_node_paths.append(path);
}
}
}
if (ntree.type == NTREE_GEOMETRY) {
/* Create references for simulations and bake nodes in geometry nodes.
* Those are the nodes that we want to store settings for at a higher level. */
for (StringRefNull idname : {"GeometryNodeSimulationOutput", "GeometryNodeBake"}) {
for (const bNode *node : ntree.nodes_by_type(idname)) {
nested_node_paths.append({node->identifier, -1});
}
}
}
/* Propagate references to nested nodes in group nodes. */
for (const bNode *node : ntree.group_nodes()) {
const bNodeTree *group = reinterpret_cast<const bNodeTree *>(node->id);
if (group == nullptr) {
continue;
}
for (const int i : group->nested_node_refs_span().index_range()) {
const bNestedNodeRef &child_ref = group->nested_node_refs[i];
nested_node_paths.append({node->identifier, child_ref.id});
}
}
/* Used to generate new unique IDs if necessary. */
RandomNumberGenerator rng = RandomNumberGenerator::from_random_seed();
Map<int32_t, bNestedNodePath> new_path_by_id;
for (const bNestedNodePath &path : nested_node_paths) {
const int32_t old_id = old_id_by_path.lookup_default(path, -1);
if (old_id != -1) {
/* The same path existed before, it should keep the same ID as before. */
new_path_by_id.add(old_id, path);
continue;
}
int32_t new_id;
while (true) {
new_id = rng.get_int32(INT32_MAX);
if (!old_ids.contains(new_id) && !new_path_by_id.contains(new_id)) {
break;
}
}
/* The path is new, it should get a new ID that does not collide with any existing IDs. */
new_path_by_id.add(new_id, path);
}
/* Check if the old and new references are identical. */
if (!this->nested_node_refs_changed(ntree, new_path_by_id)) {
return false;
}
MEM_SAFE_FREE(ntree.nested_node_refs);
if (new_path_by_id.is_empty()) {
ntree.nested_node_refs_num = 0;
return true;
}
/* Allocate new array for the nested node references contained in the node tree. */
bNestedNodeRef *new_refs = MEM_malloc_arrayN<bNestedNodeRef>(size_t(new_path_by_id.size()),
__func__);
int index = 0;
for (const auto item : new_path_by_id.items()) {
bNestedNodeRef &ref = new_refs[index];
ref.id = item.key;
ref.path = item.value;
index++;
}
ntree.nested_node_refs = new_refs;
ntree.nested_node_refs_num = new_path_by_id.size();
return true;
}
bool nested_node_refs_changed(const bNodeTree &ntree,
const Map<int32_t, bNestedNodePath> &new_path_by_id)
{
if (ntree.nested_node_refs_num != new_path_by_id.size()) {
return true;
}
for (const bNestedNodeRef &ref : ntree.nested_node_refs_span()) {
if (!new_path_by_id.contains(ref.id)) {
return true;
}
}
return false;
}
void reset_changed_flags(bNodeTree &ntree)
{
ntree.runtime->changed_flag = NTREE_CHANGED_NOTHING;
for (bNode *node : ntree.all_nodes()) {
node->runtime->changed_flag = NTREE_CHANGED_NOTHING;
node->runtime->update = 0;
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
socket->runtime->changed_flag = NTREE_CHANGED_NOTHING;
}
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
socket->runtime->changed_flag = NTREE_CHANGED_NOTHING;
}
}
ntree.tree_interface.reset_changed_flags();
}
/**
* Update the panel toggle sockets to use the same name as the panel.
*/
bool update_panel_toggle_names(bNodeTree &ntree)
{
bool changed = false;
ntree.ensure_interface_cache();
for (bNodeTreeInterfaceItem *item : ntree.interface_items()) {
if (item->item_type != NODE_INTERFACE_PANEL) {
continue;
}
bNodeTreeInterfacePanel *panel = reinterpret_cast<bNodeTreeInterfacePanel *>(item);
if (bNodeTreeInterfaceSocket *toggle_socket = panel->header_toggle_socket()) {
if (!STREQ(panel->name, toggle_socket->name)) {
MEM_SAFE_FREE(toggle_socket->name);
toggle_socket->name = BLI_strdup_null(panel->name);
changed = true;
}
}
}
return changed;
}
};
} // namespace blender::bke
void BKE_ntree_update_tag_all(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
void BKE_ntree_update_tag_node_property(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_new(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_type(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_socket_property(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_new(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_REMOVED_SOCKET);
}
void BKE_ntree_update_tag_socket_type(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_socket_availability(bNodeTree *ntree, bNodeSocket *socket)
{
add_socket_tag(ntree, socket, NTREE_CHANGED_SOCKET_PROPERTY);
}
void BKE_ntree_update_tag_node_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_REMOVED_NODE);
}
void BKE_ntree_update_tag_node_mute(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
void BKE_ntree_update_tag_node_internal_link(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_INTERNAL_LINK);
}
void BKE_ntree_update_tag_link_changed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_removed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_added(bNodeTree *ntree, bNodeLink * /*link*/)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_link_mute(bNodeTree *ntree, bNodeLink * /*link*/)
{
add_tree_tag(ntree, NTREE_CHANGED_LINK);
}
void BKE_ntree_update_tag_active_output_changed(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
void BKE_ntree_update_tag_missing_runtime_data(bNodeTree *ntree)
{
add_tree_tag(ntree, NTREE_CHANGED_ALL);
}
void BKE_ntree_update_tag_parent_change(bNodeTree *ntree, bNode *node)
{
add_node_tag(ntree, node, NTREE_CHANGED_PARENT);
}
void BKE_ntree_update_tag_id_changed(Main *bmain, ID *id)
{
FOREACH_NODETREE_BEGIN (bmain, ntree, ntree_id) {
for (bNode *node : ntree->all_nodes()) {
if (node->id == id) {
node->runtime->update |= NODE_UPDATE_ID;
add_node_tag(ntree, node, NTREE_CHANGED_NODE_PROPERTY);
}
}
}
FOREACH_NODETREE_END;
}
void BKE_ntree_update_tag_image_user_changed(bNodeTree *ntree, ImageUser * /*iuser*/)
{
/* Would have to search for the node that uses the image user for a more detailed tag. */
add_tree_tag(ntree, NTREE_CHANGED_ANY);
}
uint64_t bNestedNodePath::hash() const
{
return blender::get_default_hash(this->node_id, this->id_in_node);
}
bool operator==(const bNestedNodePath &a, const bNestedNodePath &b)
{
return a.node_id == b.node_id && a.id_in_node == b.id_in_node;
}
/**
* Protect from recursive calls into the updating function. Some node update functions might
* trigger this from Python or in other cases.
*
* This could be added to #Main, but given that there is generally only one #Main, that's not
* really worth it now.
*/
static bool is_updating = false;
void BKE_ntree_update(Main &bmain,
const std::optional<blender::Span<bNodeTree *>> modified_trees,
const NodeTreeUpdateExtraParams &params)
{
if (is_updating) {
return;
}
is_updating = true;
blender::bke::NodeTreeMainUpdater updater{&bmain, params};
if (modified_trees.has_value()) {
updater.update_rooted(*modified_trees);
}
else {
updater.update();
}
is_updating = false;
}
void BKE_ntree_update_after_single_tree_change(Main &bmain,
bNodeTree &modified_tree,
const NodeTreeUpdateExtraParams &params)
{
BKE_ntree_update(bmain, blender::Span{&modified_tree}, params);
}
void BKE_ntree_update_without_main(bNodeTree &tree)
{
if (is_updating) {
return;
}
is_updating = true;
NodeTreeUpdateExtraParams params;
blender::bke::NodeTreeMainUpdater updater{nullptr, params};
updater.update_rooted({&tree});
is_updating = false;
}