Files
test2/source/blender/draw/intern/draw_cache_impl_pointcloud.cc
Jacques Lucke 2fda20e1db Fix #132099: crash when using same geometry on objects with different material counts
The core issue was that the geometry batch cache (e.g. `MeshBatchCache` or
`PointCloudBatchCache`) was dependent on the object. This is problematic when
the the same geometry is used with multiple different objects because the cache
can't be consistent with all of them.

Fortunately, the only thing that was retrieved from the object was the number of
material slots, so if that can be avoided we should be fine. We can't just use
the number of material slots stored on the geometry because that may have no
material slots but still has material indices which are overridden on the object
level.

The solution is to take make the number of materials for a geometry only
dependent on the actual `material_index` attribute and not on the number of
available slots. More specifically, we find the maximal referenced material
index and handle that many materials. This number does not depend on how many
material slots there are on the object, but it still allows the object to
override materials slots that the mesh references.

A downside is that the maximum material index has to be computed which often
requires an iteration over the mesh. Fortunately, we can cache that quite easily
and the computation can be done in parallel. Also we are probably able to
eagerly update the material index in many cases when it's set instead of
computing it lazily. That is not implemented in this patch though.

The largest part of the patch is making the maximal material index easily
available on all the geometry types. Besides that, the material API is slightly
replaced and the drawing code now makes use of the updated API.

Pull Request: https://projects.blender.org/blender/blender/pulls/133498
2025-01-24 12:05:25 +01:00

460 lines
15 KiB
C++

/* SPDX-FileCopyrightText: 2017 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup draw
*
* \brief PointCloud API for render engines
*/
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_color.hh"
#include "BLI_listbase.h"
#include "BLI_task.hh"
#include "BLI_utildefines.h"
#include "DNA_object_types.h"
#include "DNA_pointcloud_types.h"
#include "BKE_attribute.hh"
#include "BKE_material.hh"
#include "BKE_pointcloud.hh"
#include "GPU_batch.hh"
#include "GPU_material.hh"
#include "draw_attributes.hh"
#include "draw_cache_impl.hh"
#include "draw_cache_inline.hh"
#include "draw_pointcloud_private.hh" /* own include */
namespace blender::draw {
/* -------------------------------------------------------------------- */
/** \name gpu::Batch cache management
* \{ */
struct PointCloudEvalCache {
/* Dot primitive types. */
gpu::Batch *dots;
/* Triangle primitive types. */
gpu::Batch *surface;
gpu::Batch **surface_per_mat;
/* Triangles indices to draw the points. */
gpu::IndexBuf *geom_indices;
/* Position and radius. */
gpu::VertBuf *pos_rad;
/* Active attribute in 3D view. */
gpu::VertBuf *attr_viewer;
/* Requested attributes */
gpu::VertBuf *attributes_buf[GPU_MAX_ATTR];
/** Attributes currently being drawn or about to be drawn. */
DRW_Attributes attr_used;
/**
* Attributes that were used at some point. This is used for garbage collection, to remove
* attributes that are not used in shaders anymore due to user edits.
*/
DRW_Attributes attr_used_over_time;
/**
* The last time in seconds that the `attr_used` and `attr_used_over_time` were exactly the same.
* If the delta between this time and the current scene time is greater than the timeout set in
* user preferences (`U.vbotimeout`) then garbage collection is performed.
*/
int last_attr_matching_time;
int mat_len;
};
struct PointCloudBatchCache {
PointCloudEvalCache eval_cache;
/* settings to determine if cache is invalid */
bool is_dirty;
/**
* The draw cache extraction is currently not multi-threaded for multiple objects, but if it was,
* some locking would be necessary because multiple objects can use the same object data with
* different materials, etc. This is a placeholder to make multi-threading easier in the future.
*/
std::mutex render_mutex;
};
static PointCloudBatchCache *pointcloud_batch_cache_get(PointCloud &pointcloud)
{
return static_cast<PointCloudBatchCache *>(pointcloud.batch_cache);
}
static bool pointcloud_batch_cache_valid(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (cache == nullptr) {
return false;
}
if (cache->eval_cache.mat_len != BKE_id_material_used_with_fallback_eval(pointcloud.id)) {
return false;
}
return cache->is_dirty == false;
}
static void pointcloud_batch_cache_init(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (!cache) {
cache = MEM_new<PointCloudBatchCache>(__func__);
pointcloud.batch_cache = cache;
}
else {
cache->eval_cache = {};
}
cache->eval_cache.mat_len = BKE_id_material_used_with_fallback_eval(pointcloud.id);
cache->eval_cache.surface_per_mat = static_cast<gpu::Batch **>(
MEM_callocN(sizeof(gpu::Batch *) * cache->eval_cache.mat_len, __func__));
cache->is_dirty = false;
}
void DRW_pointcloud_batch_cache_dirty_tag(PointCloud *pointcloud, int mode)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
if (cache == nullptr) {
return;
}
switch (mode) {
case BKE_POINTCLOUD_BATCH_DIRTY_ALL:
cache->is_dirty = true;
break;
default:
BLI_assert(0);
}
}
static void pointcloud_discard_attributes(PointCloudBatchCache &cache)
{
for (const int j : IndexRange(GPU_MAX_ATTR)) {
GPU_VERTBUF_DISCARD_SAFE(cache.eval_cache.attributes_buf[j]);
}
drw_attributes_clear(&cache.eval_cache.attr_used);
}
static void pointcloud_batch_cache_clear(PointCloud &pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
if (!cache) {
return;
}
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.dots);
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.surface);
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.pos_rad);
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.attr_viewer);
GPU_INDEXBUF_DISCARD_SAFE(cache->eval_cache.geom_indices);
if (cache->eval_cache.surface_per_mat) {
for (int i = 0; i < cache->eval_cache.mat_len; i++) {
GPU_BATCH_DISCARD_SAFE(cache->eval_cache.surface_per_mat[i]);
}
}
MEM_SAFE_FREE(cache->eval_cache.surface_per_mat);
pointcloud_discard_attributes(*cache);
}
void DRW_pointcloud_batch_cache_validate(PointCloud *pointcloud)
{
if (!pointcloud_batch_cache_valid(*pointcloud)) {
pointcloud_batch_cache_clear(*pointcloud);
pointcloud_batch_cache_init(*pointcloud);
}
}
void DRW_pointcloud_batch_cache_free(PointCloud *pointcloud)
{
pointcloud_batch_cache_clear(*pointcloud);
MEM_delete(static_cast<PointCloudBatchCache *>(pointcloud->batch_cache));
pointcloud->batch_cache = nullptr;
}
void DRW_pointcloud_batch_cache_free_old(PointCloud *pointcloud, int ctime)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
if (!cache) {
return;
}
bool do_discard = false;
if (drw_attributes_overlap(&cache->eval_cache.attr_used_over_time, &cache->eval_cache.attr_used))
{
cache->eval_cache.last_attr_matching_time = ctime;
}
if (ctime - cache->eval_cache.last_attr_matching_time > U.vbotimeout) {
do_discard = true;
}
drw_attributes_clear(&cache->eval_cache.attr_used_over_time);
if (do_discard) {
pointcloud_discard_attributes(*cache);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name PointCloud extraction
* \{ */
static const uint half_octahedron_tris[4][3] = {
{0, 1, 2},
{0, 2, 3},
{0, 3, 4},
{0, 4, 1},
};
static void pointcloud_extract_indices(const PointCloud &pointcloud, PointCloudBatchCache &cache)
{
/* Overlap shape and point indices to avoid both having to store the indices into a separate
* buffer and avoid rendering points as instances. */
uint32_t vertid_max = pointcloud.totpoint << 3;
constexpr uint32_t tri_count_per_point = ARRAY_SIZE(half_octahedron_tris);
uint32_t primitive_len = pointcloud.totpoint * tri_count_per_point;
GPUIndexBufBuilder builder;
GPU_indexbuf_init(&builder, GPU_PRIM_TRIS, primitive_len, vertid_max);
MutableSpan<uint3> data = GPU_indexbuf_get_data(&builder).cast<uint3>();
/* TODO(fclem): Could be build on GPU or not be built at all. */
threading::parallel_for(IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
for (int p : range) {
for (int i : IndexRange(tri_count_per_point)) {
data[p * tri_count_per_point + i] = uint3(half_octahedron_tris[i]) | (p << 3);
}
}
});
GPU_indexbuf_build_in_place_ex(
&builder, 0, primitive_len * 3, false, cache.eval_cache.geom_indices);
}
static void pointcloud_extract_position_and_radius(const PointCloud &pointcloud,
PointCloudBatchCache &cache)
{
const bke::AttributeAccessor attributes = pointcloud.attributes();
const Span<float3> positions = pointcloud.positions();
const VArray<float> radii = *attributes.lookup<float>("radius");
static GPUVertFormat format = {0};
if (format.attr_len == 0) {
GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 4, GPU_FETCH_FLOAT);
}
GPUUsageType usage_flag = GPU_USAGE_STATIC | GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY;
GPU_vertbuf_init_with_format_ex(*cache.eval_cache.pos_rad, format, usage_flag);
GPU_vertbuf_data_alloc(*cache.eval_cache.pos_rad, positions.size());
MutableSpan<float4> vbo_data = cache.eval_cache.pos_rad->data<float4>();
if (radii) {
const VArraySpan<float> radii_span(std::move(radii));
threading::parallel_for(vbo_data.index_range(), 4096, [&](IndexRange range) {
for (const int i : range) {
vbo_data[i].x = positions[i].x;
vbo_data[i].y = positions[i].y;
vbo_data[i].z = positions[i].z;
/* TODO(fclem): remove multiplication. Here only for keeping the size correct for now. */
vbo_data[i].w = radii_span[i] * 100.0f;
}
});
}
else {
threading::parallel_for(vbo_data.index_range(), 4096, [&](IndexRange range) {
for (const int i : range) {
vbo_data[i].x = positions[i].x;
vbo_data[i].y = positions[i].y;
vbo_data[i].z = positions[i].z;
vbo_data[i].w = 1.0f;
}
});
}
}
static void pointcloud_extract_attribute(const PointCloud &pointcloud,
PointCloudBatchCache &cache,
const DRW_AttributeRequest &request,
int index)
{
gpu::VertBuf &attr_buf = *cache.eval_cache.attributes_buf[index];
const bke::AttributeAccessor attributes = pointcloud.attributes();
/* TODO(@kevindietrich): float4 is used for scalar attributes as the implicit conversion done
* by OpenGL to vec4 for a scalar `s` will produce a `vec4(s, 0, 0, 1)`. However, following
* the Blender convention, it should be `vec4(s, s, s, 1)`. This could be resolved using a
* similar texture state swizzle to map the attribute correctly as for volume attributes, so we
* can control the conversion ourselves. */
bke::AttributeReader<ColorGeometry4f> attribute = attributes.lookup_or_default<ColorGeometry4f>(
request.attribute_name, request.domain, {0.0f, 0.0f, 0.0f, 1.0f});
static GPUVertFormat format = {0};
if (format.attr_len == 0) {
GPU_vertformat_attr_add(&format, "attr", GPU_COMP_F32, 4, GPU_FETCH_FLOAT);
}
GPUUsageType usage_flag = GPU_USAGE_STATIC | GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY;
GPU_vertbuf_init_with_format_ex(attr_buf, format, usage_flag);
GPU_vertbuf_data_alloc(attr_buf, pointcloud.totpoint);
attribute.varray.materialize(attr_buf.data<ColorGeometry4f>());
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Private API
* \{ */
gpu::VertBuf *pointcloud_position_and_radius_get(PointCloud *pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
DRW_vbo_request(nullptr, &cache->eval_cache.pos_rad);
return cache->eval_cache.pos_rad;
}
gpu::Batch **pointcloud_surface_shaded_get(PointCloud *pointcloud,
GPUMaterial **gpu_materials,
int mat_len)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
DRW_Attributes attrs_needed;
drw_attributes_clear(&attrs_needed);
for (GPUMaterial *gpu_material : Span<GPUMaterial *>(gpu_materials, mat_len)) {
ListBase gpu_attrs = GPU_material_attributes(gpu_material);
LISTBASE_FOREACH (GPUMaterialAttribute *, gpu_attr, &gpu_attrs) {
const char *name = gpu_attr->name;
int layer_index;
eCustomDataType type;
bke::AttrDomain domain = bke::AttrDomain::Point;
if (!drw_custom_data_match_attribute(pointcloud->pdata, name, &layer_index, &type)) {
continue;
}
drw_attributes_add_request(&attrs_needed, name, type, layer_index, domain);
}
}
if (!drw_attributes_overlap(&cache->eval_cache.attr_used, &attrs_needed)) {
/* Some new attributes have been added, free all and start over. */
for (const int i : IndexRange(GPU_MAX_ATTR)) {
GPU_VERTBUF_DISCARD_SAFE(cache->eval_cache.attributes_buf[i]);
}
drw_attributes_merge(&cache->eval_cache.attr_used, &attrs_needed, cache->render_mutex);
}
drw_attributes_merge(&cache->eval_cache.attr_used_over_time, &attrs_needed, cache->render_mutex);
DRW_batch_request(&cache->eval_cache.surface_per_mat[0]);
return cache->eval_cache.surface_per_mat;
}
gpu::Batch *pointcloud_surface_get(PointCloud *pointcloud)
{
PointCloudBatchCache *cache = pointcloud_batch_cache_get(*pointcloud);
return DRW_batch_request(&cache->eval_cache.surface);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name API
* \{ */
gpu::Batch *DRW_pointcloud_batch_cache_get_dots(Object *ob)
{
PointCloud &pointcloud = *static_cast<PointCloud *>(ob->data);
PointCloudBatchCache *cache = pointcloud_batch_cache_get(pointcloud);
return DRW_batch_request(&cache->eval_cache.dots);
}
gpu::VertBuf *DRW_pointcloud_position_and_radius_buffer_get(Object *ob)
{
PointCloud &pointcloud = *static_cast<PointCloud *>(ob->data);
return pointcloud_position_and_radius_get(&pointcloud);
}
gpu::VertBuf **DRW_pointcloud_evaluated_attribute(PointCloud *pointcloud, const char *name)
{
PointCloudBatchCache &cache = *pointcloud_batch_cache_get(*pointcloud);
int layer_index;
eCustomDataType type;
bke::AttrDomain domain = bke::AttrDomain::Point;
if (drw_custom_data_match_attribute(pointcloud->pdata, name, &layer_index, &type)) {
DRW_Attributes attributes{};
drw_attributes_add_request(&attributes, name, type, layer_index, domain);
drw_attributes_merge(&cache.eval_cache.attr_used, &attributes, cache.render_mutex);
}
int request_i = -1;
for (const int i : IndexRange(cache.eval_cache.attr_used.num_requests)) {
if (STREQ(cache.eval_cache.attr_used.requests[i].attribute_name, name)) {
request_i = i;
break;
}
}
if (request_i == -1) {
return nullptr;
}
return &cache.eval_cache.attributes_buf[request_i];
}
void DRW_pointcloud_batch_cache_create_requested(Object *ob)
{
PointCloud *pointcloud = static_cast<PointCloud *>(ob->data);
PointCloudBatchCache &cache = *pointcloud_batch_cache_get(*pointcloud);
if (DRW_batch_requested(cache.eval_cache.dots, GPU_PRIM_POINTS)) {
DRW_vbo_request(cache.eval_cache.dots, &cache.eval_cache.pos_rad);
}
if (DRW_batch_requested(cache.eval_cache.surface, GPU_PRIM_TRIS)) {
DRW_ibo_request(cache.eval_cache.surface, &cache.eval_cache.geom_indices);
DRW_vbo_request(cache.eval_cache.surface, &cache.eval_cache.pos_rad);
}
for (int i = 0; i < cache.eval_cache.mat_len; i++) {
if (DRW_batch_requested(cache.eval_cache.surface_per_mat[i], GPU_PRIM_TRIS)) {
/* TODO(fclem): Per material ranges. */
DRW_ibo_request(cache.eval_cache.surface_per_mat[i], &cache.eval_cache.geom_indices);
}
}
for (int j = 0; j < cache.eval_cache.attr_used.num_requests; j++) {
DRW_vbo_request(nullptr, &cache.eval_cache.attributes_buf[j]);
if (DRW_vbo_requested(cache.eval_cache.attributes_buf[j])) {
pointcloud_extract_attribute(*pointcloud, cache, cache.eval_cache.attr_used.requests[j], j);
}
}
if (DRW_ibo_requested(cache.eval_cache.geom_indices)) {
pointcloud_extract_indices(*pointcloud, cache);
}
if (DRW_vbo_requested(cache.eval_cache.pos_rad)) {
pointcloud_extract_position_and_radius(*pointcloud, cache);
}
}
/** \} */
} // namespace blender::draw