Brings a lot of performance improvements and bug fixes. Keyframe selection in bundle-adjustment.blend goes down from 4.5 seconds to 3.0 on M2 Ultra. The reconstruction itself stays within 0.2 seconds. Full change log can be found at http://ceres-solver.org/version_history.html Pull Request: https://projects.blender.org/blender/blender/pulls/136896
333 lines
13 KiB
C++
333 lines
13 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2023 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: joydeepb@cs.utexas.edu (Joydeep Biswas)
|
|
|
|
#include <string>
|
|
|
|
#include "ceres/dense_cholesky.h"
|
|
#include "ceres/internal/config.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "glog/logging.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres::internal {
|
|
|
|
#ifndef CERES_NO_CUDA
|
|
|
|
TEST(CUDADenseCholesky, InvalidOptionOnCreate) {
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
auto dense_cuda_solver = CUDADenseCholesky::Create(options);
|
|
EXPECT_EQ(dense_cuda_solver, nullptr);
|
|
}
|
|
|
|
// Tests the CUDA Cholesky solver with a simple 4x4 matrix.
|
|
TEST(CUDADenseCholesky, Cholesky4x4Matrix) {
|
|
Eigen::Matrix4d A;
|
|
// clang-format off
|
|
A << 4, 12, -16, 0,
|
|
12, 37, -43, 0,
|
|
-16, -43, 98, 0,
|
|
0, 0, 0, 1;
|
|
// clang-format on
|
|
|
|
Vector b = Eigen::Vector4d::Ones();
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
auto dense_cuda_solver = CUDADenseCholesky::Create(options);
|
|
ASSERT_NE(dense_cuda_solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
Eigen::Vector4d x = Eigen::Vector4d::Zero();
|
|
ASSERT_EQ(dense_cuda_solver->Solve(b.data(), x.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
static const double kEpsilon = std::numeric_limits<double>::epsilon() * 10;
|
|
const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
|
|
EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
|
|
}
|
|
|
|
TEST(CUDADenseCholesky, SingularMatrix) {
|
|
Eigen::Matrix3d A;
|
|
// clang-format off
|
|
A << 1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 0;
|
|
// clang-format on
|
|
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
auto dense_cuda_solver = CUDADenseCholesky::Create(options);
|
|
ASSERT_NE(dense_cuda_solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
|
|
LinearSolverTerminationType::FAILURE);
|
|
}
|
|
|
|
TEST(CUDADenseCholesky, NegativeMatrix) {
|
|
Eigen::Matrix3d A;
|
|
// clang-format off
|
|
A << 1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, -1;
|
|
// clang-format on
|
|
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
auto dense_cuda_solver = CUDADenseCholesky::Create(options);
|
|
ASSERT_NE(dense_cuda_solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(dense_cuda_solver->Factorize(A.cols(), A.data(), &error_string),
|
|
LinearSolverTerminationType::FAILURE);
|
|
}
|
|
|
|
TEST(CUDADenseCholesky, MustFactorizeBeforeSolve) {
|
|
const Eigen::Vector3d b = Eigen::Vector3d::Ones();
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
auto dense_cuda_solver = CUDADenseCholesky::Create(options);
|
|
ASSERT_NE(dense_cuda_solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(dense_cuda_solver->Solve(b.data(), nullptr, &error_string),
|
|
LinearSolverTerminationType::FATAL_ERROR);
|
|
}
|
|
|
|
TEST(CUDADenseCholesky, Randomized1600x1600Tests) {
|
|
const int kNumCols = 1600;
|
|
using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>;
|
|
using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
|
using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
|
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = ceres::CUDA;
|
|
std::unique_ptr<DenseCholesky> dense_cholesky =
|
|
CUDADenseCholesky::Create(options);
|
|
|
|
const int kNumTrials = 20;
|
|
for (int i = 0; i < kNumTrials; ++i) {
|
|
LhsType lhs = LhsType::Random(kNumCols, kNumCols);
|
|
lhs = lhs.transpose() * lhs;
|
|
lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols);
|
|
SolutionType x_expected = SolutionType::Random(kNumCols);
|
|
RhsType rhs = lhs * x_expected;
|
|
SolutionType x_computed = SolutionType::Zero(kNumCols);
|
|
// Sanity check the random matrix sizes.
|
|
EXPECT_EQ(lhs.rows(), kNumCols);
|
|
EXPECT_EQ(lhs.cols(), kNumCols);
|
|
EXPECT_EQ(rhs.rows(), kNumCols);
|
|
EXPECT_EQ(rhs.cols(), 1);
|
|
EXPECT_EQ(x_expected.rows(), kNumCols);
|
|
EXPECT_EQ(x_expected.cols(), 1);
|
|
EXPECT_EQ(x_computed.rows(), kNumCols);
|
|
EXPECT_EQ(x_computed.cols(), 1);
|
|
LinearSolver::Summary summary;
|
|
summary.termination_type = dense_cholesky->FactorAndSolve(
|
|
kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message);
|
|
ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
|
|
static const double kEpsilon = std::numeric_limits<double>::epsilon() * 3e5;
|
|
ASSERT_NEAR(
|
|
(x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon);
|
|
}
|
|
}
|
|
|
|
TEST(CUDADenseCholeskyMixedPrecision, InvalidOptionsOnCreate) {
|
|
{
|
|
// Did not ask for CUDA, and did not ask for mixed precision.
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
|
|
ASSERT_EQ(solver, nullptr);
|
|
}
|
|
{
|
|
// Asked for CUDA, but did not ask for mixed precision.
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = ceres::CUDA;
|
|
auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
|
|
ASSERT_EQ(solver, nullptr);
|
|
}
|
|
}
|
|
|
|
// Tests the CUDA Cholesky solver with a simple 4x4 matrix.
|
|
TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix1Step) {
|
|
Eigen::Matrix4d A;
|
|
// clang-format off
|
|
// A common test Cholesky decomposition test matrix, see :
|
|
// https://en.wikipedia.org/w/index.php?title=Cholesky_decomposition&oldid=1080607368#Example
|
|
A << 4, 12, -16, 0,
|
|
12, 37, -43, 0,
|
|
-16, -43, 98, 0,
|
|
0, 0, 0, 1;
|
|
// clang-format on
|
|
|
|
const Eigen::Vector4d b = Eigen::Vector4d::Ones();
|
|
LinearSolver::Options options;
|
|
options.max_num_refinement_iterations = 0;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
options.use_mixed_precision_solves = true;
|
|
auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
|
|
ASSERT_NE(solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
Eigen::Vector4d x = Eigen::Vector4d::Zero();
|
|
ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
// A single step of the mixed precision solver will be equivalent to solving
|
|
// in low precision (FP32). Hence the tolerance is defined w.r.t. FP32 epsilon
|
|
// instead of FP64 epsilon.
|
|
static const double kEpsilon = std::numeric_limits<float>::epsilon() * 10;
|
|
const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
|
|
EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
|
|
}
|
|
|
|
// Tests the CUDA Cholesky solver with a simple 4x4 matrix.
|
|
TEST(CUDADenseCholeskyMixedPrecision, Cholesky4x4Matrix4Steps) {
|
|
Eigen::Matrix4d A;
|
|
// clang-format off
|
|
A << 4, 12, -16, 0,
|
|
12, 37, -43, 0,
|
|
-16, -43, 98, 0,
|
|
0, 0, 0, 1;
|
|
// clang-format on
|
|
|
|
const Eigen::Vector4d b = Eigen::Vector4d::Ones();
|
|
LinearSolver::Options options;
|
|
options.max_num_refinement_iterations = 3;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = CUDA;
|
|
options.use_mixed_precision_solves = true;
|
|
auto solver = CUDADenseCholeskyMixedPrecision::Create(options);
|
|
ASSERT_NE(solver, nullptr);
|
|
std::string error_string;
|
|
ASSERT_EQ(solver->Factorize(A.cols(), A.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
Eigen::Vector4d x = Eigen::Vector4d::Zero();
|
|
ASSERT_EQ(solver->Solve(b.data(), x.data(), &error_string),
|
|
LinearSolverTerminationType::SUCCESS);
|
|
// The error does not reduce beyond four iterations, and stagnates at this
|
|
// level of precision.
|
|
static const double kEpsilon = std::numeric_limits<double>::epsilon() * 100;
|
|
const Eigen::Vector4d x_expected(113.75 / 3.0, -31.0 / 3.0, 5.0 / 3.0, 1.0);
|
|
EXPECT_NEAR((x[0] - x_expected[0]) / x_expected[0], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[1] - x_expected[1]) / x_expected[1], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[2] - x_expected[2]) / x_expected[2], 0.0, kEpsilon);
|
|
EXPECT_NEAR((x[3] - x_expected[3]) / x_expected[3], 0.0, kEpsilon);
|
|
}
|
|
|
|
TEST(CUDADenseCholeskyMixedPrecision, Randomized1600x1600Tests) {
|
|
const int kNumCols = 1600;
|
|
using LhsType = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>;
|
|
using RhsType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
|
using SolutionType = Eigen::Matrix<double, Eigen::Dynamic, 1>;
|
|
|
|
LinearSolver::Options options;
|
|
ContextImpl context;
|
|
options.context = &context;
|
|
std::string error;
|
|
EXPECT_TRUE(context.InitCuda(&error)) << error;
|
|
options.dense_linear_algebra_library_type = ceres::CUDA;
|
|
options.use_mixed_precision_solves = true;
|
|
options.max_num_refinement_iterations = 20;
|
|
std::unique_ptr<CUDADenseCholeskyMixedPrecision> dense_cholesky =
|
|
CUDADenseCholeskyMixedPrecision::Create(options);
|
|
|
|
const int kNumTrials = 20;
|
|
for (int i = 0; i < kNumTrials; ++i) {
|
|
LhsType lhs = LhsType::Random(kNumCols, kNumCols);
|
|
lhs = lhs.transpose() * lhs;
|
|
lhs += 1e-3 * LhsType::Identity(kNumCols, kNumCols);
|
|
SolutionType x_expected = SolutionType::Random(kNumCols);
|
|
RhsType rhs = lhs * x_expected;
|
|
SolutionType x_computed = SolutionType::Zero(kNumCols);
|
|
// Sanity check the random matrix sizes.
|
|
EXPECT_EQ(lhs.rows(), kNumCols);
|
|
EXPECT_EQ(lhs.cols(), kNumCols);
|
|
EXPECT_EQ(rhs.rows(), kNumCols);
|
|
EXPECT_EQ(rhs.cols(), 1);
|
|
EXPECT_EQ(x_expected.rows(), kNumCols);
|
|
EXPECT_EQ(x_expected.cols(), 1);
|
|
EXPECT_EQ(x_computed.rows(), kNumCols);
|
|
EXPECT_EQ(x_computed.cols(), 1);
|
|
LinearSolver::Summary summary;
|
|
summary.termination_type = dense_cholesky->FactorAndSolve(
|
|
kNumCols, lhs.data(), rhs.data(), x_computed.data(), &summary.message);
|
|
ASSERT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
|
|
static const double kEpsilon = std::numeric_limits<double>::epsilon() * 1e6;
|
|
ASSERT_NEAR(
|
|
(x_computed - x_expected).norm() / x_expected.norm(), 0.0, kEpsilon);
|
|
}
|
|
}
|
|
|
|
#endif // CERES_NO_CUDA
|
|
|
|
} // namespace ceres::internal
|