Files
test2/source/blender/blenkernel/intern/curve_poly.cc
2025-04-12 19:31:29 +10:00

195 lines
6.3 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "BLI_math_rotation_legacy.hh"
#include "BLI_math_vector.hh"
#include "BKE_curves.hh"
namespace blender::bke::curves::poly {
static bool delta_dir(const float3 &pos, const float3 &next, float3 &r_delta_dir)
{
const float epsilon = 1e-6f;
if (UNLIKELY(math::almost_equal_relative(pos, next, epsilon))) {
return false;
}
r_delta_dir = math::normalize(next - pos);
return true;
}
/**
* Computes an approximate tangent from the normalized sum from
* the direction vectors to neighboring points on the curve.
*/
static float3 direction_bisect(const float3 &pos,
const float3 &next,
float3 &other_dir,
bool &is_equal)
{
const float epsilon = 1e-6f;
const bool prev_equal = is_equal;
is_equal = math::almost_equal_relative(pos, next, epsilon);
if (UNLIKELY(is_equal)) {
/* Return the direction relative the 'previous' point. If 'prev_equal' is true this is not
* the direction from previous point (it would be from the previous 'non-zero' segment).
*/
return other_dir;
}
const float3 prev_dir = other_dir;
other_dir = math::normalize(next - pos);
if (UNLIKELY(prev_equal)) {
/* Return direction to next point as previous direction is not from the adjacent point! */
return other_dir;
}
return math::normalize(prev_dir + other_dir);
}
void calculate_tangents(const Span<float3> positions,
const bool is_cyclic,
MutableSpan<float3> tangents)
{
BLI_assert(positions.size() == tangents.size());
if (positions.size() == 1) {
tangents.first() = float3(0.0f, 0.0f, 1.0f);
return;
}
/* Find an initial valid tangent. */
int first_valid_index = -1;
for (const int i : IndexRange(0, positions.size() - 1)) {
if (delta_dir(positions[i], positions[i + 1], tangents[i])) {
first_valid_index = i;
break;
}
}
if (first_valid_index == -1) {
/* If all tangents used the fallback, it means that all positions are (almost) the same. Just
* use the up-vector as default tangent. */
const float3 up_vector{0.0f, 0.0f, 1.0f};
tangents.fill(up_vector);
return;
}
if (first_valid_index > 0) {
tangents.slice(0, first_valid_index).fill(tangents[first_valid_index]);
}
/* Calculate curve tangents using the delta from previous iteration(s). */
float3 prev_delta = tangents[first_valid_index];
bool prev_equal = false;
for (const int i : positions.index_range().drop_front(first_valid_index + 1).drop_back(1)) {
tangents[i] = direction_bisect(positions[i], positions[i + 1], prev_delta, prev_equal);
}
if (is_cyclic) {
const float3 &first = positions.first();
tangents.last() = direction_bisect(positions.last(), first, prev_delta, prev_equal);
tangents.first() = direction_bisect(first, positions[1], prev_delta, prev_equal);
}
else if (!delta_dir(positions.last(1), positions.last(), tangents.last())) {
tangents.last() = prev_delta;
}
}
void calculate_normals_z_up(const Span<float3> tangents, MutableSpan<float3> normals)
{
BLI_assert(normals.size() == tangents.size());
/* Same as in `vec_to_quat`. */
const float epsilon = 1e-4f;
for (const int i : normals.index_range()) {
const float3 &tangent = tangents[i];
if (std::abs(tangent.x) + std::abs(tangent.y) < epsilon) {
normals[i] = {1.0f, 0.0f, 0.0f};
}
else {
normals[i] = math::normalize(float3(tangent.y, -tangent.x, 0.0f));
}
}
}
/**
* Rotate the last normal in the same way the tangent has been rotated.
*/
static float3 calculate_next_normal(const float3 &last_normal,
const float3 &last_tangent,
const float3 &current_tangent)
{
if (math::is_zero(last_tangent) || math::is_zero(current_tangent)) {
return last_normal;
}
const float angle = angle_normalized_v3v3(last_tangent, current_tangent);
if (angle != 0.0f) {
const float3 axis = math::normalize(math::cross(last_tangent, current_tangent));
if (LIKELY(!math::is_zero(axis))) {
/* The iterative process here (computing the current normal by rotating the previous one) can
* accumulate small floating point errors, leading to 'not enough' normalized results at some
* point (see #121169). */
return math::normalize(math::rotate_direction_around_axis(last_normal, axis, angle));
}
}
return last_normal;
}
void calculate_normals_minimum(const Span<float3> tangents,
const bool cyclic,
MutableSpan<float3> normals)
{
BLI_assert(normals.size() == tangents.size());
if (normals.is_empty()) {
return;
}
const float epsilon = 1e-4f;
/* Set initial normal. */
const float3 &first_tangent = tangents.first();
if (UNLIKELY(fabs(first_tangent.x) + fabs(first_tangent.y) < epsilon)) {
normals.first() = {1.0f, 0.0f, 0.0f};
}
else {
normals.first() = math::normalize(float3(first_tangent.y, -first_tangent.x, 0.0f));
}
/* Forward normal with minimum twist along the entire curve. */
for (const int i : IndexRange(1, normals.size() - 1)) {
normals[i] = calculate_next_normal(normals[i - 1], tangents[i - 1], tangents[i]);
}
if (!cyclic) {
return;
}
/* Compute how much the first normal deviates from the normal that has been forwarded along the
* entire cyclic curve. */
const float3 uncorrected_last_normal = calculate_next_normal(
normals.last(), tangents.last(), tangents.first());
float correction_angle = angle_signed_on_axis_v3v3_v3(
normals.first(), uncorrected_last_normal, tangents.first());
if (correction_angle > M_PI) {
correction_angle = correction_angle - 2 * M_PI;
}
/* Gradually apply correction by rotating all normals slightly around their tangents. */
const float angle_step = correction_angle / normals.size();
for (const int i : normals.index_range()) {
const float3 axis = tangents[i];
if (UNLIKELY(math::is_zero(axis))) {
continue;
}
const float angle = angle_step * i;
normals[i] = math::rotate_direction_around_axis(normals[i], axis, angle);
}
}
} // namespace blender::bke::curves::poly