Files
test2/intern/cycles/scene/geometry.cpp
Campbell Barton 5b9740c913 Cleanup: use braces for sources in intern/
Omitted intern/itasc as some of these sources are from KDL:
https://www.orocos.org/kdl.html
2023-09-17 09:05:40 +10:00

1134 lines
34 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "bvh/bvh.h"
#include "bvh/bvh2.h"
#include "device/device.h"
#include "scene/attribute.h"
#include "scene/camera.h"
#include "scene/geometry.h"
#include "scene/hair.h"
#include "scene/light.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/osl.h"
#include "scene/pointcloud.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/shader_nodes.h"
#include "scene/stats.h"
#include "scene/volume.h"
#include "subd/patch_table.h"
#include "subd/split.h"
#ifdef WITH_OSL
# include "kernel/osl/globals.h"
#endif
#include "util/foreach.h"
#include "util/log.h"
#include "util/progress.h"
#include "util/task.h"
CCL_NAMESPACE_BEGIN
/* Geometry */
NODE_ABSTRACT_DEFINE(Geometry)
{
NodeType *type = NodeType::add("geometry_base", NULL);
SOCKET_UINT(motion_steps, "Motion Steps", 3);
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
SOCKET_NODE_ARRAY(used_shaders, "Shaders", Shader::get_node_type());
return type;
}
Geometry::Geometry(const NodeType *node_type, const Type type)
: Node(node_type), geometry_type(type), attributes(this, ATTR_PRIM_GEOMETRY)
{
need_update_rebuild = false;
need_update_bvh_for_offset = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
bounds = BoundBox::empty;
has_volume = false;
has_surface_bssrdf = false;
bvh = NULL;
attr_map_offset = 0;
prim_offset = 0;
}
Geometry::~Geometry()
{
dereference_all_used_nodes();
delete bvh;
}
void Geometry::clear(bool preserve_shaders)
{
if (!preserve_shaders) {
used_shaders.clear();
}
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
tag_modified();
}
float Geometry::motion_time(int step) const
{
return (motion_steps > 1) ? 2.0f * step / (motion_steps - 1) - 1.0f : 0.0f;
}
int Geometry::motion_step(float time) const
{
if (motion_steps > 1) {
int attr_step = 0;
for (int step = 0; step < motion_steps; step++) {
float step_time = motion_time(step);
if (step_time == time) {
return attr_step;
}
/* Center step is stored in a separate attribute. */
if (step != motion_steps / 2) {
attr_step++;
}
}
}
return -1;
}
bool Geometry::need_build_bvh(BVHLayout layout) const
{
return is_instanced() || layout == BVH_LAYOUT_OPTIX || layout == BVH_LAYOUT_MULTI_OPTIX ||
layout == BVH_LAYOUT_METAL || layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE ||
layout == BVH_LAYOUT_MULTI_METAL || layout == BVH_LAYOUT_MULTI_METAL_EMBREE ||
layout == BVH_LAYOUT_HIPRT || layout == BVH_LAYOUT_MULTI_HIPRT ||
layout == BVH_LAYOUT_MULTI_HIPRT_EMBREE || layout == BVH_LAYOUT_EMBREEGPU ||
layout == BVH_LAYOUT_MULTI_EMBREEGPU || layout == BVH_LAYOUT_MULTI_EMBREEGPU_EMBREE;
}
bool Geometry::is_instanced() const
{
/* Currently we treat subsurface objects as instanced.
*
* While it might be not very optimal for ray traversal, it avoids having
* duplicated BVH in the memory, saving quite some space.
*/
return !transform_applied || has_surface_bssrdf;
}
bool Geometry::has_true_displacement() const
{
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->has_displacement && shader->get_displacement_method() != DISPLACE_BUMP) {
return true;
}
}
return false;
}
bool Geometry::has_motion_blur() const
{
return (use_motion_blur && attributes.find(ATTR_STD_MOTION_VERTEX_POSITION));
}
void Geometry::tag_update(Scene *scene, bool rebuild)
{
if (rebuild) {
need_update_rebuild = true;
scene->light_manager->tag_update(scene, LightManager::MESH_NEED_REBUILD);
}
else {
foreach (Node *node, used_shaders) {
Shader *shader = static_cast<Shader *>(node);
if (shader->emission_sampling != EMISSION_SAMPLING_NONE) {
scene->light_manager->tag_update(scene, LightManager::EMISSIVE_MESH_MODIFIED);
break;
}
}
}
scene->geometry_manager->tag_update(scene, GeometryManager::GEOMETRY_MODIFIED);
}
void Geometry::tag_bvh_update(bool rebuild)
{
tag_modified();
if (rebuild) {
need_update_rebuild = true;
}
}
/* Geometry Manager */
GeometryManager::GeometryManager()
{
update_flags = UPDATE_ALL;
need_flags_update = true;
}
GeometryManager::~GeometryManager() {}
void GeometryManager::update_osl_globals(Device *device, Scene *scene)
{
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals *)device->get_cpu_osl_memory();
if (og == nullptr) {
/* Can happen when rendering with multiple GPUs, but no CPU (in which case the name maps filled
* below are not used anyway) */
return;
}
og->object_name_map.clear();
og->object_names.clear();
for (size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
}
#else
(void)device;
(void)scene;
#endif
}
static void update_device_flags_attribute(uint32_t &device_update_flags,
const AttributeSet &attributes)
{
foreach (const Attribute &attr, attributes.attributes) {
if (!attr.modified) {
continue;
}
AttrKernelDataType kernel_type = Attribute::kernel_type(attr);
switch (kernel_type) {
case AttrKernelDataType::FLOAT: {
device_update_flags |= ATTR_FLOAT_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT2: {
device_update_flags |= ATTR_FLOAT2_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT3: {
device_update_flags |= ATTR_FLOAT3_MODIFIED;
break;
}
case AttrKernelDataType::FLOAT4: {
device_update_flags |= ATTR_FLOAT4_MODIFIED;
break;
}
case AttrKernelDataType::UCHAR4: {
device_update_flags |= ATTR_UCHAR4_MODIFIED;
break;
}
case AttrKernelDataType::NUM: {
break;
}
}
}
}
static void update_attribute_realloc_flags(uint32_t &device_update_flags,
const AttributeSet &attributes)
{
if (attributes.modified(AttrKernelDataType::FLOAT)) {
device_update_flags |= ATTR_FLOAT_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT2)) {
device_update_flags |= ATTR_FLOAT2_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT3)) {
device_update_flags |= ATTR_FLOAT3_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::FLOAT4)) {
device_update_flags |= ATTR_FLOAT4_NEEDS_REALLOC;
}
if (attributes.modified(AttrKernelDataType::UCHAR4)) {
device_update_flags |= ATTR_UCHAR4_NEEDS_REALLOC;
}
}
void GeometryManager::geom_calc_offset(Scene *scene, BVHLayout bvh_layout)
{
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_size = 0;
size_t curve_key_size = 0;
size_t curve_segment_size = 0;
size_t point_size = 0;
size_t patch_size = 0;
size_t face_size = 0;
size_t corner_size = 0;
foreach (Geometry *geom, scene->geometry) {
bool prim_offset_changed = false;
if (geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME) {
Mesh *mesh = static_cast<Mesh *>(geom);
prim_offset_changed = (mesh->prim_offset != tri_size);
mesh->vert_offset = vert_size;
mesh->prim_offset = tri_size;
mesh->patch_offset = patch_size;
mesh->face_offset = face_size;
mesh->corner_offset = corner_size;
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
if (mesh->get_num_subd_faces()) {
Mesh::SubdFace last = mesh->get_subd_face(mesh->get_num_subd_faces() - 1);
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if (mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
face_size += mesh->get_num_subd_faces();
corner_size += mesh->subd_face_corners.size();
}
else if (geom->is_hair()) {
Hair *hair = static_cast<Hair *>(geom);
prim_offset_changed = (hair->curve_segment_offset != curve_segment_size);
hair->curve_key_offset = curve_key_size;
hair->curve_segment_offset = curve_segment_size;
hair->prim_offset = curve_size;
curve_size += hair->num_curves();
curve_key_size += hair->get_curve_keys().size();
curve_segment_size += hair->num_segments();
}
else if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
prim_offset_changed = (pointcloud->prim_offset != point_size);
pointcloud->prim_offset = point_size;
point_size += pointcloud->num_points();
}
if (prim_offset_changed) {
/* Need to rebuild BVH in OptiX, since refit only allows modified mesh data there */
const bool has_optix_bvh = bvh_layout == BVH_LAYOUT_OPTIX ||
bvh_layout == BVH_LAYOUT_MULTI_OPTIX ||
bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE;
geom->need_update_rebuild |= has_optix_bvh;
geom->need_update_bvh_for_offset = true;
}
}
}
void GeometryManager::device_update_preprocess(Device *device, Scene *scene, Progress &progress)
{
if (!need_update() && !need_flags_update) {
return;
}
uint32_t device_update_flags = 0;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update_preprocess", time});
}
});
progress.set_status("Updating Meshes Flags");
/* Update flags. */
bool volume_images_updated = false;
foreach (Geometry *geom, scene->geometry) {
geom->has_volume = false;
update_attribute_realloc_flags(device_update_flags, geom->attributes);
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
update_attribute_realloc_flags(device_update_flags, mesh->subd_attributes);
}
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
if (shader->has_volume) {
geom->has_volume = true;
}
if (shader->has_surface_bssrdf) {
geom->has_surface_bssrdf = true;
}
if (shader->need_update_uvs) {
device_update_flags |= ATTR_FLOAT2_NEEDS_REALLOC;
/* Attributes might need to be tessellated if added. */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
mesh->tag_modified();
}
}
}
if (shader->need_update_attribute) {
device_update_flags |= ATTRS_NEED_REALLOC;
/* Attributes might need to be tessellated if added. */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
mesh->tag_modified();
}
}
}
if (shader->need_update_displacement) {
/* tag displacement related sockets as modified */
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
mesh->tag_verts_modified();
mesh->tag_subd_dicing_rate_modified();
mesh->tag_subd_max_level_modified();
mesh->tag_subd_objecttoworld_modified();
device_update_flags |= ATTRS_NEED_REALLOC;
}
}
}
/* only check for modified attributes if we do not need to reallocate them already */
if ((device_update_flags & ATTRS_NEED_REALLOC) == 0) {
update_device_flags_attribute(device_update_flags, geom->attributes);
/* don't check for subd_attributes, as if they were modified, we would need to reallocate
* anyway */
}
/* Re-create volume mesh if we will rebuild or refit the BVH. Note we
* should only do it in that case, otherwise the BVH and mesh can go
* out of sync. */
if (geom->is_modified() && geom->geometry_type == Geometry::VOLUME) {
/* Create volume meshes if there is voxel data. */
if (!volume_images_updated) {
progress.set_status("Updating Meshes Volume Bounds");
device_update_volume_images(device, scene, progress);
volume_images_updated = true;
}
Volume *volume = static_cast<Volume *>(geom);
create_volume_mesh(scene, volume, progress);
/* always reallocate when we have a volume, as we need to rebuild the BVH */
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
if (geom->is_hair()) {
/* Set curve shape, still a global scene setting for now. */
Hair *hair = static_cast<Hair *>(geom);
hair->curve_shape = scene->params.hair_shape;
if (hair->need_update_rebuild) {
device_update_flags |= DEVICE_CURVE_DATA_NEEDS_REALLOC;
}
else if (hair->is_modified()) {
device_update_flags |= DEVICE_CURVE_DATA_MODIFIED;
}
}
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_update_rebuild) {
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
else if (mesh->is_modified()) {
device_update_flags |= DEVICE_MESH_DATA_MODIFIED;
}
}
if (geom->is_pointcloud()) {
PointCloud *pointcloud = static_cast<PointCloud *>(geom);
if (pointcloud->need_update_rebuild) {
device_update_flags |= DEVICE_POINT_DATA_NEEDS_REALLOC;
}
else if (pointcloud->is_modified()) {
device_update_flags |= DEVICE_POINT_DATA_MODIFIED;
}
}
}
if (update_flags & (MESH_ADDED | MESH_REMOVED)) {
device_update_flags |= DEVICE_MESH_DATA_NEEDS_REALLOC;
}
if (update_flags & (HAIR_ADDED | HAIR_REMOVED)) {
device_update_flags |= DEVICE_CURVE_DATA_NEEDS_REALLOC;
}
if (update_flags & (POINT_ADDED | POINT_REMOVED)) {
device_update_flags |= DEVICE_POINT_DATA_NEEDS_REALLOC;
}
/* tag the device arrays for reallocation or modification */
DeviceScene *dscene = &scene->dscene;
if (device_update_flags & (DEVICE_MESH_DATA_NEEDS_REALLOC | DEVICE_CURVE_DATA_NEEDS_REALLOC |
DEVICE_POINT_DATA_NEEDS_REALLOC))
{
delete scene->bvh;
scene->bvh = nullptr;
dscene->bvh_nodes.tag_realloc();
dscene->bvh_leaf_nodes.tag_realloc();
dscene->object_node.tag_realloc();
dscene->prim_type.tag_realloc();
dscene->prim_visibility.tag_realloc();
dscene->prim_index.tag_realloc();
dscene->prim_object.tag_realloc();
dscene->prim_time.tag_realloc();
if (device_update_flags & DEVICE_MESH_DATA_NEEDS_REALLOC) {
dscene->tri_verts.tag_realloc();
dscene->tri_vnormal.tag_realloc();
dscene->tri_vindex.tag_realloc();
dscene->tri_patch.tag_realloc();
dscene->tri_patch_uv.tag_realloc();
dscene->tri_shader.tag_realloc();
dscene->patches.tag_realloc();
}
if (device_update_flags & DEVICE_CURVE_DATA_NEEDS_REALLOC) {
dscene->curves.tag_realloc();
dscene->curve_keys.tag_realloc();
dscene->curve_segments.tag_realloc();
}
if (device_update_flags & DEVICE_POINT_DATA_NEEDS_REALLOC) {
dscene->points.tag_realloc();
dscene->points_shader.tag_realloc();
}
}
if ((update_flags & VISIBILITY_MODIFIED) != 0) {
dscene->prim_visibility.tag_modified();
}
if (device_update_flags & ATTR_FLOAT_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT_MODIFIED) {
dscene->attributes_float.tag_modified();
}
if (device_update_flags & ATTR_FLOAT2_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float2.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT2_MODIFIED) {
dscene->attributes_float2.tag_modified();
}
if (device_update_flags & ATTR_FLOAT3_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float3.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT3_MODIFIED) {
dscene->attributes_float3.tag_modified();
}
if (device_update_flags & ATTR_FLOAT4_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_float4.tag_realloc();
}
else if (device_update_flags & ATTR_FLOAT4_MODIFIED) {
dscene->attributes_float4.tag_modified();
}
if (device_update_flags & ATTR_UCHAR4_NEEDS_REALLOC) {
dscene->attributes_map.tag_realloc();
dscene->attributes_uchar4.tag_realloc();
}
else if (device_update_flags & ATTR_UCHAR4_MODIFIED) {
dscene->attributes_uchar4.tag_modified();
}
if (device_update_flags & DEVICE_MESH_DATA_MODIFIED) {
/* if anything else than vertices or shaders are modified, we would need to reallocate, so
* these are the only arrays that can be updated */
dscene->tri_verts.tag_modified();
dscene->tri_vnormal.tag_modified();
dscene->tri_shader.tag_modified();
}
if (device_update_flags & DEVICE_CURVE_DATA_MODIFIED) {
dscene->curve_keys.tag_modified();
dscene->curves.tag_modified();
dscene->curve_segments.tag_modified();
}
if (device_update_flags & DEVICE_POINT_DATA_MODIFIED) {
dscene->points.tag_modified();
dscene->points_shader.tag_modified();
}
need_flags_update = false;
}
void GeometryManager::device_update_displacement_images(Device *device,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
bool has_osl_node = false;
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
/* Geometry-level check for hair shadow transparency.
* This matches the logic in the `Hair::update_shadow_transparency()`, avoiding access to
* possible non-loaded images. */
bool need_shadow_transparency = false;
if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
need_shadow_transparency = hair->need_shadow_transparency();
}
foreach (Node *node, geom->get_used_shaders()) {
Shader *shader = static_cast<Shader *>(node);
const bool is_true_displacement = (shader->has_displacement &&
shader->get_displacement_method() != DISPLACE_BUMP);
if (!is_true_displacement && !need_shadow_transparency) {
continue;
}
foreach (ShaderNode *node, shader->graph->nodes) {
if (node->special_type == SHADER_SPECIAL_TYPE_OSL) {
has_osl_node = true;
}
if (node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode *>(node);
for (int i = 0; i < image_node->handle.num_tiles(); i++) {
const int slot = image_node->handle.svm_slot(i);
if (slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
}
#ifdef WITH_OSL
/* If any OSL node is used for displacement, it may reference a texture. But it's
* unknown which ones, so have to load them all. */
if (has_osl_node) {
OSLShaderManager::osl_image_slots(device, image_manager, bump_images);
}
#endif
foreach (int slot, bump_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void GeometryManager::device_update_volume_images(Device *device, Scene *scene, Progress &progress)
{
progress.set_status("Updating Volume Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> volume_images;
foreach (Geometry *geom, scene->geometry) {
if (!geom->is_modified()) {
continue;
}
foreach (Attribute &attr, geom->attributes.attributes) {
if (attr.element != ATTR_ELEMENT_VOXEL) {
continue;
}
ImageHandle &handle = attr.data_voxel();
/* We can build directly from OpenVDB data structures, no need to
* load such images early. */
if (!handle.vdb_loader()) {
const int slot = handle.svm_slot();
if (slot != -1) {
volume_images.insert(slot);
}
}
}
}
foreach (int slot, volume_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void GeometryManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update()) {
return;
}
VLOG_INFO << "Total " << scene->geometry.size() << " meshes.";
bool true_displacement_used = false;
bool curve_shadow_transparency_used = false;
size_t total_tess_needed = 0;
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (normals)", time});
}
});
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
if ((geom->geometry_type == Geometry::MESH || geom->geometry_type == Geometry::VOLUME)) {
Mesh *mesh = static_cast<Mesh *>(geom);
/* Update normals. */
mesh->add_face_normals();
mesh->add_vertex_normals();
if (mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
mesh->add_undisplaced();
}
/* Test if we need tessellation. */
if (mesh->need_tesselation()) {
total_tess_needed++;
}
/* Test if we need displacement. */
if (mesh->has_true_displacement()) {
true_displacement_used = true;
}
}
else if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
if (hair->need_shadow_transparency()) {
curve_shadow_transparency_used = true;
}
}
if (progress.get_cancel()) {
return;
}
}
}
}
if (progress.get_cancel()) {
return;
}
/* Tessellate meshes that are using subdivision */
if (total_tess_needed) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (adaptive subdivision)", time});
}
});
Camera *dicing_camera = scene->dicing_camera;
dicing_camera->set_screen_size(dicing_camera->get_full_width(),
dicing_camera->get_full_height());
dicing_camera->update(scene);
size_t i = 0;
foreach (Geometry *geom, scene->geometry) {
if (!(geom->is_modified() && geom->is_mesh())) {
continue;
}
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->need_tesselation()) {
string msg = "Tessellating ";
if (mesh->name == "") {
msg += string_printf("%u/%u", (uint)(i + 1), (uint)total_tess_needed);
}
else {
msg += string_printf(
"%s %u/%u", mesh->name.c_str(), (uint)(i + 1), (uint)total_tess_needed);
}
progress.set_status("Updating Mesh", msg);
mesh->subd_params->camera = dicing_camera;
DiagSplit dsplit(*mesh->subd_params);
mesh->tessellate(&dsplit);
i++;
if (progress.get_cancel()) {
return;
}
}
}
if (progress.get_cancel()) {
return;
}
}
/* Update images needed for true displacement. */
bool old_need_object_flags_update = false;
if (true_displacement_used || curve_shadow_transparency_used) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: load images)", time});
}
});
device_update_displacement_images(device, scene, progress);
old_need_object_flags_update = scene->object_manager->need_flags_update;
scene->object_manager->device_update_flags(device, dscene, scene, progress, false);
}
/* Device update. */
device_free(device, dscene, false);
const BVHLayout bvh_layout = BVHParams::best_bvh_layout(
scene->params.bvh_layout, device->get_bvh_layout_mask(dscene->data.kernel_features));
geom_calc_offset(scene, bvh_layout);
if (true_displacement_used || curve_shadow_transparency_used) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: copy meshes to device)", time});
}
});
device_update_mesh(device, dscene, scene, progress);
}
if (progress.get_cancel()) {
return;
}
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (attributes)", time});
}
});
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Update displacement and hair shadow transparency. */
bool displacement_done = false;
bool curve_shadow_transparency_done = false;
size_t num_bvh = 0;
{
/* Copy constant data needed by shader evaluation. */
device->const_copy_to("data", &dscene->data, sizeof(dscene->data));
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (displacement)", time});
}
});
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified()) {
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (displace(device, scene, mesh, progress)) {
displacement_done = true;
}
}
else if (geom->geometry_type == Geometry::HAIR) {
Hair *hair = static_cast<Hair *>(geom);
if (hair->update_shadow_transparency(device, scene, progress)) {
curve_shadow_transparency_done = true;
}
}
}
if (geom->is_modified() || geom->need_update_bvh_for_offset) {
if (geom->need_build_bvh(bvh_layout)) {
num_bvh++;
}
}
if (progress.get_cancel()) {
return;
}
}
}
if (progress.get_cancel()) {
return;
}
/* Device re-update after displacement. */
if (displacement_done || curve_shadow_transparency_done) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (displacement: attributes)", time});
}
});
device_free(device, dscene, false);
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Update the BVH even when there is no geometry so the kernel's BVH data is still valid,
* especially when removing all of the objects during interactive renders.
* Also update the BVH if the transformations change, we cannot rely on tagging the Geometry
* as modified in this case, as we may accumulate displacement if the vertices do not also
* change. */
bool need_update_scene_bvh = (scene->bvh == nullptr ||
(update_flags & (TRANSFORM_MODIFIED | VISIBILITY_MODIFIED)) != 0);
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (build object BVHs)", time});
}
});
TaskPool pool;
size_t i = 0;
foreach (Geometry *geom, scene->geometry) {
if (geom->is_modified() || geom->need_update_bvh_for_offset) {
need_update_scene_bvh = true;
pool.push(function_bind(
&Geometry::compute_bvh, geom, device, dscene, &scene->params, &progress, i, num_bvh));
if (geom->need_build_bvh(bvh_layout)) {
i++;
}
}
}
TaskPool::Summary summary;
pool.wait_work(&summary);
VLOG_WORK << "Objects BVH build pool statistics:\n" << summary.full_report();
}
foreach (Shader *shader, scene->shaders) {
shader->need_update_uvs = false;
shader->need_update_attribute = false;
shader->need_update_displacement = false;
}
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
/* Update objects. */
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (compute bounds)", time});
}
});
foreach (Object *object, scene->objects) {
object->compute_bounds(motion_blur);
}
}
if (progress.get_cancel()) {
return;
}
if (need_update_scene_bvh) {
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry({"device_update (build scene BVH)", time});
}
});
device_update_bvh(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
/* Always set BVH layout again after displacement where it was set to none,
* to avoid ray-tracing at that stage. */
dscene->data.bvh.bvh_layout = BVHParams::best_bvh_layout(
scene->params.bvh_layout, device->get_bvh_layout_mask(dscene->data.kernel_features));
{
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->geometry.times.add_entry(
{"device_update (copy meshes to device)", time});
}
});
device_update_mesh(device, dscene, scene, progress);
if (progress.get_cancel()) {
return;
}
}
if (true_displacement_used) {
/* Re-tag flags for update, so they're re-evaluated
* for meshes with correct bounding boxes.
*
* This wouldn't cause wrong results, just true
* displacement might be less optimal to calculate.
*/
scene->object_manager->need_flags_update = old_need_object_flags_update;
}
/* unset flags */
foreach (Geometry *geom, scene->geometry) {
geom->clear_modified();
geom->attributes.clear_modified();
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
mesh->subd_attributes.clear_modified();
}
}
update_flags = UPDATE_NONE;
dscene->bvh_nodes.clear_modified();
dscene->bvh_leaf_nodes.clear_modified();
dscene->object_node.clear_modified();
dscene->prim_type.clear_modified();
dscene->prim_visibility.clear_modified();
dscene->prim_index.clear_modified();
dscene->prim_object.clear_modified();
dscene->prim_time.clear_modified();
dscene->tri_verts.clear_modified();
dscene->tri_shader.clear_modified();
dscene->tri_vindex.clear_modified();
dscene->tri_patch.clear_modified();
dscene->tri_vnormal.clear_modified();
dscene->tri_patch_uv.clear_modified();
dscene->curves.clear_modified();
dscene->curve_keys.clear_modified();
dscene->curve_segments.clear_modified();
dscene->points.clear_modified();
dscene->points_shader.clear_modified();
dscene->patches.clear_modified();
dscene->attributes_map.clear_modified();
dscene->attributes_float.clear_modified();
dscene->attributes_float2.clear_modified();
dscene->attributes_float3.clear_modified();
dscene->attributes_float4.clear_modified();
dscene->attributes_uchar4.clear_modified();
}
void GeometryManager::device_free(Device *device, DeviceScene *dscene, bool force_free)
{
dscene->bvh_nodes.free_if_need_realloc(force_free);
dscene->bvh_leaf_nodes.free_if_need_realloc(force_free);
dscene->object_node.free_if_need_realloc(force_free);
dscene->prim_type.free_if_need_realloc(force_free);
dscene->prim_visibility.free_if_need_realloc(force_free);
dscene->prim_index.free_if_need_realloc(force_free);
dscene->prim_object.free_if_need_realloc(force_free);
dscene->prim_time.free_if_need_realloc(force_free);
dscene->tri_verts.free_if_need_realloc(force_free);
dscene->tri_shader.free_if_need_realloc(force_free);
dscene->tri_vnormal.free_if_need_realloc(force_free);
dscene->tri_vindex.free_if_need_realloc(force_free);
dscene->tri_patch.free_if_need_realloc(force_free);
dscene->tri_patch_uv.free_if_need_realloc(force_free);
dscene->curves.free_if_need_realloc(force_free);
dscene->curve_keys.free_if_need_realloc(force_free);
dscene->curve_segments.free_if_need_realloc(force_free);
dscene->points.free_if_need_realloc(force_free);
dscene->points_shader.free_if_need_realloc(force_free);
dscene->patches.free_if_need_realloc(force_free);
dscene->attributes_map.free_if_need_realloc(force_free);
dscene->attributes_float.free_if_need_realloc(force_free);
dscene->attributes_float2.free_if_need_realloc(force_free);
dscene->attributes_float3.free_if_need_realloc(force_free);
dscene->attributes_float4.free_if_need_realloc(force_free);
dscene->attributes_uchar4.free_if_need_realloc(force_free);
/* Signal for shaders like displacement not to do ray tracing. */
dscene->data.bvh.bvh_layout = BVH_LAYOUT_NONE;
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals *)device->get_cpu_osl_memory();
if (og) {
og->object_name_map.clear();
og->object_names.clear();
}
#else
(void)device;
#endif
}
void GeometryManager::tag_update(Scene *scene, uint32_t flag)
{
update_flags |= flag;
/* do not tag the object manager for an update if it is the one who tagged us */
if ((flag & OBJECT_MANAGER) == 0) {
scene->object_manager->tag_update(scene, ObjectManager::GEOMETRY_MANAGER);
}
}
bool GeometryManager::need_update() const
{
return update_flags != UPDATE_NONE;
}
void GeometryManager::collect_statistics(const Scene *scene, RenderStats *stats)
{
foreach (Geometry *geometry, scene->geometry) {
stats->mesh.geometry.add_entry(
NamedSizeEntry(string(geometry->name.c_str()), geometry->get_total_size_in_bytes()));
}
}
CCL_NAMESPACE_END