Files
test2/tests/python/bl_usd_export_test.py
Jesse Yurkovich 2cdbe7b5f3 Fix: USD: Support color attributes on all relevant domains
Color primvars/attributes were historically treated as a special case
for both import and export. This was mostly done to align with how
painting and viewport display works in Blender. Export would generally
ignore color attributes except when they were found on a Mesh's Point or
FaceCorner domains. And import went out of its way to map incoming color
primvars to the FaceCorner domain in more situations than necessary.

To facilitate better roundtripping in Blender<=>USD workflows, and to
reduce code duplication, this PR teaches the common attribute utilities
how to handle color types. The color attributes will now work on all
relevant Mesh and Curve domains.

There were tests in place for this already but they were set to verify
the inverse state, i.e. the technically broken state, until this could
be fixed.

There remains one special case: "displayColor" primvars and attributes.
The "displayColor" is a special primvar in USD and is the de-facto way
to set a simple viewport color in that ecosystem. It must also be a
color3f type. In order to not regress import, if a "displayColor"
primvar is found on the Face domain we will map it to FaceCorner instead
so it can be displayed in the viewport; which has been the case for the
past several releases. We can drop this special-case if/when Blender can
display Face colors through the Viewport Shading "Attribute" color type.
Additionally, Blender will export this, and only this, color attribute
as a color3f.

Note: As was the case prior to this PR, the following 2 discrepancies
still prevent "perfect" round-trips:
- USD does not have an equivalent to Blender's byte colors; they are
  treated as float during IO
- Blender does not have an equivalent to USD's color3 types; they are
  treated as color4 during IO

Pull Request: https://projects.blender.org/blender/blender/pulls/127784
2024-09-24 19:05:55 +02:00

866 lines
42 KiB
Python

# SPDX-FileCopyrightText: 2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
import math
import pathlib
import pprint
import sys
import tempfile
import unittest
from pxr import Gf, Sdf, Usd, UsdGeom, UsdShade, UsdSkel, UsdUtils
import bpy
args = None
class AbstractUSDTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._tempdir = tempfile.TemporaryDirectory()
cls.testdir = args.testdir
cls.tempdir = pathlib.Path(cls._tempdir.name)
return cls
def setUp(self):
self.assertTrue(
self.testdir.exists(), "Test dir {0} should exist".format(self.testdir)
)
def tearDown(self):
self._tempdir.cleanup()
class USDExportTest(AbstractUSDTest):
def test_export_usdchecker(self):
"""Test exporting a scene and verifying it passes the usdchecker test suite"""
bpy.ops.wm.open_mainfile(
filepath=str(self.testdir / "usd_materials_export.blend")
)
export_path = self.tempdir / "usdchecker.usda"
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_materials=True,
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
checker = UsdUtils.ComplianceChecker(
arkit=False,
skipARKitRootLayerCheck=False,
rootPackageOnly=False,
skipVariants=False,
verbose=False,
)
checker.CheckCompliance(str(export_path))
failed_checks = {}
# The ComplianceChecker does not know how to resolve <UDIM> tags, so
# it will flag "textures/test_grid_<UDIM>.png" as a missing reference.
# That reference is in fact OK, so we skip the rule for this test.
to_skip = ("MissingReferenceChecker",)
for rule in checker._rules:
name = rule.__class__.__name__
if name in to_skip:
continue
issues = rule.GetFailedChecks() + rule.GetWarnings() + rule.GetErrors()
if not issues:
continue
failed_checks[name] = issues
self.assertFalse(failed_checks, pprint.pformat(failed_checks))
# Utility function to round each component of a vector to a few digits. The "+ 0" is to
# ensure that any negative zeros (-0.0) are converted to positive zeros (0.0).
@staticmethod
def round_vector(vector):
return [round(c, 4) + 0 for c in vector]
# Utility function to compare two Gf.Vec3d's
def compareVec3d(self, first, second):
places = 5
self.assertAlmostEqual(first[0], second[0], places)
self.assertAlmostEqual(first[1], second[1], places)
self.assertAlmostEqual(first[2], second[2], places)
def test_export_extents(self):
"""Test that exported scenes contain have a properly authored extent attribute on each boundable prim"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_extent_test.blend"))
export_path = self.tempdir / "usd_extent_test.usda"
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_materials=True,
evaluation_mode="RENDER",
convert_world_material=False,
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# if prims are missing, the exporter must have skipped some objects
stats = UsdUtils.ComputeUsdStageStats(str(export_path))
self.assertEqual(stats["totalPrimCount"], 16, "Unexpected number of prims")
# validate the overall world bounds of the scene
stage = Usd.Stage.Open(str(export_path))
scenePrim = stage.GetPrimAtPath("/root/scene")
bboxcache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), [UsdGeom.Tokens.default_])
bounds = bboxcache.ComputeWorldBound(scenePrim)
bound_min = bounds.GetRange().GetMin()
bound_max = bounds.GetRange().GetMax()
self.compareVec3d(bound_min, Gf.Vec3d(-5.752975881, -1, -2.798513651))
self.compareVec3d(bound_max, Gf.Vec3d(1, 2.9515805244, 2.7985136508))
# validate the locally authored extents
prim = stage.GetPrimAtPath("/root/scene/BigCube/BigCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -2.7985137))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 2.7985137))
prim = stage.GetPrimAtPath("/root/scene/LittleCube/LittleCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -1))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 1))
prim = stage.GetPrimAtPath("/root/scene/Volume/Volume")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(
Gf.Vec3d(extent[0]), Gf.Vec3d(-0.7313742, -0.68043584, -0.5801515)
)
self.compareVec3d(
Gf.Vec3d(extent[1]), Gf.Vec3d(0.7515701, 0.5500924, 0.9027928)
)
def test_material_transforms(self):
"""Validate correct export of image mapping parameters to the UsdTransform2d shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_transforms.usda"
res = bpy.ops.wm.usd_export(filepath=str(export_path), export_materials=True)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# Inspect the UsdTransform2d prim on the "Transforms" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Transforms/Mapping")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdTransform2d")
input_trans = shader.GetInput('translation')
input_rot = shader.GetInput('rotation')
input_scale = shader.GetInput('scale')
self.assertEqual(input_trans.Get(), [0.75, 0.75])
self.assertEqual(input_rot.Get(), 180)
self.assertEqual(input_scale.Get(), [0.5, 0.5])
def test_material_normal_maps(self):
"""Validate correct export of typical normal map setups to the UsdUVTexture shader def.
Namely validate that scale, bias, and ColorSpace settings are correct"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_normalmaps.usda"
res = bpy.ops.wm.usd_export(filepath=str(export_path), export_materials=True)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# Inspect the UsdUVTexture prim on the "typical" "NormalMap" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, 2, 2, 2])
self.assertEqual(input_bias.Get(), [-1, -1, -1, -1])
self.assertEqual(input_colorspace.Get(), 'raw')
# Inspect the UsdUVTexture prim on the "inverted" "NormalMap_Scale_Bias" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap_Scale_Bias/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, -2, 2, 1])
self.assertEqual(input_bias.Get(), [-1, 1, -1, 0])
self.assertEqual(input_colorspace.Get(), 'raw')
def test_material_opacity_threshold(self):
"""Validate correct export of opacity and opacity_threshold parameters to the UsdPreviewSurface shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_opacities.usda"
res = bpy.ops.wm.usd_export(filepath=str(export_path), export_materials=True)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# Inspect and validate the exported USD for the opaque blend case.
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Material/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
self.assertEqual(opacity_input.HasConnectedSource(), False,
"Opacity input should not be connected for opaque material")
self.assertAlmostEqual(opacity_input.Get(), 1.0, 2, "Opacity input should be set to 1")
# Inspect and validate the exported USD for the alpha clip w/Round node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_Round/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.5, 2, "Opacity threshold input should be 0.5")
# Inspect and validate the exported USD for the alpha clip w/LessThan+Invert node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_LessThanInvert/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.2, 2, "Opacity threshold input should be 0.2")
def check_primvar(self, prim, pv_name, pv_typeName, pv_interp, elements_len):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertTrue(pv.HasValue())
self.assertEqual(pv.GetTypeName().type.typeName, pv_typeName)
self.assertEqual(pv.GetInterpolation(), pv_interp)
self.assertEqual(len(pv.Get()), elements_len)
def check_primvar_missing(self, prim, pv_name):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertFalse(pv.HasValue())
def test_export_attributes(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_test.blend"))
export_path = self.tempdir / "usd_attribute_test.usda"
res = bpy.ops.wm.usd_export(filepath=str(export_path), evaluation_mode="RENDER")
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
# Validate all expected Mesh attributes. Notice that nothing on
# the Edge domain is supported by USD.
prim = stage.GetPrimAtPath("/root/Mesh/Mesh")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 4)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 4)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 4)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 4)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 4)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 4)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 4)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar_missing(prim, "e_bool")
self.check_primvar_missing(prim, "e_int8")
self.check_primvar_missing(prim, "e_int32")
self.check_primvar_missing(prim, "e_float")
self.check_primvar_missing(prim, "e_color")
self.check_primvar_missing(prim, "e_byte_color")
self.check_primvar_missing(prim, "e_vec2")
self.check_primvar_missing(prim, "e_vec3")
self.check_primvar_missing(prim, "e_quat")
self.check_primvar_missing(prim, "e_mat4x4")
self.check_primvar(prim, "f_bool", "VtArray<bool>", "uniform", 1)
self.check_primvar(prim, "f_int8", "VtArray<unsigned char>", "uniform", 1)
self.check_primvar(prim, "f_int32", "VtArray<int>", "uniform", 1)
self.check_primvar(prim, "f_float", "VtArray<float>", "uniform", 1)
self.check_primvar(prim, "f_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "f_byte_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "f_vec2", "VtArray<GfVec2f>", "uniform", 1)
self.check_primvar(prim, "f_vec3", "VtArray<GfVec3f>", "uniform", 1)
self.check_primvar(prim, "f_quat", "VtArray<GfQuatf>", "uniform", 1)
self.check_primvar_missing(prim, "f_mat4x4")
self.check_primvar(prim, "fc_bool", "VtArray<bool>", "faceVarying", 4)
self.check_primvar(prim, "fc_int8", "VtArray<unsigned char>", "faceVarying", 4)
self.check_primvar(prim, "fc_int32", "VtArray<int>", "faceVarying", 4)
self.check_primvar(prim, "fc_float", "VtArray<float>", "faceVarying", 4)
self.check_primvar(prim, "fc_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_byte_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec2", "VtArray<GfVec2f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec3", "VtArray<GfVec3f>", "faceVarying", 4)
self.check_primvar(prim, "fc_quat", "VtArray<GfQuatf>", "faceVarying", 4)
self.check_primvar_missing(prim, "fc_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_base/Curves/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 24)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 24)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 24)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 24)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 24)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 24)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 24)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 2)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 2)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 2)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 2)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 2)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 2)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 2)
self.check_primvar_missing(prim, "sp_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_bezier_base/Curves_bezier/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "varying", 10)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "varying", 10)
self.check_primvar(prim, "p_int32", "VtArray<int>", "varying", 10)
self.check_primvar(prim, "p_float", "VtArray<float>", "varying", 10)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "varying", 10)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "varying", 10)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "varying", 10)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 3)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 3)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 3)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 3)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 3)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 3)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 3)
self.check_primvar_missing(prim, "sp_mat4x4")
def test_export_attributes_varying(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_varying_test.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(1, 16):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(1)
export_path = self.tempdir / "usd_attribute_varying_test.usda"
res = bpy.ops.wm.usd_export(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
sparse_frames = [4.0, 5.0, 8.0, 9.0, 12.0, 13.0]
#
# Validate Mesh data
#
mesh1 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh1/mesh1"))
mesh2 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh2/mesh2"))
mesh3 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh3/mesh3"))
# Positions (should be sparsely written)
self.assertEqual(mesh1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(mesh3.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(mesh1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(mesh2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh3.GetVelocitiesAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(mesh1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh3).GetPrimvar("test").GetTimeSamples(), sparse_frames)
#
# Validate PointCloud data
#
points1 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud1/PointCloud"))
points2 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud2/PointCloud"))
points3 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud3/PointCloud"))
points4 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud4/PointCloud"))
# Positions (should be sparsely written)
self.assertEqual(points1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(points1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points3.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetVelocitiesAttr().GetTimeSamples(), [])
# Radius (should be sparsely written)
self.assertEqual(points1.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetWidthsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points4.GetWidthsAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(points1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points3).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points4).GetPrimvar("test").GetTimeSamples(), sparse_frames)
# Extents of the point cloud (should be sparsely written)
self.assertEqual(UsdGeom.Boundable(points1).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points2).GetExtentAttr().GetTimeSamples(), [])
self.assertEqual(UsdGeom.Boundable(points3).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points4).GetExtentAttr().GetTimeSamples(), [])
def test_export_mesh_subd(self):
"""Test exporting Subdivision Surface attributes and values"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_mesh_subd.blend"))
export_path = self.tempdir / "usd_mesh_subd.usda"
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_subdivision='BEST_MATCH',
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_none_boundary_smooth_all/mesh1"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'all')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_boundary_smooth_all/mesh2"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersOnly')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_boundary_smooth_all/mesh3"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus1')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_concave_boundary_smooth_all/mesh4"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus2')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_all/mesh5"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_all_boundary_smooth_all/mesh6"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'none')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_keep/mesh7"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeAndCorner')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_verts/crease_verts"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCornerIndicesAttr().Get()), 7)
usd_vert_sharpness = mesh.GetCornerSharpnessesAttr().Get()
self.assertEqual(len(usd_vert_sharpness), 7)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_vert_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp < 1]), 6)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp == 10]), 1)
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_edge/crease_edge"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCreaseIndicesAttr().Get()), 20)
usd_crease_lengths = mesh.GetCreaseLengthsAttr().Get()
self.assertEqual(len(usd_crease_lengths), 10)
self.assertTrue(all([length == 2 for length in usd_crease_lengths]))
usd_crease_sharpness = mesh.GetCreaseSharpnessesAttr().Get()
self.assertEqual(len(usd_crease_sharpness), 10)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_crease_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp < 1]), 9)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp == 10]), 1)
def test_export_mesh_triangulate(self):
"""Test exporting with different triangulation options for meshes."""
# Use the current scene to create simple geometry to triangulate
bpy.ops.mesh.primitive_plane_add(size=1)
bpy.ops.mesh.primitive_circle_add(fill_type='NGON', radius=1, vertices=7)
# We assume that triangulation is thoroughly tested elsewhere. Here we are only interested
# in checking that USD passes its operator properties through correctly. We use a minimal
# combination of quad and ngon methods to test.
tri_export_path1 = self.tempdir / "usd_mesh_tri_setup1.usda"
res = bpy.ops.wm.usd_export(
filepath=str(tri_export_path1),
triangulate_meshes=True,
quad_method='FIXED',
ngon_method='BEAUTY',
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {tri_export_path1}")
tri_export_path2 = self.tempdir / "usd_mesh_tri_setup2.usda"
res = bpy.ops.wm.usd_export(
filepath=str(tri_export_path2),
triangulate_meshes=True,
quad_method='FIXED_ALTERNATE',
ngon_method='CLIP',
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {tri_export_path2}")
stage1 = Usd.Stage.Open(str(tri_export_path1))
stage2 = Usd.Stage.Open(str(tri_export_path2))
# The Plane should have different vertex ordering because of the quad methods chosen
plane1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Plane/Plane"))
plane2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Plane/Plane"))
indices1 = plane1.GetFaceVertexIndicesAttr().Get()
indices2 = plane2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 6)
self.assertEqual(len(indices2), 6)
self.assertNotEqual(indices1, indices2)
# The Circle should have different vertex ordering because of the ngon methods chosen
circle1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Circle/Circle"))
circle2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Circle/Circle"))
indices1 = circle1.GetFaceVertexIndicesAttr().Get()
indices2 = circle2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 15)
self.assertEqual(len(indices2), 15)
self.assertNotEqual(indices1, indices2)
def test_export_animation(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_anim_test.blend"))
export_path = self.tempdir / "usd_anim_test.usda"
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_animation=True,
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
# Validate the simple object animation
prim = stage.GetPrimAtPath("/root/cube_anim_xform")
self.assertEqual(prim.GetTypeName(), "Xform")
loc_samples = UsdGeom.Xformable(prim).GetTranslateOp().GetTimeSamples()
rot_samples = UsdGeom.Xformable(prim).GetRotateXYZOp().GetTimeSamples()
scale_samples = UsdGeom.Xformable(prim).GetScaleOp().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0])
self.assertEqual(rot_samples, [1.0])
self.assertEqual(scale_samples, [1.0])
# Validate the armature animation
prim = stage.GetPrimAtPath("/root/Armature/Armature")
self.assertEqual(prim.GetTypeName(), "Skeleton")
prim_skel = UsdSkel.BindingAPI(prim)
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
self.assertEqual(anim.GetJointsAttr().Get(),
['Bone',
'Bone/Bone_001',
'Bone/Bone_001/Bone_002',
'Bone/Bone_001/Bone_002/Bone_003',
'Bone/Bone_001/Bone_002/Bone_003/Bone_004'])
loc_samples = anim.GetTranslationsAttr().GetTimeSamples()
rot_samples = anim.GetRotationsAttr().GetTimeSamples()
scale_samples = anim.GetScalesAttr().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(rot_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(scale_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
# Validate the shape key animation
prim = stage.GetPrimAtPath("/root/cube_anim_keys")
self.assertEqual(prim.GetTypeName(), "SkelRoot")
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("cube_anim_keys"))
self.assertEqual(prim_skel.GetBlendShapesAttr().Get(), ['Key_1'])
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("Skel"))
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
weight_samples = anim.GetBlendShapeWeightsAttr().GetTimeSamples()
self.assertEqual(weight_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
def test_export_xform_ops(self):
"""Test exporting different xform operation modes."""
# Create a simple scene and export using each of our xform op modes
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
loc = [1, 2, 3]
rot = [math.pi / 4, 0, math.pi / 8]
scale = [1, 2, 3]
bpy.ops.mesh.primitive_plane_add(location=loc, rotation=rot)
bpy.data.objects[0].scale = scale
test_path1 = self.tempdir / "temp_xform_trs_test.usda"
res = bpy.ops.wm.usd_export(filepath=str(test_path1), xform_op_mode='TRS')
self.assertEqual({'FINISHED'}, res, f"Unable to export to {test_path1}")
test_path2 = self.tempdir / "temp_xform_tos_test.usda"
res = bpy.ops.wm.usd_export(filepath=str(test_path2), xform_op_mode='TOS')
self.assertEqual({'FINISHED'}, res, f"Unable to export to {test_path2}")
test_path3 = self.tempdir / "temp_xform_mat_test.usda"
res = bpy.ops.wm.usd_export(filepath=str(test_path3), xform_op_mode='MAT')
self.assertEqual({'FINISHED'}, res, f"Unable to export to {test_path3}")
# Validate relevant details for each case
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
rot_degs = [math.degrees(rot[0]), math.degrees(rot[1]), math.degrees(rot[2])]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:rotateXYZ', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), rot_degs)
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
orient_quat = xf.GetOrientOp().Get()
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:orient', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(round(orient_quat.GetReal(), 4), 0.9061)
self.assertEqual(self.round_vector(orient_quat.GetImaginary()), [0.3753, 0.0747, 0.1802])
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path3))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
mat = xf.GetTransformOp().Get()
mat = [
self.round_vector(mat[0]), self.round_vector(mat[1]), self.round_vector(mat[2]), self.round_vector(mat[3])
]
expected = [
[0.9239, 0.3827, 0.0, 0.0],
[-0.5412, 1.3066, 1.4142, 0.0],
[0.8118, -1.9598, 2.1213, 0.0],
[1.0, 2.0, 3.0, 1.0]
]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:transform'])
self.assertEqual(mat, expected)
def test_export_orientation(self):
"""Test exporting different orientation configurations."""
# Using the empty scene is fine for this
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
test_path1 = self.tempdir / "temp_orientation_yup.usda"
res = bpy.ops.wm.usd_export(
filepath=str(test_path1),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Z',
export_global_up_selection='Y')
self.assertEqual({'FINISHED'}, res, f"Unable to export to {test_path1}")
test_path2 = self.tempdir / "temp_orientation_zup_rev.usda"
res = bpy.ops.wm.usd_export(
filepath=str(test_path2),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Y',
export_global_up_selection='Z')
self.assertEqual({'FINISHED'}, res, f"Unable to export to {test_path2}")
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [-90, 0, 0])
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [0, 0, 180])
def test_materialx_network(self):
"""Test exporting that a MaterialX export makes it out alright"""
bpy.ops.wm.open_mainfile(
filepath=str(self.testdir / "usd_materials_export.blend")
)
export_path = self.tempdir / "materialx.usda"
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_materials=True,
generate_materialx_network=True,
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
material_prim = stage.GetPrimAtPath("/root/_materials/Material")
self.assertTrue(material_prim, "Could not find Material prim")
material = UsdShade.Material(material_prim)
mtlx_output = material.GetOutput("mtlx:surface")
self.assertTrue(mtlx_output, "Could not find mtlx output")
connection, source_name, _ = UsdShade.ConnectableAPI.GetConnectedSource(
mtlx_output
) or [None, None, None]
self.assertTrue((connection and source_name), "Could not find mtlx output source")
shader = UsdShade.Shader(connection.GetPrim())
self.assertTrue(shader, "Connected prim is not a shader")
shader_id = shader.GetIdAttr().Get()
self.assertEqual(shader_id, "ND_standard_surface_surfaceshader", "Shader is not a Standard Surface")
def test_hooks(self):
"""Validate USD Hook integration for both import and export"""
# Create a simple scene with 1 object and 1 material
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
material = bpy.data.materials.new(name="test_material")
material.use_nodes = True
bpy.ops.mesh.primitive_plane_add()
bpy.data.objects[0].data.materials.append(material)
# Register both USD hooks
bpy.utils.register_class(USDHook1)
bpy.utils.register_class(USDHook2)
# Instruct them to do various actions inside their implementation
USDHookBase.instructions = {
"on_material_export": ["return False", "return True"],
"on_export": ["throw", "return True"],
"on_import": ["throw", "return True"],
}
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
test_path = self.tempdir / "hook.usda"
try:
bpy.ops.wm.usd_export(filepath=str(test_path))
except:
pass
try:
bpy.ops.wm.usd_import(filepath=str(test_path))
except:
pass
# Unregister the hooks. We do this here in case the following asserts fail.
bpy.utils.unregister_class(USDHook1)
bpy.utils.unregister_class(USDHook2)
# Validate that the Hooks executed and responded accordingly...
self.assertEqual(USDHookBase.responses["on_material_export"], ["returned False", "returned True"])
self.assertEqual(USDHookBase.responses["on_export"], ["threw exception", "returned True"])
self.assertEqual(USDHookBase.responses["on_import"], ["threw exception", "returned True"])
# Now that the hooks are unregistered they should not be executed for import and export.
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
bpy.ops.wm.usd_export(filepath=str(test_path))
bpy.ops.wm.usd_import(filepath=str(test_path))
self.assertEqual(USDHookBase.responses["on_material_export"], [])
self.assertEqual(USDHookBase.responses["on_export"], [])
self.assertEqual(USDHookBase.responses["on_import"], [])
class USDHookBase():
instructions = {}
responses = {}
@staticmethod
def follow_instructions(name, operation):
instruction = USDHookBase.instructions[operation].pop(0)
if instruction == "throw":
USDHookBase.responses[operation].append("threw exception")
raise RuntimeError(f"** {name} failing {operation} **")
elif instruction == "return False":
USDHookBase.responses[operation].append("returned False")
return False
USDHookBase.responses[operation].append("returned True")
return True
@staticmethod
def do_on_export(name, export_context):
stage = export_context.get_stage()
depsgraph = export_context.get_depsgraph()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
if len(depsgraph.ids) == 0:
raise RuntimeError("Unexpected failure: bad depsgraph")
return USDHookBase.follow_instructions(name, "on_export")
@staticmethod
def do_on_material_export(name, export_context, bl_material, usd_material):
stage = export_context.get_stage()
if stage.expired:
raise RuntimeError("Unexpected failure: bad stage")
if not usd_material.GetPrim().IsValid():
raise RuntimeError("Unexpected failure: bad usd_material")
if bl_material is None:
raise RuntimeError("Unexpected failure: bad bl_material")
return USDHookBase.follow_instructions(name, "on_material_export")
@staticmethod
def do_on_import(name, import_context):
stage = import_context.get_stage()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
return USDHookBase.follow_instructions(name, "on_import")
class USDHook1(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_1"
bl_label = "Hook 1"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook1.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook1.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook1.bl_label, import_context)
class USDHook2(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_2"
bl_label = "Hook 2"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook2.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook2.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook2.bl_label, import_context)
def main():
global args
import argparse
if "--" in sys.argv:
argv = [sys.argv[0]] + sys.argv[sys.argv.index("--") + 1:]
else:
argv = sys.argv
parser = argparse.ArgumentParser()
parser.add_argument("--testdir", required=True, type=pathlib.Path)
args, remaining = parser.parse_known_args(argv)
unittest.main(argv=remaining)
if __name__ == "__main__":
main()