Previously, it was only possible to bake all simulations at once. This is great for simple use-cases that, but in more complex setups one can have independent simulations that should also be baked independently. This patch allows baking individual simulation zones. Furthermore, each simulation zone can now also have its own bake path and simulation frame range. By default the simulation frame range is the scene frame range, but it can also be customized on the scene or simulation zone level. The bake path is generated based on the modifier bake path by default, but can be set to another absolute or relative (to the .blend file) path. The timeline drawing has been modified as well to be able to show more information in the case when some simulations are baked and others are not. Instead of showing a line for every simulation, it shows a condensed view of the important information using at most two lines: Is something baked? Is something valid or invalid? Also see #112232. Pull Request: https://projects.blender.org/blender/blender/pulls/112723
631 lines
22 KiB
C++
631 lines
22 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "BKE_node.hh"
|
|
#include "BKE_node_runtime.hh"
|
|
|
|
#include "DNA_node_types.h"
|
|
|
|
#include "BLI_function_ref.hh"
|
|
#include "BLI_stack.hh"
|
|
#include "BLI_task.hh"
|
|
#include "BLI_timeit.hh"
|
|
|
|
#include "NOD_geometry_nodes_lazy_function.hh"
|
|
|
|
namespace blender::bke::node_tree_runtime {
|
|
|
|
void preprocess_geometry_node_tree_for_evaluation(bNodeTree &tree_cow)
|
|
{
|
|
BLI_assert(tree_cow.type == NTREE_GEOMETRY);
|
|
/* Rebuild geometry nodes lazy function graph. */
|
|
tree_cow.runtime->geometry_nodes_lazy_function_graph_info.reset();
|
|
blender::nodes::ensure_geometry_nodes_lazy_function_graph(tree_cow);
|
|
}
|
|
|
|
static void update_node_vector(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
const Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
tree_runtime.group_nodes.clear();
|
|
tree_runtime.has_undefined_nodes_or_sockets = false;
|
|
for (const int i : nodes.index_range()) {
|
|
bNode &node = *nodes[i];
|
|
node.runtime->index_in_tree = i;
|
|
node.runtime->owner_tree = const_cast<bNodeTree *>(&ntree);
|
|
tree_runtime.has_undefined_nodes_or_sockets |= node.typeinfo == &bke::NodeTypeUndefined;
|
|
if (node.is_group()) {
|
|
tree_runtime.group_nodes.append(&node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_link_vector(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.links.clear();
|
|
LISTBASE_FOREACH (bNodeLink *, link, &ntree.links) {
|
|
/* Check that the link connects nodes within this tree. */
|
|
BLI_assert(tree_runtime.nodes_by_id.contains(link->fromnode));
|
|
BLI_assert(tree_runtime.nodes_by_id.contains(link->tonode));
|
|
|
|
tree_runtime.links.append(link);
|
|
}
|
|
}
|
|
|
|
static void update_socket_vectors_and_owner_node(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.sockets.clear();
|
|
tree_runtime.input_sockets.clear();
|
|
tree_runtime.output_sockets.clear();
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
bNodeRuntime &node_runtime = *node->runtime;
|
|
node_runtime.inputs.clear();
|
|
node_runtime.outputs.clear();
|
|
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
|
|
socket->runtime->index_in_node = node_runtime.inputs.append_and_get_index(socket);
|
|
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
|
|
socket->runtime->index_in_inout_sockets = tree_runtime.input_sockets.append_and_get_index(
|
|
socket);
|
|
socket->runtime->owner_node = node;
|
|
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo ==
|
|
&bke::NodeSocketTypeUndefined;
|
|
}
|
|
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
|
|
socket->runtime->index_in_node = node_runtime.outputs.append_and_get_index(socket);
|
|
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
|
|
socket->runtime->index_in_inout_sockets = tree_runtime.output_sockets.append_and_get_index(
|
|
socket);
|
|
socket->runtime->owner_node = node;
|
|
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo ==
|
|
&bke::NodeSocketTypeUndefined;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_panels(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
bNodeRuntime &node_runtime = *node->runtime;
|
|
node_runtime.panels.reinitialize(node->num_panel_states);
|
|
}
|
|
}
|
|
|
|
static void update_internal_link_inputs(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
socket->runtime->internal_link_input = nullptr;
|
|
}
|
|
for (bNodeLink &link : node->runtime->internal_links) {
|
|
link.tosock->runtime->internal_link_input = link.fromsock;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_directly_linked_links_and_sockets(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
for (bNodeSocket *socket : node->runtime->inputs) {
|
|
socket->runtime->directly_linked_links.clear();
|
|
socket->runtime->directly_linked_sockets.clear();
|
|
}
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
socket->runtime->directly_linked_links.clear();
|
|
socket->runtime->directly_linked_sockets.clear();
|
|
}
|
|
node->runtime->has_available_linked_inputs = false;
|
|
node->runtime->has_available_linked_outputs = false;
|
|
}
|
|
for (bNodeLink *link : tree_runtime.links) {
|
|
link->fromsock->runtime->directly_linked_links.append(link);
|
|
link->fromsock->runtime->directly_linked_sockets.append(link->tosock);
|
|
link->tosock->runtime->directly_linked_links.append(link);
|
|
if (link->is_available()) {
|
|
link->fromnode->runtime->has_available_linked_outputs = true;
|
|
link->tonode->runtime->has_available_linked_inputs = true;
|
|
}
|
|
}
|
|
for (bNodeSocket *socket : tree_runtime.input_sockets) {
|
|
if (socket->flag & SOCK_MULTI_INPUT) {
|
|
std::sort(socket->runtime->directly_linked_links.begin(),
|
|
socket->runtime->directly_linked_links.end(),
|
|
[&](const bNodeLink *a, const bNodeLink *b) {
|
|
return a->multi_input_socket_index > b->multi_input_socket_index;
|
|
});
|
|
}
|
|
}
|
|
for (bNodeSocket *socket : tree_runtime.input_sockets) {
|
|
for (bNodeLink *link : socket->runtime->directly_linked_links) {
|
|
/* Do this after sorting the input links. */
|
|
socket->runtime->directly_linked_sockets.append(link->fromsock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void find_logical_origins_for_socket_recursive(
|
|
bNodeSocket &input_socket,
|
|
bool only_follow_first_input_link,
|
|
Vector<bNodeSocket *, 16> &sockets_in_current_chain,
|
|
Vector<bNodeSocket *> &r_logical_origins,
|
|
Vector<bNodeSocket *> &r_skipped_origins)
|
|
{
|
|
if (sockets_in_current_chain.contains(&input_socket)) {
|
|
/* Protect against reroute recursions. */
|
|
return;
|
|
}
|
|
sockets_in_current_chain.append(&input_socket);
|
|
|
|
Span<bNodeLink *> links_to_check = input_socket.runtime->directly_linked_links;
|
|
if (only_follow_first_input_link) {
|
|
links_to_check = links_to_check.take_front(1);
|
|
}
|
|
for (bNodeLink *link : links_to_check) {
|
|
if (link->is_muted()) {
|
|
continue;
|
|
}
|
|
if (!link->is_available()) {
|
|
continue;
|
|
}
|
|
bNodeSocket &origin_socket = *link->fromsock;
|
|
bNode &origin_node = *link->fromnode;
|
|
if (!origin_socket.is_available()) {
|
|
/* Non available sockets are ignored. */
|
|
continue;
|
|
}
|
|
if (origin_node.type == NODE_REROUTE) {
|
|
bNodeSocket &reroute_input = *origin_node.runtime->inputs[0];
|
|
bNodeSocket &reroute_output = *origin_node.runtime->outputs[0];
|
|
r_skipped_origins.append(&reroute_input);
|
|
r_skipped_origins.append(&reroute_output);
|
|
find_logical_origins_for_socket_recursive(
|
|
reroute_input, false, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
|
|
continue;
|
|
}
|
|
if (origin_node.is_muted()) {
|
|
if (bNodeSocket *mute_input = origin_socket.runtime->internal_link_input) {
|
|
r_skipped_origins.append(&origin_socket);
|
|
r_skipped_origins.append(mute_input);
|
|
find_logical_origins_for_socket_recursive(
|
|
*mute_input, true, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
|
|
}
|
|
continue;
|
|
}
|
|
r_logical_origins.append(&origin_socket);
|
|
}
|
|
|
|
sockets_in_current_chain.pop_last();
|
|
}
|
|
|
|
static void update_logically_linked_sockets(const bNodeTree &ntree)
|
|
{
|
|
/* Compute logically linked sockets to inputs. */
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
bNode &node = *nodes[i];
|
|
for (bNodeSocket *socket : node.runtime->inputs) {
|
|
Vector<bNodeSocket *, 16> sockets_in_current_chain;
|
|
socket->runtime->logically_linked_sockets.clear();
|
|
socket->runtime->logically_linked_skipped_sockets.clear();
|
|
find_logical_origins_for_socket_recursive(
|
|
*socket,
|
|
false,
|
|
sockets_in_current_chain,
|
|
socket->runtime->logically_linked_sockets,
|
|
socket->runtime->logically_linked_skipped_sockets);
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Clear logically linked sockets to outputs. */
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
bNode &node = *nodes[i];
|
|
for (bNodeSocket *socket : node.runtime->outputs) {
|
|
socket->runtime->logically_linked_sockets.clear();
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Compute logically linked sockets to outputs using the previously computed logically linked
|
|
* sockets to inputs. */
|
|
for (const bNode *node : nodes) {
|
|
for (bNodeSocket *input_socket : node->runtime->inputs) {
|
|
for (bNodeSocket *output_socket : input_socket->runtime->logically_linked_sockets) {
|
|
output_socket->runtime->logically_linked_sockets.append(input_socket);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_nodes_by_type(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.nodes_by_type.clear();
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
tree_runtime.nodes_by_type.add(node->typeinfo, node);
|
|
}
|
|
}
|
|
|
|
static void update_sockets_by_identifier(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (bNode *node : nodes.slice(range)) {
|
|
node->runtime->inputs_by_identifier.clear();
|
|
node->runtime->outputs_by_identifier.clear();
|
|
for (bNodeSocket *socket : node->runtime->inputs) {
|
|
node->runtime->inputs_by_identifier.add_new(socket->identifier, socket);
|
|
}
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
node->runtime->outputs_by_identifier.add_new(socket->identifier, socket);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
enum class ToposortDirection {
|
|
LeftToRight,
|
|
RightToLeft,
|
|
};
|
|
|
|
struct ToposortNodeState {
|
|
bool is_done = false;
|
|
bool is_in_stack = false;
|
|
};
|
|
|
|
static Vector<const bNode *> get_implicit_origin_nodes(const bNodeTree &ntree, bNode &node)
|
|
{
|
|
Vector<const bNode *> origin_nodes;
|
|
if (all_zone_output_node_types().contains(node.type)) {
|
|
const bNodeZoneType &zone_type = *zone_type_by_node_type(node.type);
|
|
/* Can't use #zone_type.get_corresponding_input because that expects the topology cache to be
|
|
* build already, but we are still building it here. */
|
|
for (const bNode *input_node :
|
|
ntree.runtime->nodes_by_type.lookup(nodeTypeFind(zone_type.input_idname.c_str())))
|
|
{
|
|
if (zone_type.get_corresponding_output_id(*input_node) == node.identifier) {
|
|
origin_nodes.append(input_node);
|
|
}
|
|
}
|
|
}
|
|
return origin_nodes;
|
|
}
|
|
|
|
static Vector<const bNode *> get_implicit_target_nodes(const bNodeTree &ntree, bNode &node)
|
|
{
|
|
Vector<const bNode *> target_nodes;
|
|
if (all_zone_input_node_types().contains(node.type)) {
|
|
const bNodeZoneType &zone_type = *zone_type_by_node_type(node.type);
|
|
if (const bNode *output_node = zone_type.get_corresponding_output(ntree, node)) {
|
|
target_nodes.append(output_node);
|
|
}
|
|
}
|
|
return target_nodes;
|
|
}
|
|
|
|
static void toposort_from_start_node(const bNodeTree &ntree,
|
|
const ToposortDirection direction,
|
|
bNode &start_node,
|
|
MutableSpan<ToposortNodeState> node_states,
|
|
Vector<bNode *> &r_sorted_nodes,
|
|
bool &r_cycle_detected)
|
|
{
|
|
struct Item {
|
|
bNode *node;
|
|
int socket_index = 0;
|
|
int link_index = 0;
|
|
int implicit_link_index = 0;
|
|
};
|
|
|
|
Stack<Item, 64> nodes_to_check;
|
|
nodes_to_check.push({&start_node});
|
|
node_states[start_node.index()].is_in_stack = true;
|
|
while (!nodes_to_check.is_empty()) {
|
|
Item &item = nodes_to_check.peek();
|
|
bNode &node = *item.node;
|
|
bool pushed_node = false;
|
|
|
|
auto handle_linked_node = [&](bNode &linked_node) {
|
|
ToposortNodeState &linked_node_state = node_states[linked_node.index()];
|
|
if (linked_node_state.is_done) {
|
|
/* The linked node has already been visited. */
|
|
return true;
|
|
}
|
|
if (linked_node_state.is_in_stack) {
|
|
r_cycle_detected = true;
|
|
}
|
|
else {
|
|
nodes_to_check.push({&linked_node});
|
|
linked_node_state.is_in_stack = true;
|
|
pushed_node = true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
const Span<bNodeSocket *> sockets = (direction == ToposortDirection::LeftToRight) ?
|
|
node.runtime->inputs :
|
|
node.runtime->outputs;
|
|
while (true) {
|
|
if (item.socket_index == sockets.size()) {
|
|
/* All sockets have already been visited. */
|
|
break;
|
|
}
|
|
bNodeSocket &socket = *sockets[item.socket_index];
|
|
const Span<bNodeLink *> linked_links = socket.runtime->directly_linked_links;
|
|
if (item.link_index == linked_links.size()) {
|
|
/* All links connected to this socket have already been visited. */
|
|
item.socket_index++;
|
|
item.link_index = 0;
|
|
continue;
|
|
}
|
|
bNodeLink &link = *linked_links[item.link_index];
|
|
if (!link.is_available()) {
|
|
/* Ignore unavailable links. */
|
|
item.link_index++;
|
|
continue;
|
|
}
|
|
bNodeSocket &linked_socket = *socket.runtime->directly_linked_sockets[item.link_index];
|
|
bNode &linked_node = *linked_socket.runtime->owner_node;
|
|
if (handle_linked_node(linked_node)) {
|
|
/* The linked node has already been visited. */
|
|
item.link_index++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!pushed_node) {
|
|
/* Some nodes are internally linked without an explicit `bNodeLink`. The toposort should
|
|
* still order them correctly and find cycles. */
|
|
const Vector<const bNode *> implicitly_linked_nodes =
|
|
(direction == ToposortDirection::LeftToRight) ? get_implicit_origin_nodes(ntree, node) :
|
|
get_implicit_target_nodes(ntree, node);
|
|
while (true) {
|
|
if (item.implicit_link_index == implicitly_linked_nodes.size()) {
|
|
/* All implicitly linked nodes have already been visited. */
|
|
break;
|
|
}
|
|
const bNode &linked_node = *implicitly_linked_nodes[item.implicit_link_index];
|
|
if (handle_linked_node(const_cast<bNode &>(linked_node))) {
|
|
/* The implicitly linked node has already been visited. */
|
|
item.implicit_link_index++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If no other element has been pushed, the current node can be pushed to the sorted list.
|
|
*/
|
|
if (!pushed_node) {
|
|
ToposortNodeState &node_state = node_states[node.index()];
|
|
node_state.is_done = true;
|
|
node_state.is_in_stack = false;
|
|
r_sorted_nodes.append(&node);
|
|
nodes_to_check.pop();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_toposort(const bNodeTree &ntree,
|
|
const ToposortDirection direction,
|
|
Vector<bNode *> &r_sorted_nodes,
|
|
bool &r_cycle_detected)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
r_sorted_nodes.clear();
|
|
r_sorted_nodes.reserve(tree_runtime.nodes_by_id.size());
|
|
r_cycle_detected = false;
|
|
|
|
Array<ToposortNodeState> node_states(tree_runtime.nodes_by_id.size());
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
if (node_states[node->index()].is_done) {
|
|
/* Ignore nodes that are done already. */
|
|
continue;
|
|
}
|
|
if ((direction == ToposortDirection::LeftToRight) ?
|
|
node->runtime->has_available_linked_outputs :
|
|
node->runtime->has_available_linked_inputs)
|
|
{
|
|
/* Ignore non-start nodes. */
|
|
continue;
|
|
}
|
|
toposort_from_start_node(
|
|
ntree, direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
|
|
}
|
|
|
|
if (r_sorted_nodes.size() < tree_runtime.nodes_by_id.size()) {
|
|
r_cycle_detected = true;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
if (node_states[node->index()].is_done) {
|
|
/* Ignore nodes that are done already. */
|
|
continue;
|
|
}
|
|
/* Start toposort at this node which is somewhere in the middle of a loop. */
|
|
toposort_from_start_node(
|
|
ntree, direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
|
|
}
|
|
}
|
|
|
|
BLI_assert(tree_runtime.nodes_by_id.size() == r_sorted_nodes.size());
|
|
}
|
|
|
|
static void update_root_frames(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
|
|
tree_runtime.root_frames.clear();
|
|
|
|
for (bNode *node : nodes) {
|
|
if (!node->parent && node->is_frame()) {
|
|
tree_runtime.root_frames.append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_direct_frames_childrens(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
|
|
for (bNode *node : nodes) {
|
|
node->runtime->direct_children_in_frame.clear();
|
|
}
|
|
|
|
for (bNode *node : nodes) {
|
|
if (const bNode *frame = node->parent) {
|
|
frame->runtime->direct_children_in_frame.append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_group_output_node(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
const bNodeType *node_type = nodeTypeFind("NodeGroupOutput");
|
|
const Span<bNode *> group_output_nodes = tree_runtime.nodes_by_type.lookup(node_type);
|
|
if (group_output_nodes.is_empty()) {
|
|
tree_runtime.group_output_node = nullptr;
|
|
}
|
|
else if (group_output_nodes.size() == 1) {
|
|
tree_runtime.group_output_node = group_output_nodes[0];
|
|
}
|
|
else {
|
|
for (bNode *group_output : group_output_nodes) {
|
|
if (group_output->flag & NODE_DO_OUTPUT) {
|
|
tree_runtime.group_output_node = group_output;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ensure_topology_cache(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.topology_cache_mutex.ensure([&]() {
|
|
update_node_vector(ntree);
|
|
update_link_vector(ntree);
|
|
update_socket_vectors_and_owner_node(ntree);
|
|
update_panels(ntree);
|
|
update_internal_link_inputs(ntree);
|
|
update_directly_linked_links_and_sockets(ntree);
|
|
update_nodes_by_type(ntree);
|
|
threading::parallel_invoke(
|
|
tree_runtime.nodes_by_id.size() > 32,
|
|
[&]() { update_logically_linked_sockets(ntree); },
|
|
[&]() { update_sockets_by_identifier(ntree); },
|
|
[&]() {
|
|
update_toposort(ntree,
|
|
ToposortDirection::LeftToRight,
|
|
tree_runtime.toposort_left_to_right,
|
|
tree_runtime.has_available_link_cycle);
|
|
for (const int i : tree_runtime.toposort_left_to_right.index_range()) {
|
|
const bNode &node = *tree_runtime.toposort_left_to_right[i];
|
|
node.runtime->toposort_left_to_right_index = i;
|
|
}
|
|
},
|
|
[&]() {
|
|
bool dummy;
|
|
update_toposort(
|
|
ntree, ToposortDirection::RightToLeft, tree_runtime.toposort_right_to_left, dummy);
|
|
for (const int i : tree_runtime.toposort_right_to_left.index_range()) {
|
|
const bNode &node = *tree_runtime.toposort_right_to_left[i];
|
|
node.runtime->toposort_right_to_left_index = i;
|
|
}
|
|
},
|
|
[&]() { update_root_frames(ntree); },
|
|
[&]() { update_direct_frames_childrens(ntree); });
|
|
update_group_output_node(ntree);
|
|
tree_runtime.topology_cache_exists = true;
|
|
});
|
|
}
|
|
|
|
} // namespace blender::bke::node_tree_runtime
|
|
|
|
void bNodeTree::ensure_topology_cache() const
|
|
{
|
|
blender::bke::node_tree_runtime::ensure_topology_cache(*this);
|
|
}
|
|
|
|
const bNestedNodeRef *bNodeTree::find_nested_node_ref(const int32_t nested_node_id) const
|
|
{
|
|
for (const bNestedNodeRef &ref : this->nested_node_refs_span()) {
|
|
if (ref.id == nested_node_id) {
|
|
return &ref;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const bNestedNodeRef *bNodeTree::nested_node_ref_from_node_id_path(
|
|
const blender::Span<int32_t> node_ids) const
|
|
{
|
|
if (node_ids.is_empty()) {
|
|
return nullptr;
|
|
}
|
|
for (const bNestedNodeRef &ref : this->nested_node_refs_span()) {
|
|
blender::Vector<int> current_node_ids;
|
|
if (this->node_id_path_from_nested_node_ref(ref.id, current_node_ids)) {
|
|
if (current_node_ids.as_span() == node_ids) {
|
|
return &ref;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool bNodeTree::node_id_path_from_nested_node_ref(const int32_t nested_node_id,
|
|
blender::Vector<int> &r_node_ids) const
|
|
{
|
|
const bNestedNodeRef *ref = this->find_nested_node_ref(nested_node_id);
|
|
if (ref == nullptr) {
|
|
return false;
|
|
}
|
|
const int32_t node_id = ref->path.node_id;
|
|
const bNode *node = this->node_by_id(node_id);
|
|
if (node == nullptr) {
|
|
return false;
|
|
}
|
|
r_node_ids.append(node_id);
|
|
if (!node->is_group()) {
|
|
return true;
|
|
}
|
|
const bNodeTree *group = reinterpret_cast<const bNodeTree *>(node->id);
|
|
if (group == nullptr) {
|
|
return false;
|
|
}
|
|
return group->node_id_path_from_nested_node_ref(ref->path.id_in_node, r_node_ids);
|
|
}
|
|
|
|
const bNode *bNodeTree::find_nested_node(const int32_t nested_node_id) const
|
|
{
|
|
const bNestedNodeRef *ref = this->find_nested_node_ref(nested_node_id);
|
|
if (ref == nullptr) {
|
|
return nullptr;
|
|
}
|
|
const int32_t node_id = ref->path.node_id;
|
|
const bNode *node = this->node_by_id(node_id);
|
|
if (node == nullptr) {
|
|
return nullptr;
|
|
}
|
|
if (!node->is_group()) {
|
|
return node;
|
|
}
|
|
const bNodeTree *group = reinterpret_cast<const bNodeTree *>(node->id);
|
|
if (group == nullptr) {
|
|
return nullptr;
|
|
}
|
|
return group->find_nested_node(ref->path.id_in_node);
|
|
}
|