Files
test2/intern/cycles/device/cuda/device_impl.cpp
Brecht Van Lommel 7978799e6f Cycles: Always render volume as NanoVDB
All GPU backends now support NanoVDB, using our own kernel side code
that is easily portable. This simplifies kernel and device code.

Volume bounds are now built from the NanoVDB grid instead of OpenVDB,
to avoid having to keep around the OpenVDB grid after loading.

While this reduces memory usage, it does have a performance impact,
particularly for the Cubic filter. That will be addressed by
another commit.

Pull Request: https://projects.blender.org/blender/blender/pulls/132908
2025-07-09 21:04:38 +02:00

1155 lines
33 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifdef WITH_CUDA
# include <climits>
# include <cstdio>
# include <cstdlib>
# include <cstring>
# include <iomanip>
# include "device/cuda/device_impl.h"
# include "util/debug.h"
# include "util/log.h"
# include "util/md5.h"
# include "util/path.h"
# include "util/string.h"
# include "util/system.h"
# include "util/time.h"
# include "util/types.h"
# ifdef _WIN32
# include "util/windows.h"
# endif
# include "kernel/device/cuda/globals.h"
# include "session/display_driver.h"
CCL_NAMESPACE_BEGIN
class CUDADevice;
bool CUDADevice::have_precompiled_kernels()
{
string cubins_path = path_get("lib");
return path_exists(cubins_path);
}
BVHLayoutMask CUDADevice::get_bvh_layout_mask(uint /*kernel_features*/) const
{
return BVH_LAYOUT_BVH2;
}
void CUDADevice::set_error(const string &error)
{
Device::set_error(error);
if (first_error) {
fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
fprintf(stderr,
"https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n\n");
first_error = false;
}
}
CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler, bool headless)
: GPUDevice(info, stats, profiler, headless)
{
/* Verify that base class types can be used with specific backend types */
static_assert(sizeof(texMemObject) == sizeof(CUtexObject));
static_assert(sizeof(arrayMemObject) == sizeof(CUarray));
first_error = true;
cuDevId = info.num;
cuDevice = 0;
cuContext = nullptr;
cuModule = nullptr;
need_texture_info = false;
pitch_alignment = 0;
/* Initialize CUDA. */
CUresult result = cuInit(0);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to initialize CUDA runtime (%s)", cuewErrorString(result)));
return;
}
/* Setup device and context. */
result = cuDeviceGet(&cuDevice, cuDevId);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to get CUDA device handle from ordinal (%s)",
cuewErrorString(result)));
return;
}
/* CU_CTX_MAP_HOST for mapping host memory when out of device memory.
* CU_CTX_LMEM_RESIZE_TO_MAX for reserving local memory ahead of render,
* so we can predict which memory to map to host. */
int value;
cuda_assert(cuDeviceGetAttribute(&value, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice));
can_map_host = value != 0;
cuda_assert(cuDeviceGetAttribute(
&pitch_alignment, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT, cuDevice));
if (can_map_host) {
init_host_memory();
}
int active = 0;
unsigned int ctx_flags = 0;
cuda_assert(cuDevicePrimaryCtxGetState(cuDevice, &ctx_flags, &active));
/* Configure primary context only once. */
if (active == 0) {
ctx_flags |= CU_CTX_LMEM_RESIZE_TO_MAX;
result = cuDevicePrimaryCtxSetFlags(cuDevice, ctx_flags);
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE) {
set_error(string_printf("Failed to configure CUDA context (%s)", cuewErrorString(result)));
return;
}
}
/* Create context. */
result = cuDevicePrimaryCtxRetain(&cuContext, cuDevice);
if (result != CUDA_SUCCESS) {
set_error(string_printf("Failed to retain CUDA context (%s)", cuewErrorString(result)));
return;
}
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
cuDevArchitecture = major * 100 + minor * 10;
}
CUDADevice::~CUDADevice()
{
texture_info.free();
if (cuModule) {
cuda_assert(cuModuleUnload(cuModule));
}
cuda_assert(cuDevicePrimaryCtxRelease(cuDevice));
}
bool CUDADevice::support_device(const uint /*kernel_features*/)
{
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
/* We only support sm_30 and above */
if (major < 3) {
set_error(string_printf(
"CUDA backend requires compute capability 3.0 or up, but found %d.%d.", major, minor));
return false;
}
return true;
}
bool CUDADevice::check_peer_access(Device *peer_device)
{
if (peer_device == this) {
return false;
}
if (peer_device->info.type != DEVICE_CUDA && peer_device->info.type != DEVICE_OPTIX) {
return false;
}
CUDADevice *const peer_device_cuda = static_cast<CUDADevice *>(peer_device);
int can_access = 0;
cuda_assert(cuDeviceCanAccessPeer(&can_access, cuDevice, peer_device_cuda->cuDevice));
if (can_access == 0) {
return false;
}
// Ensure array access over the link is possible as well (for 3D textures)
cuda_assert(cuDeviceGetP2PAttribute(&can_access,
CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED,
cuDevice,
peer_device_cuda->cuDevice));
if (can_access == 0) {
return false;
}
// Enable peer access in both directions
{
const CUDAContextScope scope(this);
CUresult result = cuCtxEnablePeerAccess(peer_device_cuda->cuContext, 0);
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) {
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
cuewErrorString(result)));
return false;
}
}
{
const CUDAContextScope scope(peer_device_cuda);
CUresult result = cuCtxEnablePeerAccess(cuContext, 0);
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) {
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
cuewErrorString(result)));
return false;
}
}
return true;
}
bool CUDADevice::use_adaptive_compilation()
{
return DebugFlags().cuda.adaptive_compile;
}
/* Common NVCC flags which stays the same regardless of shading model,
* kernel sources md5 and only depends on compiler or compilation settings.
*/
string CUDADevice::compile_kernel_get_common_cflags(const uint kernel_features)
{
const int machine = system_cpu_bits();
const string source_path = path_get("source");
const string include_path = source_path;
string cflags = string_printf(
"-m%d "
"--ptxas-options=\"-v\" "
"--use_fast_math "
"-DNVCC "
"-I\"%s\"",
machine,
include_path.c_str());
if (use_adaptive_compilation()) {
cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features);
}
const char *extra_cflags = getenv("CYCLES_CUDA_EXTRA_CFLAGS");
if (extra_cflags) {
cflags += string(" ") + string(extra_cflags);
}
# ifdef WITH_NANOVDB
cflags += " -DWITH_NANOVDB";
# endif
# ifdef WITH_CYCLES_DEBUG
cflags += " -DWITH_CYCLES_DEBUG";
# endif
return cflags;
}
string CUDADevice::compile_kernel(const string &common_cflags,
const char *name,
const char *base,
bool force_ptx)
{
/* Compute kernel name. */
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
/* Attempt to use kernel provided with Blender. */
if (!use_adaptive_compilation()) {
if (!force_ptx) {
const string cubin = path_get(string_printf("lib/%s_sm_%d%d.cubin.zst", name, major, minor));
LOG(INFO) << "Testing for pre-compiled kernel " << cubin << ".";
if (path_exists(cubin)) {
LOG(INFO) << "Using precompiled kernel.";
return cubin;
}
}
/* The driver can JIT-compile PTX generated for older generations, so find the closest one. */
int ptx_major = major, ptx_minor = minor;
while (ptx_major >= 3) {
const string ptx = path_get(
string_printf("lib/%s_compute_%d%d.ptx.zst", name, ptx_major, ptx_minor));
LOG(INFO) << "Testing for pre-compiled kernel " << ptx << ".";
if (path_exists(ptx)) {
LOG(INFO) << "Using precompiled kernel.";
return ptx;
}
if (ptx_minor > 0) {
ptx_minor--;
}
else {
ptx_major--;
ptx_minor = 9;
}
}
}
/* Try to use locally compiled kernel. */
string source_path = path_get("source");
const string source_md5 = path_files_md5_hash(source_path);
/* We include cflags into md5 so changing cuda toolkit or changing other
* compiler command line arguments makes sure cubin gets re-built.
*/
const string kernel_md5 = util_md5_string(source_md5 + common_cflags);
const char *const kernel_ext = force_ptx ? "ptx" : "cubin";
const char *const kernel_arch = force_ptx ? "compute" : "sm";
const string cubin_file = string_printf(
"cycles_%s_%s_%d%d_%s.%s", name, kernel_arch, major, minor, kernel_md5.c_str(), kernel_ext);
const string cubin = path_cache_get(path_join("kernels", cubin_file));
LOG(INFO) << "Testing for locally compiled kernel " << cubin << ".";
if (path_exists(cubin)) {
LOG(INFO) << "Using locally compiled kernel.";
return cubin;
}
# ifdef _WIN32
if (!use_adaptive_compilation() && have_precompiled_kernels()) {
if (major < 3) {
set_error(
string_printf("CUDA backend requires compute capability 3.0 or up, but found %d.%d. "
"Your GPU is not supported.",
major,
minor));
}
else {
set_error(
string_printf("CUDA binary kernel for this graphics card compute "
"capability (%d.%d) not found.",
major,
minor));
}
return string();
}
# endif
/* Compile. */
const char *const nvcc = cuewCompilerPath();
if (nvcc == nullptr) {
set_error(
"CUDA nvcc compiler not found. "
"Install CUDA toolkit in default location.");
return string();
}
const int nvcc_cuda_version = cuewCompilerVersion();
LOG(INFO) << "Found nvcc " << nvcc << ", CUDA version " << nvcc_cuda_version << ".";
if (nvcc_cuda_version < 101) {
LOG(WARNING) << "Unsupported CUDA version " << nvcc_cuda_version / 10 << "."
<< nvcc_cuda_version % 10 << ", you need CUDA 10.1 or newer";
return string();
}
if (!(nvcc_cuda_version >= 102 && nvcc_cuda_version < 130)) {
LOG(WARNING) << "CUDA version " << nvcc_cuda_version / 10 << "." << nvcc_cuda_version % 10
<< "CUDA 10.1 to 12 are officially supported.";
}
double starttime = time_dt();
path_create_directories(cubin);
source_path = path_join(path_join(source_path, "kernel"),
path_join("device", path_join(base, string_printf("%s.cu", name))));
string command = string_printf(
"\"%s\" "
"-arch=%s_%d%d "
"--%s \"%s\" "
"-o \"%s\" "
"%s",
nvcc,
kernel_arch,
major,
minor,
kernel_ext,
source_path.c_str(),
cubin.c_str(),
common_cflags.c_str());
LOG(INFO_IMPORTANT) << "Compiling " << ((use_adaptive_compilation()) ? "adaptive " : "")
<< "CUDA kernel ...";
LOG(INFO_IMPORTANT) << command;
# ifdef _WIN32
command = "call " + command;
# endif
if (system(command.c_str()) != 0) {
set_error(
"Failed to execute compilation command, "
"see console for details.");
return string();
}
/* Verify if compilation succeeded */
if (!path_exists(cubin)) {
set_error(
"CUDA kernel compilation failed, "
"see console for details.");
return string();
}
LOG(INFO_IMPORTANT) << "Kernel compilation finished in " << std::fixed << std::setprecision(2)
<< time_dt() - starttime << "s";
return cubin;
}
bool CUDADevice::load_kernels(const uint kernel_features)
{
/* TODO(sergey): Support kernels re-load for CUDA devices adaptive compile.
*
* Currently re-loading kernel will invalidate memory pointers,
* causing problems in cuCtxSynchronize.
*/
if (cuModule) {
if (use_adaptive_compilation()) {
LOG(INFO)
<< "Skipping CUDA kernel reload for adaptive compilation, not currently supported.";
}
return true;
}
/* check if cuda init succeeded */
if (cuContext == nullptr) {
return false;
}
/* check if GPU is supported */
if (!support_device(kernel_features)) {
return false;
}
/* get kernel */
const char *kernel_name = "kernel";
string cflags = compile_kernel_get_common_cflags(kernel_features);
string cubin = compile_kernel(cflags, kernel_name);
if (cubin.empty()) {
return false;
}
/* open module */
CUDAContextScope scope(this);
string cubin_data;
CUresult result;
if (path_read_compressed_text(cubin, cubin_data)) {
result = cuModuleLoadData(&cuModule, cubin_data.c_str());
}
else {
result = CUDA_ERROR_FILE_NOT_FOUND;
}
if (result != CUDA_SUCCESS) {
set_error(string_printf(
"Failed to load CUDA kernel from '%s' (%s)", cubin.c_str(), cuewErrorString(result)));
}
if (result == CUDA_SUCCESS) {
kernels.load(this);
reserve_local_memory(kernel_features);
}
return (result == CUDA_SUCCESS);
}
void CUDADevice::reserve_local_memory(const uint kernel_features)
{
/* Together with CU_CTX_LMEM_RESIZE_TO_MAX, this reserves local memory
* needed for kernel launches, so that we can reliably figure out when
* to allocate scene data in mapped host memory. */
size_t total = 0, free_before = 0, free_after = 0;
{
CUDAContextScope scope(this);
cuMemGetInfo(&free_before, &total);
}
{
/* Use the biggest kernel for estimation. */
const DeviceKernel test_kernel = (kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE :
(kernel_features & KERNEL_FEATURE_MNEE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE :
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE;
/* Launch kernel, using just 1 block appears sufficient to reserve memory for all
* multiprocessors. It would be good to do this in parallel for the multi GPU case
* still to make it faster. */
CUDADeviceQueue queue(this);
device_ptr d_path_index = 0;
device_ptr d_render_buffer = 0;
int d_work_size = 0;
DeviceKernelArguments args(&d_path_index, &d_render_buffer, &d_work_size);
queue.init_execution();
queue.enqueue(test_kernel, 1, args);
queue.synchronize();
}
{
CUDAContextScope scope(this);
cuMemGetInfo(&free_after, &total);
}
LOG(INFO) << "Local memory reserved " << string_human_readable_number(free_before - free_after)
<< " bytes. (" << string_human_readable_size(free_before - free_after) << ")";
# if 0
/* For testing mapped host memory, fill up device memory. */
const size_t keep_mb = 1024;
while (free_after > keep_mb * 1024 * 1024LL) {
CUdeviceptr tmp;
cuda_assert(cuMemAlloc(&tmp, 10 * 1024 * 1024LL));
cuMemGetInfo(&free_after, &total);
}
# endif
}
void CUDADevice::get_device_memory_info(size_t &total, size_t &free)
{
CUDAContextScope scope(this);
cuMemGetInfo(&free, &total);
}
bool CUDADevice::alloc_device(void *&device_pointer, const size_t size)
{
CUDAContextScope scope(this);
CUresult mem_alloc_result = cuMemAlloc((CUdeviceptr *)&device_pointer, size);
return mem_alloc_result == CUDA_SUCCESS;
}
void CUDADevice::free_device(void *device_pointer)
{
CUDAContextScope scope(this);
cuda_assert(cuMemFree((CUdeviceptr)device_pointer));
}
bool CUDADevice::shared_alloc(void *&shared_pointer, const size_t size)
{
CUDAContextScope scope(this);
CUresult mem_alloc_result = cuMemHostAlloc(
&shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
return mem_alloc_result == CUDA_SUCCESS;
}
void CUDADevice::shared_free(void *shared_pointer)
{
CUDAContextScope scope(this);
cuMemFreeHost(shared_pointer);
}
void *CUDADevice::shared_to_device_pointer(const void *shared_pointer)
{
CUDAContextScope scope(this);
void *device_pointer = nullptr;
cuda_assert(
cuMemHostGetDevicePointer_v2((CUdeviceptr *)&device_pointer, (void *)shared_pointer, 0));
return device_pointer;
}
void CUDADevice::copy_host_to_device(void *device_pointer, void *host_pointer, const size_t size)
{
const CUDAContextScope scope(this);
cuda_assert(cuMemcpyHtoD((CUdeviceptr)device_pointer, host_pointer, size));
}
void CUDADevice::mem_alloc(device_memory &mem)
{
if (mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else if (mem.type == MEM_GLOBAL) {
assert(!"mem_alloc not supported for global memory.");
}
else {
generic_alloc(mem);
}
}
void CUDADevice::mem_copy_to(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_copy_to(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_copy_to((device_texture &)mem);
}
else {
if (!mem.device_pointer) {
generic_alloc(mem);
generic_copy_to(mem);
}
else if (mem.is_resident(this)) {
generic_copy_to(mem);
}
}
}
void CUDADevice::mem_move_to_host(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
global_alloc(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
tex_alloc((device_texture &)mem);
}
else {
assert(!"mem_move_to_host only supported for texture and global memory");
}
}
void CUDADevice::mem_copy_from(
device_memory &mem, const size_t y, size_t w, const size_t h, size_t elem)
{
if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) {
assert(!"mem_copy_from not supported for textures.");
}
else if (mem.host_pointer) {
const size_t size = elem * w * h;
const size_t offset = elem * y * w;
if (mem.device_pointer) {
const CUDAContextScope scope(this);
cuda_assert(cuMemcpyDtoH(
(char *)mem.host_pointer + offset, (CUdeviceptr)mem.device_pointer + offset, size));
}
else {
memset((char *)mem.host_pointer + offset, 0, size);
}
}
}
void CUDADevice::mem_zero(device_memory &mem)
{
if (!mem.device_pointer) {
mem_alloc(mem);
}
if (!mem.device_pointer) {
return;
}
if (!(mem.is_shared(this) && mem.host_pointer == mem.shared_pointer)) {
const CUDAContextScope scope(this);
cuda_assert(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size()));
}
else if (mem.host_pointer) {
memset(mem.host_pointer, 0, mem.memory_size());
}
}
void CUDADevice::mem_free(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
}
else {
generic_free(mem);
}
}
device_ptr CUDADevice::mem_alloc_sub_ptr(device_memory &mem, const size_t offset, size_t /*size*/)
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void CUDADevice::const_copy_to(const char *name, void *host, const size_t size)
{
CUDAContextScope scope(this);
CUdeviceptr mem;
size_t bytes;
cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, "kernel_params"));
assert(bytes == sizeof(KernelParamsCUDA));
/* Update data storage pointers in launch parameters. */
# define KERNEL_DATA_ARRAY(data_type, data_name) \
if (strcmp(name, #data_name) == 0) { \
cuda_assert(cuMemcpyHtoD(mem + offsetof(KernelParamsCUDA, data_name), host, size)); \
return; \
}
KERNEL_DATA_ARRAY(KernelData, data)
KERNEL_DATA_ARRAY(IntegratorStateGPU, integrator_state)
# include "kernel/data_arrays.h"
# undef KERNEL_DATA_ARRAY
}
void CUDADevice::global_alloc(device_memory &mem)
{
if (mem.is_resident(this)) {
generic_alloc(mem);
generic_copy_to(mem);
}
const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
}
void CUDADevice::global_copy_to(device_memory &mem)
{
if (!mem.device_pointer) {
generic_alloc(mem);
generic_copy_to(mem);
}
else if (mem.is_resident(this)) {
generic_copy_to(mem);
}
const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
}
void CUDADevice::global_free(device_memory &mem)
{
if (mem.is_resident(this) && mem.device_pointer) {
generic_free(mem);
}
}
static size_t tex_src_pitch(const device_texture &mem)
{
return mem.data_width * datatype_size(mem.data_type) * mem.data_elements;
}
static CUDA_MEMCPY2D tex_2d_copy_param(const device_texture &mem, const int pitch_alignment)
{
/* 2D texture using pitch aligned linear memory. */
const size_t src_pitch = tex_src_pitch(mem);
const size_t dst_pitch = align_up(src_pitch, pitch_alignment);
CUDA_MEMCPY2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
param.dstDevice = mem.device_pointer;
param.dstPitch = dst_pitch;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
return param;
}
static CUDA_MEMCPY3D tex_3d_copy_param(const device_texture &mem)
{
const size_t src_pitch = tex_src_pitch(mem);
CUDA_MEMCPY3D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = (CUarray)mem.device_pointer;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
return param;
}
void CUDADevice::tex_alloc(device_texture &mem)
{
CUDAContextScope scope(this);
CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP;
switch (mem.info.extension) {
case EXTENSION_REPEAT:
address_mode = CU_TR_ADDRESS_MODE_WRAP;
break;
case EXTENSION_EXTEND:
address_mode = CU_TR_ADDRESS_MODE_CLAMP;
break;
case EXTENSION_CLIP:
address_mode = CU_TR_ADDRESS_MODE_BORDER;
break;
case EXTENSION_MIRROR:
address_mode = CU_TR_ADDRESS_MODE_MIRROR;
break;
default:
assert(0);
break;
}
CUfilter_mode filter_mode;
if (mem.info.interpolation == INTERPOLATION_CLOSEST) {
filter_mode = CU_TR_FILTER_MODE_POINT;
}
else {
filter_mode = CU_TR_FILTER_MODE_LINEAR;
}
/* Image Texture Storage */
/* Cycles expects to read all texture data as normalized float values in
* kernel/device/gpu/image.h. But storing all data as floats would be very inefficient due to the
* huge size of float textures. So in the code below, we define different texture types including
* integer types, with the aim of using CUDA's default promotion behavior of integer data to
* floating point data in the range [0, 1], as noted in the CUDA documentation on
* cuTexObjectCreate API Call.
* Note that 32-bit integers are not supported by this promotion behavior and cannot be used
* with Cycles's current implementation in kernel/device/gpu/image.h.
*/
CUarray_format_enum format;
switch (mem.data_type) {
case TYPE_UCHAR:
format = CU_AD_FORMAT_UNSIGNED_INT8;
break;
case TYPE_UINT16:
format = CU_AD_FORMAT_UNSIGNED_INT16;
break;
case TYPE_FLOAT:
format = CU_AD_FORMAT_FLOAT;
break;
case TYPE_HALF:
format = CU_AD_FORMAT_HALF;
break;
default:
assert(0);
return;
}
Mem *cmem = nullptr;
CUarray array_3d = nullptr;
if (!mem.is_resident(this)) {
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
if (mem.data_depth > 1) {
array_3d = (CUarray)mem.device_pointer;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
}
else if (mem.data_depth > 1) {
/* 3D texture using array, there is no API for linear memory. */
CUDA_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
LOG(WORK) << "Array 3D allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
cuda_assert(cuArray3DCreate(&array_3d, &desc));
if (!array_3d) {
return;
}
mem.device_pointer = (device_ptr)array_3d;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.memory_size());
const CUDA_MEMCPY3D param = tex_3d_copy_param(mem);
cuda_assert(cuMemcpy3D(&param));
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
/* 2D texture, using pitch aligned linear memory. */
const size_t dst_pitch = align_up(tex_src_pitch(mem), pitch_alignment);
const size_t dst_size = dst_pitch * mem.data_height;
cmem = generic_alloc(mem, dst_size - mem.memory_size());
if (!cmem) {
return;
}
const CUDA_MEMCPY2D param = tex_2d_copy_param(mem, pitch_alignment);
cuda_assert(cuMemcpy2DUnaligned(&param));
}
else {
/* 1D texture, using linear memory. */
cmem = generic_alloc(mem);
if (!cmem) {
return;
}
cuda_assert(cuMemcpyHtoD(mem.device_pointer, mem.host_pointer, mem.memory_size()));
}
/* Set Mapping and tag that we need to (re-)upload to device */
TextureInfo tex_info = mem.info;
if (!is_nanovdb_type(mem.info.data_type)) {
CUDA_RESOURCE_DESC resDesc;
memset(&resDesc, 0, sizeof(resDesc));
if (array_3d) {
resDesc.resType = CU_RESOURCE_TYPE_ARRAY;
resDesc.res.array.hArray = array_3d;
resDesc.flags = 0;
}
else if (mem.data_height > 0) {
const size_t dst_pitch = align_up(tex_src_pitch(mem), pitch_alignment);
resDesc.resType = CU_RESOURCE_TYPE_PITCH2D;
resDesc.res.pitch2D.devPtr = mem.device_pointer;
resDesc.res.pitch2D.format = format;
resDesc.res.pitch2D.numChannels = mem.data_elements;
resDesc.res.pitch2D.height = mem.data_height;
resDesc.res.pitch2D.width = mem.data_width;
resDesc.res.pitch2D.pitchInBytes = dst_pitch;
}
else {
resDesc.resType = CU_RESOURCE_TYPE_LINEAR;
resDesc.res.linear.devPtr = mem.device_pointer;
resDesc.res.linear.format = format;
resDesc.res.linear.numChannels = mem.data_elements;
resDesc.res.linear.sizeInBytes = mem.device_size;
}
CUDA_TEXTURE_DESC texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = address_mode;
texDesc.addressMode[1] = address_mode;
texDesc.addressMode[2] = address_mode;
texDesc.filterMode = filter_mode;
/* CUDA's flag CU_TRSF_READ_AS_INTEGER is intentionally not used and it is
* significant, see above an explanation about how Blender treat textures. */
texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cuda_assert(cuTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, nullptr));
tex_info.data = (uint64_t)cmem->texobject;
}
else {
tex_info.data = (uint64_t)mem.device_pointer;
}
{
/* Update texture info. */
thread_scoped_lock lock(texture_info_mutex);
const uint slot = mem.slot;
if (slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount of re-allocations. */
texture_info.resize(slot + 128);
}
texture_info[slot] = tex_info;
need_texture_info = true;
}
}
void CUDADevice::tex_copy_to(device_texture &mem)
{
if (!mem.device_pointer) {
/* Not yet allocated on device. */
tex_alloc(mem);
}
else if (!mem.is_resident(this)) {
/* Peering with another device, may still need to create texture info and object. */
bool texture_allocated = false;
{
thread_scoped_lock lock(texture_info_mutex);
texture_allocated = mem.slot < texture_info.size() && texture_info[mem.slot].data != 0;
}
if (!texture_allocated) {
tex_alloc(mem);
}
}
else {
/* Resident and fully allocated, only copy. */
if (mem.data_depth > 0) {
CUDAContextScope scope(this);
const CUDA_MEMCPY3D param = tex_3d_copy_param(mem);
cuda_assert(cuMemcpy3D(&param));
}
else if (mem.data_height > 0) {
CUDAContextScope scope(this);
const CUDA_MEMCPY2D param = tex_2d_copy_param(mem, pitch_alignment);
cuda_assert(cuMemcpy2DUnaligned(&param));
}
else {
generic_copy_to(mem);
}
}
}
void CUDADevice::tex_free(device_texture &mem)
{
CUDAContextScope scope(this);
thread_scoped_lock lock(device_mem_map_mutex);
/* Check if the memory was allocated for this device. */
auto it = device_mem_map.find(&mem);
if (it == device_mem_map.end()) {
return;
}
const Mem &cmem = it->second;
/* Always clear texture info and texture object, regardless of residency. */
{
thread_scoped_lock lock(texture_info_mutex);
texture_info[mem.slot] = TextureInfo();
}
if (cmem.texobject) {
/* Free bindless texture. */
cuTexObjectDestroy(cmem.texobject);
}
if (!mem.is_resident(this)) {
/* Do not free memory here, since it was allocated on a different device. */
device_mem_map.erase(device_mem_map.find(&mem));
}
else if (cmem.array) {
/* Free array. */
cuArrayDestroy(reinterpret_cast<CUarray>(cmem.array));
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
device_mem_map.erase(device_mem_map.find(&mem));
}
else {
lock.unlock();
generic_free(mem);
}
}
unique_ptr<DeviceQueue> CUDADevice::gpu_queue_create()
{
return make_unique<CUDADeviceQueue>(this);
}
bool CUDADevice::should_use_graphics_interop(const GraphicsInteropDevice &interop_device,
const bool log)
{
if (headless) {
/* Avoid any call which might involve interaction with a graphics backend when we know that
* we don't have active graphics context. This avoid crash on certain platforms when calling
* cuGLGetDevices(). */
return false;
}
CUDAContextScope scope(this);
switch (interop_device.type) {
case GraphicsInteropDevice::OPENGL: {
/* Check whether this device is part of OpenGL context.
*
* Using CUDA device for graphics interoperability which is not part of the OpenGL context is
* possible, but from the empiric measurements it can be considerably slower than using naive
* pixels copy. */
int num_all_devices = 0;
cuda_assert(cuDeviceGetCount(&num_all_devices));
if (num_all_devices == 0) {
return false;
}
vector<CUdevice> gl_devices(num_all_devices);
uint num_gl_devices = 0;
cuGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, CU_GL_DEVICE_LIST_ALL);
bool found = false;
for (uint i = 0; i < num_gl_devices; ++i) {
if (gl_devices[i] == cuDevice) {
found = true;
break;
}
}
if (log) {
if (found) {
LOG(INFO) << "Graphics interop: found matching OpenGL device for CUDA";
}
else {
LOG(INFO) << "Graphics interop: no matching OpenGL device for CUDA";
}
}
return found;
}
case ccl::GraphicsInteropDevice::VULKAN: {
/* Only do interop with matching device UUID. */
CUuuid uuid = {};
cuDeviceGetUuid(&uuid, cuDevice);
const bool found = (sizeof(uuid.bytes) == interop_device.uuid.size() &&
memcmp(uuid.bytes, interop_device.uuid.data(), sizeof(uuid.bytes)) == 0);
if (log) {
if (found) {
LOG(INFO) << "Graphics interop: found matching Vulkan device for CUDA";
}
else {
LOG(INFO) << "Graphics interop: no matching Vulkan device for CUDA";
}
LOG(INFO) << "Graphics Interop: CUDA UUID "
<< string_hex(reinterpret_cast<uint8_t *>(uuid.bytes), sizeof(uuid.bytes))
<< ", Vulkan UUID "
<< string_hex(interop_device.uuid.data(), interop_device.uuid.size());
}
return found;
}
case GraphicsInteropDevice::METAL:
case GraphicsInteropDevice::NONE: {
return false;
}
}
return false;
}
int CUDADevice::get_num_multiprocessors()
{
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, 0);
}
int CUDADevice::get_max_num_threads_per_multiprocessor()
{
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, 0);
}
bool CUDADevice::get_device_attribute(CUdevice_attribute attribute, int *value)
{
CUDAContextScope scope(this);
return cuDeviceGetAttribute(value, attribute, cuDevice) == CUDA_SUCCESS;
}
int CUDADevice::get_device_default_attribute(CUdevice_attribute attribute, const int default_value)
{
int value = 0;
if (!get_device_attribute(attribute, &value)) {
return default_value;
}
return value;
}
CCL_NAMESPACE_END
#endif