* Spot lights are now handled as disks aligned with the direction of the spotlight instead of view aligned disks. * Point light is now handled separately from the spot light, to fix a case where multiple lights are intersected in a row. Before the origin of the ray was the previously intersected light and not the origin of the initial ray traced from the last surface/volume interaction. This makes both strategies in multiple importance sampling converge to the same result. It changes the render results in some scenes, for example the junkshop scene where there are large point lights overlapping scene geometry and each other. Differential Revision: https://developer.blender.org/D13233
233 lines
7.3 KiB
C
233 lines
7.3 KiB
C
/*
|
|
* Copyright 2011-2017 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef __UTIL_MATH_INTERSECT_H__
|
|
#define __UTIL_MATH_INTERSECT_H__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Ray Intersection */
|
|
|
|
ccl_device bool ray_sphere_intersect(float3 ray_P,
|
|
float3 ray_D,
|
|
float ray_t,
|
|
float3 sphere_P,
|
|
float sphere_radius,
|
|
ccl_private float3 *isect_P,
|
|
ccl_private float *isect_t)
|
|
{
|
|
const float3 d = sphere_P - ray_P;
|
|
const float radiussq = sphere_radius * sphere_radius;
|
|
const float tsq = dot(d, d);
|
|
|
|
if (tsq > radiussq) {
|
|
/* Ray origin outside sphere. */
|
|
const float tp = dot(d, ray_D);
|
|
if (tp < 0.0f) {
|
|
/* Ray points away from sphere. */
|
|
return false;
|
|
}
|
|
const float dsq = tsq - tp * tp; /* Pythagoras. */
|
|
if (dsq > radiussq) {
|
|
/* Closest point on ray outside sphere. */
|
|
return false;
|
|
}
|
|
const float t = tp - sqrtf(radiussq - dsq); /* pythagoras */
|
|
if (t < ray_t) {
|
|
*isect_t = t;
|
|
*isect_P = ray_P + ray_D * t;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ccl_device bool ray_aligned_disk_intersect(float3 ray_P,
|
|
float3 ray_D,
|
|
float ray_t,
|
|
float3 disk_P,
|
|
float disk_radius,
|
|
ccl_private float3 *isect_P,
|
|
ccl_private float *isect_t)
|
|
{
|
|
/* Aligned disk normal. */
|
|
float disk_t;
|
|
const float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
|
|
const float div = dot(ray_D, disk_N);
|
|
if (UNLIKELY(div == 0.0f)) {
|
|
return false;
|
|
}
|
|
/* Compute t to intersection point. */
|
|
const float t = -disk_t / div;
|
|
if (t < 0.0f || t > ray_t) {
|
|
return false;
|
|
}
|
|
/* Test if within radius. */
|
|
float3 P = ray_P + ray_D * t;
|
|
if (len_squared(P - disk_P) > disk_radius * disk_radius) {
|
|
return false;
|
|
}
|
|
*isect_P = P;
|
|
*isect_t = t;
|
|
return true;
|
|
}
|
|
|
|
ccl_device bool ray_disk_intersect(float3 ray_P,
|
|
float3 ray_D,
|
|
float ray_t,
|
|
float3 disk_P,
|
|
float3 disk_N,
|
|
float disk_radius,
|
|
ccl_private float3 *isect_P,
|
|
ccl_private float *isect_t)
|
|
{
|
|
const float3 vp = ray_P - disk_P;
|
|
const float dp = dot(vp, disk_N);
|
|
const float cos_angle = dot(disk_N, -ray_D);
|
|
if (dp * cos_angle > 0.f) // front of light
|
|
{
|
|
float t = dp / cos_angle;
|
|
if (t < 0.f) { /* Ray points away from the light. */
|
|
return false;
|
|
}
|
|
float3 P = ray_P + t * ray_D;
|
|
float3 T = P - disk_P;
|
|
if (dot(T, T) < sqr(disk_radius) /*&& t > 0.f*/ && t <= ray_t) {
|
|
*isect_P = ray_P + t * ray_D;
|
|
*isect_t = t;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ccl_device_forceinline bool ray_triangle_intersect(float3 ray_P,
|
|
float3 ray_dir,
|
|
float ray_t,
|
|
const float3 tri_a,
|
|
const float3 tri_b,
|
|
const float3 tri_c,
|
|
ccl_private float *isect_u,
|
|
ccl_private float *isect_v,
|
|
ccl_private float *isect_t)
|
|
{
|
|
#define dot3(a, b) dot(a, b)
|
|
const float3 P = ray_P;
|
|
const float3 dir = ray_dir;
|
|
|
|
/* Calculate vertices relative to ray origin. */
|
|
const float3 v0 = tri_c - P;
|
|
const float3 v1 = tri_a - P;
|
|
const float3 v2 = tri_b - P;
|
|
|
|
/* Calculate triangle edges. */
|
|
const float3 e0 = v2 - v0;
|
|
const float3 e1 = v0 - v1;
|
|
const float3 e2 = v1 - v2;
|
|
|
|
/* Perform edge tests. */
|
|
const float U = dot(cross(v2 + v0, e0), ray_dir);
|
|
const float V = dot(cross(v0 + v1, e1), ray_dir);
|
|
const float W = dot(cross(v1 + v2, e2), ray_dir);
|
|
|
|
const float minUVW = min(U, min(V, W));
|
|
const float maxUVW = max(U, max(V, W));
|
|
|
|
if (minUVW < 0.0f && maxUVW > 0.0f) {
|
|
return false;
|
|
}
|
|
|
|
/* Calculate geometry normal and denominator. */
|
|
const float3 Ng1 = cross(e1, e0);
|
|
// const Vec3vfM Ng1 = stable_triangle_normal(e2,e1,e0);
|
|
const float3 Ng = Ng1 + Ng1;
|
|
const float den = dot3(Ng, dir);
|
|
/* Avoid division by 0. */
|
|
if (UNLIKELY(den == 0.0f)) {
|
|
return false;
|
|
}
|
|
|
|
/* Perform depth test. */
|
|
const float T = dot3(v0, Ng);
|
|
const int sign_den = (__float_as_int(den) & 0x80000000);
|
|
const float sign_T = xor_signmask(T, sign_den);
|
|
if ((sign_T < 0.0f) || (sign_T > ray_t * xor_signmask(den, sign_den))) {
|
|
return false;
|
|
}
|
|
|
|
const float inv_den = 1.0f / den;
|
|
*isect_u = U * inv_den;
|
|
*isect_v = V * inv_den;
|
|
*isect_t = T * inv_den;
|
|
return true;
|
|
|
|
#undef dot3
|
|
}
|
|
|
|
/* Tests for an intersection between a ray and a quad defined by
|
|
* its midpoint, normal and sides.
|
|
* If ellipse is true, hits outside the ellipse that's enclosed by the
|
|
* quad are rejected.
|
|
*/
|
|
ccl_device bool ray_quad_intersect(float3 ray_P,
|
|
float3 ray_D,
|
|
float ray_mint,
|
|
float ray_maxt,
|
|
float3 quad_P,
|
|
float3 quad_u,
|
|
float3 quad_v,
|
|
float3 quad_n,
|
|
ccl_private float3 *isect_P,
|
|
ccl_private float *isect_t,
|
|
ccl_private float *isect_u,
|
|
ccl_private float *isect_v,
|
|
bool ellipse)
|
|
{
|
|
/* Perform intersection test. */
|
|
float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
|
|
if (t < ray_mint || t > ray_maxt) {
|
|
return false;
|
|
}
|
|
const float3 hit = ray_P + t * ray_D;
|
|
const float3 inplane = hit - quad_P;
|
|
const float u = dot(inplane, quad_u) / dot(quad_u, quad_u);
|
|
if (u < -0.5f || u > 0.5f) {
|
|
return false;
|
|
}
|
|
const float v = dot(inplane, quad_v) / dot(quad_v, quad_v);
|
|
if (v < -0.5f || v > 0.5f) {
|
|
return false;
|
|
}
|
|
if (ellipse && (u * u + v * v > 0.25f)) {
|
|
return false;
|
|
}
|
|
/* Store the result. */
|
|
/* TODO(sergey): Check whether we can avoid some checks here. */
|
|
if (isect_P != NULL)
|
|
*isect_P = hit;
|
|
if (isect_t != NULL)
|
|
*isect_t = t;
|
|
if (isect_u != NULL)
|
|
*isect_u = u + 0.5f;
|
|
if (isect_v != NULL)
|
|
*isect_v = v + 0.5f;
|
|
return true;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __UTIL_MATH_INTERSECT_H__ */
|