Files
test2/intern/cycles/device/device_optix.cpp
Patrick Mours 0091b84df0 Fix T70268: Render failures with Vector pass active with OptiX in Cycles
Rendering would produce invalid results or crash if the Vector pass was active but motion blur was inactive. This caused the OptiX BVH to be built with motion (because objects reported motion available), but the pipeline to be built without motion support (since with disabled motion blur this is not in the list of requested features). The two are not compatible and therefore caused issues. This patch fixes that by not building the BVH with motion if motion blur is not active (which makes sense).

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D5968
2019-10-02 13:23:29 +02:00

1977 lines
77 KiB
C++

/*
* Copyright 2019, NVIDIA Corporation.
* Copyright 2019, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_OPTIX
# include "device/device.h"
# include "device/device_intern.h"
# include "device/device_denoising.h"
# include "bvh/bvh.h"
# include "render/scene.h"
# include "render/mesh.h"
# include "render/object.h"
# include "render/buffers.h"
# include "util/util_md5.h"
# include "util/util_path.h"
# include "util/util_time.h"
# include "util/util_debug.h"
# include "util/util_logging.h"
# undef _WIN32_WINNT // Need minimum API support for Windows 7
# define _WIN32_WINNT _WIN32_WINNT_WIN7
# ifdef WITH_CUDA_DYNLOAD
# include <cuew.h>
// Do not use CUDA SDK headers when using CUEW
# define OPTIX_DONT_INCLUDE_CUDA
# endif
# include <optix_stubs.h>
# include <optix_function_table_definition.h>
CCL_NAMESPACE_BEGIN
/* Make sure this stays in sync with kernel_globals.h */
struct ShaderParams {
uint4 *input;
float4 *output;
int type;
int filter;
int sx;
int offset;
int sample;
};
struct KernelParams {
WorkTile tile;
KernelData data;
ShaderParams shader;
# define KERNEL_TEX(type, name) const type *name;
# include "kernel/kernel_textures.h"
# undef KERNEL_TEX
};
# define check_result_cuda(stmt) \
{ \
CUresult res = stmt; \
if (res != CUDA_SUCCESS) { \
const char *name; \
cuGetErrorName(res, &name); \
set_error(string_printf("OptiX CUDA error %s in %s, line %d", name, #stmt, __LINE__)); \
return; \
} \
} \
(void)0
# define check_result_cuda_ret(stmt) \
{ \
CUresult res = stmt; \
if (res != CUDA_SUCCESS) { \
const char *name; \
cuGetErrorName(res, &name); \
set_error(string_printf("OptiX CUDA error %s in %s, line %d", name, #stmt, __LINE__)); \
return false; \
} \
} \
(void)0
# define check_result_optix(stmt) \
{ \
enum OptixResult res = stmt; \
if (res != OPTIX_SUCCESS) { \
const char *name = optixGetErrorName(res); \
set_error(string_printf("OptiX error %s in %s, line %d", name, #stmt, __LINE__)); \
return; \
} \
} \
(void)0
# define check_result_optix_ret(stmt) \
{ \
enum OptixResult res = stmt; \
if (res != OPTIX_SUCCESS) { \
const char *name = optixGetErrorName(res); \
set_error(string_printf("OptiX error %s in %s, line %d", name, #stmt, __LINE__)); \
return false; \
} \
} \
(void)0
class OptiXDevice : public Device {
// List of OptiX program groups
enum {
PG_RGEN,
PG_MISS,
PG_HITD, // Default hit group
PG_HITL, // __BVH_LOCAL__ hit group
PG_HITS, // __SHADOW_RECORD_ALL__ hit group
# ifdef WITH_CYCLES_DEBUG
PG_EXCP,
# endif
PG_BAKE, // kernel_bake_evaluate
PG_DISP, // kernel_displace_evaluate
PG_BACK, // kernel_background_evaluate
NUM_PROGRAM_GROUPS
};
// List of OptiX pipelines
enum { PIP_PATH_TRACE, PIP_SHADER_EVAL, NUM_PIPELINES };
// A single shader binding table entry
struct SbtRecord {
char header[OPTIX_SBT_RECORD_HEADER_SIZE];
};
// Information stored about CUDA memory allocations
struct CUDAMem {
bool free_map_host = false;
CUarray array = NULL;
CUtexObject texobject = 0;
void *map_host_pointer = nullptr;
};
// Helper class to manage current CUDA context
struct CUDAContextScope {
CUDAContextScope(CUcontext ctx)
{
cuCtxPushCurrent(ctx);
}
~CUDAContextScope()
{
cuCtxPopCurrent(NULL);
}
};
// Use a pool with multiple threads to support launches with multiple CUDA streams
TaskPool task_pool;
// CUDA/OptiX context handles
CUdevice cuda_device = 0;
CUcontext cuda_context = NULL;
vector<CUstream> cuda_stream;
OptixDeviceContext context = NULL;
// Need CUDA kernel module for some utility functions
CUmodule cuda_module = NULL;
CUmodule cuda_filter_module = NULL;
// All necessary OptiX kernels are in one module
OptixModule optix_module = NULL;
OptixPipeline pipelines[NUM_PIPELINES] = {};
bool motion_blur = false;
bool need_texture_info = false;
device_vector<SbtRecord> sbt_data;
device_vector<TextureInfo> texture_info;
device_only_memory<KernelParams> launch_params;
vector<device_only_memory<uint8_t>> blas;
OptixTraversableHandle tlas_handle = 0;
map<device_memory *, CUDAMem> cuda_mem_map;
public:
OptiXDevice(DeviceInfo &info_, Stats &stats_, Profiler &profiler_, bool background_)
: Device(info_, stats_, profiler_, background_),
sbt_data(this, "__sbt", MEM_READ_ONLY),
texture_info(this, "__texture_info", MEM_TEXTURE),
launch_params(this, "__params")
{
// Store number of CUDA streams in device info
info.cpu_threads = DebugFlags().optix.cuda_streams;
// Initialize CUDA driver API
check_result_cuda(cuInit(0));
// Retrieve the primary CUDA context for this device
check_result_cuda(cuDeviceGet(&cuda_device, info.num));
check_result_cuda(cuDevicePrimaryCtxRetain(&cuda_context, cuda_device));
// Make that CUDA context current
const CUDAContextScope scope(cuda_context);
// Create OptiX context for this device
OptixDeviceContextOptions options = {};
# ifdef WITH_CYCLES_LOGGING
options.logCallbackLevel = 4; // Fatal = 1, Error = 2, Warning = 3, Print = 4
options.logCallbackFunction =
[](unsigned int level, const char *, const char *message, void *) {
switch (level) {
case 1:
LOG_IF(FATAL, VLOG_IS_ON(1)) << message;
break;
case 2:
LOG_IF(ERROR, VLOG_IS_ON(1)) << message;
break;
case 3:
LOG_IF(WARNING, VLOG_IS_ON(1)) << message;
break;
case 4:
LOG_IF(INFO, VLOG_IS_ON(1)) << message;
break;
}
};
# endif
check_result_optix(optixDeviceContextCreate(cuda_context, &options, &context));
# ifdef WITH_CYCLES_LOGGING
check_result_optix(optixDeviceContextSetLogCallback(
context, options.logCallbackFunction, options.logCallbackData, options.logCallbackLevel));
# endif
// Create launch streams
cuda_stream.resize(info.cpu_threads);
for (int i = 0; i < info.cpu_threads; ++i)
check_result_cuda(cuStreamCreate(&cuda_stream[i], CU_STREAM_NON_BLOCKING));
// Fix weird compiler bug that assigns wrong size
launch_params.data_elements = sizeof(KernelParams);
// Allocate launch parameter buffer memory on device
launch_params.alloc_to_device(info.cpu_threads);
}
~OptiXDevice()
{
// Stop processing any more tasks
task_pool.stop();
// Clean up all memory before destroying context
blas.clear();
sbt_data.free();
texture_info.free();
launch_params.free();
// Make CUDA context current
const CUDAContextScope scope(cuda_context);
// Unload modules
if (cuda_module != NULL)
cuModuleUnload(cuda_module);
if (cuda_filter_module != NULL)
cuModuleUnload(cuda_filter_module);
if (optix_module != NULL)
optixModuleDestroy(optix_module);
for (unsigned int i = 0; i < NUM_PIPELINES; ++i)
if (pipelines[i] != NULL)
optixPipelineDestroy(pipelines[i]);
// Destroy launch streams
for (int i = 0; i < info.cpu_threads; ++i)
cuStreamDestroy(cuda_stream[i]);
// Destroy OptiX and CUDA context
optixDeviceContextDestroy(context);
cuDevicePrimaryCtxRelease(cuda_device);
}
private:
bool show_samples() const override
{
// Only show samples if not rendering multiple tiles in parallel
return info.cpu_threads == 1;
}
BVHLayoutMask get_bvh_layout_mask() const override
{
// OptiX has its own internal acceleration structure format
return BVH_LAYOUT_OPTIX;
}
bool load_kernels(const DeviceRequestedFeatures &requested_features) override
{
if (have_error())
return false; // Abort early if context creation failed already
// Disable baking for now, since its kernel is not well-suited for inlining and is very slow
if (requested_features.use_baking) {
set_error("OptiX implementation does not support baking yet");
return false;
}
// Disable shader raytracing support for now, since continuation callables are slow
if (requested_features.use_shader_raytrace) {
set_error("OptiX implementation does not support shader raytracing yet");
return false;
}
const CUDAContextScope scope(cuda_context);
// Unload any existing modules first
if (cuda_module != NULL)
cuModuleUnload(cuda_module);
if (cuda_filter_module != NULL)
cuModuleUnload(cuda_filter_module);
if (optix_module != NULL)
optixModuleDestroy(optix_module);
for (unsigned int i = 0; i < NUM_PIPELINES; ++i)
if (pipelines[i] != NULL)
optixPipelineDestroy(pipelines[i]);
OptixModuleCompileOptions module_options;
module_options.maxRegisterCount = 0; // Do not set an explicit register limit
# ifdef WITH_CYCLES_DEBUG
module_options.optLevel = OPTIX_COMPILE_OPTIMIZATION_LEVEL_0;
module_options.debugLevel = OPTIX_COMPILE_DEBUG_LEVEL_FULL;
# else
module_options.optLevel = OPTIX_COMPILE_OPTIMIZATION_LEVEL_3;
module_options.debugLevel = OPTIX_COMPILE_DEBUG_LEVEL_LINEINFO;
# endif
OptixPipelineCompileOptions pipeline_options;
// Default to no motion blur and two-level graph, since it is the fastest option
pipeline_options.usesMotionBlur = false;
pipeline_options.traversableGraphFlags =
OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_LEVEL_INSTANCING;
pipeline_options.numPayloadValues = 6;
pipeline_options.numAttributeValues = 2; // u, v
# ifdef WITH_CYCLES_DEBUG
pipeline_options.exceptionFlags = OPTIX_EXCEPTION_FLAG_STACK_OVERFLOW |
OPTIX_EXCEPTION_FLAG_TRACE_DEPTH;
# else
pipeline_options.exceptionFlags = OPTIX_EXCEPTION_FLAG_NONE;
# endif
pipeline_options.pipelineLaunchParamsVariableName = "__params"; // See kernel_globals.h
// Keep track of whether motion blur is enabled, so to enable/disable motion in BVH builds
// This is necessary since objects may be reported to have motion if the Vector pass is
// active, but may still need to be rendered without motion blur if that isn't active as well
motion_blur = requested_features.use_object_motion;
if (motion_blur) {
pipeline_options.usesMotionBlur = true;
// Motion blur can insert motion transforms into the traversal graph
// It is no longer a two-level graph then, so need to set flags to allow any configuration
pipeline_options.traversableGraphFlags = OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_ANY;
}
{ // Load and compile PTX module with OptiX kernels
string ptx_data;
const string ptx_filename = "lib/kernel_optix.ptx";
if (!path_read_text(path_get(ptx_filename), ptx_data)) {
set_error("Failed loading OptiX kernel " + ptx_filename + ".");
return false;
}
check_result_optix_ret(optixModuleCreateFromPTX(context,
&module_options,
&pipeline_options,
ptx_data.data(),
ptx_data.size(),
nullptr,
0,
&optix_module));
}
{ // Load CUDA modules because we need some of the utility kernels
int major, minor;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, info.num);
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, info.num);
string cubin_data;
const string cubin_filename = string_printf("lib/kernel_sm_%d%d.cubin", major, minor);
if (!path_read_text(path_get(cubin_filename), cubin_data)) {
set_error("Failed loading pre-compiled CUDA kernel " + cubin_filename + ".");
return false;
}
check_result_cuda_ret(cuModuleLoadData(&cuda_module, cubin_data.data()));
if (requested_features.use_denoising) {
string filter_data;
const string filter_filename = string_printf("lib/filter_sm_%d%d.cubin", major, minor);
if (!path_read_text(path_get(filter_filename), filter_data)) {
set_error("Failed loading pre-compiled CUDA filter kernel " + filter_filename + ".");
return false;
}
check_result_cuda_ret(cuModuleLoadData(&cuda_filter_module, filter_data.data()));
}
}
// Create program groups
OptixProgramGroup groups[NUM_PROGRAM_GROUPS] = {};
OptixProgramGroupDesc group_descs[NUM_PROGRAM_GROUPS] = {};
OptixProgramGroupOptions group_options = {}; // There are no options currently
group_descs[PG_RGEN].kind = OPTIX_PROGRAM_GROUP_KIND_RAYGEN;
group_descs[PG_RGEN].raygen.module = optix_module;
// Ignore branched integrator for now (see "requested_features.use_integrator_branched")
group_descs[PG_RGEN].raygen.entryFunctionName = "__raygen__kernel_optix_path_trace";
group_descs[PG_MISS].kind = OPTIX_PROGRAM_GROUP_KIND_MISS;
group_descs[PG_MISS].miss.module = optix_module;
group_descs[PG_MISS].miss.entryFunctionName = "__miss__kernel_optix_miss";
group_descs[PG_HITD].kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;
group_descs[PG_HITD].hitgroup.moduleCH = optix_module;
group_descs[PG_HITD].hitgroup.entryFunctionNameCH = "__closesthit__kernel_optix_hit";
group_descs[PG_HITD].hitgroup.moduleAH = optix_module;
group_descs[PG_HITD].hitgroup.entryFunctionNameAH = "__anyhit__kernel_optix_visibility_test";
group_descs[PG_HITS].kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;
group_descs[PG_HITS].hitgroup.moduleAH = optix_module;
group_descs[PG_HITS].hitgroup.entryFunctionNameAH = "__anyhit__kernel_optix_shadow_all_hit";
if (requested_features.use_hair) {
// Add curve intersection programs
group_descs[PG_HITD].hitgroup.moduleIS = optix_module;
group_descs[PG_HITD].hitgroup.entryFunctionNameIS = "__intersection__curve";
group_descs[PG_HITS].hitgroup.moduleIS = optix_module;
group_descs[PG_HITS].hitgroup.entryFunctionNameIS = "__intersection__curve";
}
if (requested_features.use_subsurface || requested_features.use_shader_raytrace) {
// Add hit group for local intersections
group_descs[PG_HITL].kind = OPTIX_PROGRAM_GROUP_KIND_HITGROUP;
group_descs[PG_HITL].hitgroup.moduleAH = optix_module;
group_descs[PG_HITL].hitgroup.entryFunctionNameAH = "__anyhit__kernel_optix_local_hit";
}
# ifdef WITH_CYCLES_DEBUG
group_descs[PG_EXCP].kind = OPTIX_PROGRAM_GROUP_KIND_EXCEPTION;
group_descs[PG_EXCP].exception.module = optix_module;
group_descs[PG_EXCP].exception.entryFunctionName = "__exception__kernel_optix_exception";
# endif
if (requested_features.use_baking) {
group_descs[PG_BAKE].kind = OPTIX_PROGRAM_GROUP_KIND_RAYGEN;
group_descs[PG_BAKE].raygen.module = optix_module;
group_descs[PG_BAKE].raygen.entryFunctionName = "__raygen__kernel_optix_bake";
}
if (requested_features.use_true_displacement) {
group_descs[PG_DISP].kind = OPTIX_PROGRAM_GROUP_KIND_RAYGEN;
group_descs[PG_DISP].raygen.module = optix_module;
group_descs[PG_DISP].raygen.entryFunctionName = "__raygen__kernel_optix_displace";
}
if (requested_features.use_background_light) {
group_descs[PG_BACK].kind = OPTIX_PROGRAM_GROUP_KIND_RAYGEN;
group_descs[PG_BACK].raygen.module = optix_module;
group_descs[PG_BACK].raygen.entryFunctionName = "__raygen__kernel_optix_background";
}
check_result_optix_ret(optixProgramGroupCreate(
context, group_descs, NUM_PROGRAM_GROUPS, &group_options, nullptr, 0, groups));
// Get program stack sizes
OptixStackSizes stack_size[NUM_PROGRAM_GROUPS] = {};
// Set up SBT, which in this case is used only to select between different programs
sbt_data.alloc(NUM_PROGRAM_GROUPS);
memset(sbt_data.host_pointer, 0, sizeof(SbtRecord) * NUM_PROGRAM_GROUPS);
for (unsigned int i = 0; i < NUM_PROGRAM_GROUPS; ++i) {
check_result_optix_ret(optixSbtRecordPackHeader(groups[i], &sbt_data[i]));
check_result_optix_ret(optixProgramGroupGetStackSize(groups[i], &stack_size[i]));
}
sbt_data.copy_to_device(); // Upload SBT to device
// Calculate maximum trace continuation stack size
unsigned int trace_css = stack_size[PG_HITD].cssCH;
// This is based on the maximum of closest-hit and any-hit/intersection programs
trace_css = max(trace_css, stack_size[PG_HITD].cssIS + stack_size[PG_HITD].cssAH);
trace_css = max(trace_css, stack_size[PG_HITL].cssIS + stack_size[PG_HITL].cssAH);
trace_css = max(trace_css, stack_size[PG_HITS].cssIS + stack_size[PG_HITS].cssAH);
OptixPipelineLinkOptions link_options;
link_options.maxTraceDepth = 1;
# ifdef WITH_CYCLES_DEBUG
link_options.debugLevel = OPTIX_COMPILE_DEBUG_LEVEL_FULL;
# else
link_options.debugLevel = OPTIX_COMPILE_DEBUG_LEVEL_LINEINFO;
# endif
link_options.overrideUsesMotionBlur = pipeline_options.usesMotionBlur;
{ // Create path tracing pipeline
OptixProgramGroup pipeline_groups[] = {
groups[PG_RGEN],
groups[PG_MISS],
groups[PG_HITD],
groups[PG_HITS],
groups[PG_HITL],
# ifdef WITH_CYCLES_DEBUG
groups[PG_EXCP],
# endif
};
check_result_optix_ret(
optixPipelineCreate(context,
&pipeline_options,
&link_options,
pipeline_groups,
(sizeof(pipeline_groups) / sizeof(pipeline_groups[0])),
nullptr,
0,
&pipelines[PIP_PATH_TRACE]));
// Combine ray generation and trace continuation stack size
const unsigned int css = stack_size[PG_RGEN].cssRG + link_options.maxTraceDepth * trace_css;
// Set stack size depending on pipeline options
check_result_optix_ret(optixPipelineSetStackSize(
pipelines[PIP_PATH_TRACE], 0, 0, css, (pipeline_options.usesMotionBlur ? 3 : 2)));
}
// Only need to create shader evaluation pipeline if one of these features is used:
const bool use_shader_eval_pipeline = requested_features.use_baking ||
requested_features.use_background_light ||
requested_features.use_true_displacement;
if (use_shader_eval_pipeline) { // Create shader evaluation pipeline
OptixProgramGroup pipeline_groups[] = {
groups[PG_BAKE],
groups[PG_DISP],
groups[PG_BACK],
groups[PG_MISS],
groups[PG_HITD],
groups[PG_HITS],
groups[PG_HITL],
# ifdef WITH_CYCLES_DEBUG
groups[PG_EXCP],
# endif
};
check_result_optix_ret(
optixPipelineCreate(context,
&pipeline_options,
&link_options,
pipeline_groups,
(sizeof(pipeline_groups) / sizeof(pipeline_groups[0])),
nullptr,
0,
&pipelines[PIP_SHADER_EVAL]));
// Calculate continuation stack size based on the maximum of all ray generation stack sizes
const unsigned int css = max(stack_size[PG_BAKE].cssRG,
max(stack_size[PG_DISP].cssRG, stack_size[PG_BACK].cssRG)) +
link_options.maxTraceDepth * trace_css;
check_result_optix_ret(optixPipelineSetStackSize(
pipelines[PIP_SHADER_EVAL], 0, 0, css, (pipeline_options.usesMotionBlur ? 3 : 2)));
}
// Clean up program group objects
for (unsigned int i = 0; i < NUM_PROGRAM_GROUPS; ++i) {
optixProgramGroupDestroy(groups[i]);
}
return true;
}
void thread_run(DeviceTask &task, int thread_index) // Main task entry point
{
if (have_error())
return; // Abort early if there was an error previously
if (task.type == DeviceTask::RENDER) {
RenderTile tile;
while (task.acquire_tile(this, tile)) {
if (tile.task == RenderTile::PATH_TRACE)
launch_render(task, tile, thread_index);
else if (tile.task == RenderTile::DENOISE)
launch_denoise(task, tile, thread_index);
task.release_tile(tile);
if (task.get_cancel() && !task.need_finish_queue)
break; // User requested cancellation
else if (have_error())
break; // Abort rendering when encountering an error
}
}
else if (task.type == DeviceTask::SHADER) {
launch_shader_eval(task, thread_index);
}
else if (task.type == DeviceTask::FILM_CONVERT) {
launch_film_convert(task, thread_index);
}
}
void launch_render(DeviceTask &task, RenderTile &rtile, int thread_index)
{
assert(thread_index < launch_params.data_size);
// Keep track of total render time of this tile
const scoped_timer timer(&rtile.buffers->render_time);
WorkTile wtile;
wtile.x = rtile.x;
wtile.y = rtile.y;
wtile.w = rtile.w;
wtile.h = rtile.h;
wtile.offset = rtile.offset;
wtile.stride = rtile.stride;
wtile.buffer = (float *)rtile.buffer;
const int end_sample = rtile.start_sample + rtile.num_samples;
// Keep this number reasonable to avoid running into TDRs
const int step_samples = (info.display_device ? 8 : 32);
// Offset into launch params buffer so that streams use separate data
device_ptr launch_params_ptr = launch_params.device_pointer +
thread_index * launch_params.data_elements;
const CUDAContextScope scope(cuda_context);
for (int sample = rtile.start_sample; sample < end_sample; sample += step_samples) {
// Copy work tile information to device
wtile.num_samples = min(step_samples, end_sample - sample);
wtile.start_sample = sample;
check_result_cuda(cuMemcpyHtoDAsync(launch_params_ptr + offsetof(KernelParams, tile),
&wtile,
sizeof(wtile),
cuda_stream[thread_index]));
OptixShaderBindingTable sbt_params = {};
sbt_params.raygenRecord = sbt_data.device_pointer + PG_RGEN * sizeof(SbtRecord);
# ifdef WITH_CYCLES_DEBUG
sbt_params.exceptionRecord = sbt_data.device_pointer + PG_EXCP * sizeof(SbtRecord);
# endif
sbt_params.missRecordBase = sbt_data.device_pointer + PG_MISS * sizeof(SbtRecord);
sbt_params.missRecordStrideInBytes = sizeof(SbtRecord);
sbt_params.missRecordCount = 1;
sbt_params.hitgroupRecordBase = sbt_data.device_pointer + PG_HITD * sizeof(SbtRecord);
sbt_params.hitgroupRecordStrideInBytes = sizeof(SbtRecord);
sbt_params.hitgroupRecordCount = 3; // PG_HITD, PG_HITL, PG_HITS
// Launch the ray generation program
check_result_optix(optixLaunch(pipelines[PIP_PATH_TRACE],
cuda_stream[thread_index],
launch_params_ptr,
launch_params.data_elements,
&sbt_params,
// Launch with samples close to each other for better locality
wtile.w * wtile.num_samples,
wtile.h,
1));
// Wait for launch to finish
check_result_cuda(cuStreamSynchronize(cuda_stream[thread_index]));
// Update current sample, so it is displayed correctly
rtile.sample = wtile.start_sample + wtile.num_samples;
// Update task progress after the kernel completed rendering
task.update_progress(&rtile, wtile.w * wtile.h * wtile.num_samples);
if (task.get_cancel() && !task.need_finish_queue)
return; // Cancel rendering
}
}
void launch_denoise(DeviceTask &task, RenderTile &rtile, int thread_index)
{
const CUDAContextScope scope(cuda_context);
// Run CUDA denoising kernels
DenoisingTask denoising(this, task);
denoising.functions.construct_transform = function_bind(
&OptiXDevice::denoising_construct_transform, this, &denoising, thread_index);
denoising.functions.accumulate = function_bind(
&OptiXDevice::denoising_accumulate, this, _1, _2, _3, _4, &denoising, thread_index);
denoising.functions.solve = function_bind(
&OptiXDevice::denoising_solve, this, _1, &denoising, thread_index);
denoising.functions.divide_shadow = function_bind(
&OptiXDevice::denoising_divide_shadow, this, _1, _2, _3, _4, _5, &denoising, thread_index);
denoising.functions.non_local_means = function_bind(
&OptiXDevice::denoising_non_local_means, this, _1, _2, _3, _4, &denoising, thread_index);
denoising.functions.combine_halves = function_bind(&OptiXDevice::denoising_combine_halves,
this,
_1,
_2,
_3,
_4,
_5,
_6,
&denoising,
thread_index);
denoising.functions.get_feature = function_bind(
&OptiXDevice::denoising_get_feature, this, _1, _2, _3, _4, _5, &denoising, thread_index);
denoising.functions.write_feature = function_bind(
&OptiXDevice::denoising_write_feature, this, _1, _2, _3, &denoising, thread_index);
denoising.functions.detect_outliers = function_bind(
&OptiXDevice::denoising_detect_outliers, this, _1, _2, _3, _4, &denoising, thread_index);
denoising.filter_area = make_int4(rtile.x, rtile.y, rtile.w, rtile.h);
denoising.render_buffer.samples = rtile.sample = rtile.start_sample + rtile.num_samples;
denoising.buffer.gpu_temporary_mem = true;
denoising.run_denoising(&rtile);
task.update_progress(&rtile, rtile.w * rtile.h);
}
void launch_shader_eval(DeviceTask &task, int thread_index)
{
unsigned int rgen_index = PG_BACK;
if (task.shader_eval_type >= SHADER_EVAL_BAKE)
rgen_index = PG_BAKE;
if (task.shader_eval_type == SHADER_EVAL_DISPLACE)
rgen_index = PG_DISP;
const CUDAContextScope scope(cuda_context);
device_ptr launch_params_ptr = launch_params.device_pointer +
thread_index * launch_params.data_elements;
for (int sample = 0; sample < task.num_samples; ++sample) {
ShaderParams params;
params.input = (uint4 *)task.shader_input;
params.output = (float4 *)task.shader_output;
params.type = task.shader_eval_type;
params.filter = task.shader_filter;
params.sx = task.shader_x;
params.offset = task.offset;
params.sample = sample;
check_result_cuda(cuMemcpyHtoDAsync(launch_params_ptr + offsetof(KernelParams, shader),
&params,
sizeof(params),
cuda_stream[thread_index]));
OptixShaderBindingTable sbt_params = {};
sbt_params.raygenRecord = sbt_data.device_pointer + rgen_index * sizeof(SbtRecord);
# ifdef WITH_CYCLES_DEBUG
sbt_params.exceptionRecord = sbt_data.device_pointer + PG_EXCP * sizeof(SbtRecord);
# endif
sbt_params.missRecordBase = sbt_data.device_pointer + PG_MISS * sizeof(SbtRecord);
sbt_params.missRecordStrideInBytes = sizeof(SbtRecord);
sbt_params.missRecordCount = 1;
sbt_params.hitgroupRecordBase = sbt_data.device_pointer + PG_HITD * sizeof(SbtRecord);
sbt_params.hitgroupRecordStrideInBytes = sizeof(SbtRecord);
sbt_params.hitgroupRecordCount = 3; // PG_HITD, PG_HITL, PG_HITS
check_result_optix(optixLaunch(pipelines[PIP_SHADER_EVAL],
cuda_stream[thread_index],
launch_params_ptr,
launch_params.data_elements,
&sbt_params,
task.shader_w,
1,
1));
check_result_cuda(cuStreamSynchronize(cuda_stream[thread_index]));
task.update_progress(NULL);
}
}
void launch_film_convert(DeviceTask &task, int thread_index)
{
const CUDAContextScope scope(cuda_context);
CUfunction film_convert_func;
check_result_cuda(cuModuleGetFunction(&film_convert_func,
cuda_module,
task.rgba_byte ? "kernel_cuda_convert_to_byte" :
"kernel_cuda_convert_to_half_float"));
float sample_scale = 1.0f / (task.sample + 1);
CUdeviceptr rgba = (task.rgba_byte ? task.rgba_byte : task.rgba_half);
void *args[] = {&rgba,
&task.buffer,
&sample_scale,
&task.x,
&task.y,
&task.w,
&task.h,
&task.offset,
&task.stride};
int threads_per_block;
check_result_cuda(cuFuncGetAttribute(
&threads_per_block, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, film_convert_func));
const int num_threads_x = (int)sqrt(threads_per_block);
const int num_blocks_x = (task.w + num_threads_x - 1) / num_threads_x;
const int num_threads_y = (int)sqrt(threads_per_block);
const int num_blocks_y = (task.h + num_threads_y - 1) / num_threads_y;
check_result_cuda(cuLaunchKernel(film_convert_func,
num_blocks_x,
num_blocks_y,
1, /* blocks */
num_threads_x,
num_threads_y,
1, /* threads */
0,
cuda_stream[thread_index],
args,
0));
check_result_cuda(cuStreamSynchronize(cuda_stream[thread_index]));
task.update_progress(NULL);
}
bool build_optix_bvh(const OptixBuildInput &build_input,
uint16_t num_motion_steps,
device_memory &out_data,
OptixTraversableHandle &out_handle)
{
out_handle = 0;
const CUDAContextScope scope(cuda_context);
// Compute memory usage
OptixAccelBufferSizes sizes = {};
OptixAccelBuildOptions options;
options.operation = OPTIX_BUILD_OPERATION_BUILD;
options.buildFlags = OPTIX_BUILD_FLAG_PREFER_FAST_TRACE;
options.motionOptions.numKeys = num_motion_steps;
options.motionOptions.flags = OPTIX_MOTION_FLAG_START_VANISH | OPTIX_MOTION_FLAG_END_VANISH;
options.motionOptions.timeBegin = 0.0f;
options.motionOptions.timeEnd = 1.0f;
check_result_optix_ret(
optixAccelComputeMemoryUsage(context, &options, &build_input, 1, &sizes));
// Allocate required output buffers
device_only_memory<char> temp_mem(this, "temp_build_mem");
temp_mem.alloc_to_device(sizes.tempSizeInBytes);
out_data.data_type = TYPE_UNKNOWN;
out_data.data_elements = 1;
out_data.data_size = sizes.outputSizeInBytes;
mem_alloc(out_data);
// Finally build the acceleration structure
check_result_optix_ret(optixAccelBuild(context,
NULL,
&options,
&build_input,
1,
temp_mem.device_pointer,
sizes.tempSizeInBytes,
out_data.device_pointer,
sizes.outputSizeInBytes,
&out_handle,
NULL,
0));
// Wait for all operations to finish
check_result_cuda_ret(cuStreamSynchronize(NULL));
return true;
}
bool build_optix_bvh(BVH *bvh, device_memory &out_data) override
{
assert(bvh->params.top_level);
unsigned int num_instances = 0;
unordered_map<Mesh *, vector<OptixTraversableHandle>> meshes;
// Clear all previous AS
blas.clear();
// Build bottom level acceleration structures (BLAS)
// Note: Always keep this logic in sync with bvh_optix.cpp!
for (Object *ob : bvh->objects) {
// Skip meshes for which acceleration structure already exists
if (meshes.find(ob->mesh) != meshes.end())
continue;
Mesh *const mesh = ob->mesh;
vector<OptixTraversableHandle> handles;
// Build BLAS for curve primitives
if (bvh->params.primitive_mask & PRIMITIVE_ALL_CURVE && mesh->num_curves() > 0) {
const size_t num_curves = mesh->num_curves();
const size_t num_segments = mesh->num_segments();
size_t num_motion_steps = 1;
Attribute *motion_keys = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (motion_blur && mesh->use_motion_blur && motion_keys) {
num_motion_steps = mesh->motion_steps;
}
device_vector<OptixAabb> aabb_data(this, "temp_aabb_data", MEM_READ_ONLY);
aabb_data.alloc(num_segments * num_motion_steps);
// Get AABBs for each motion step
for (size_t step = 0; step < num_motion_steps; ++step) {
// The center step for motion vertices is not stored in the attribute
const float3 *keys = mesh->curve_keys.data();
size_t center_step = (num_motion_steps - 1) / 2;
if (step != center_step) {
size_t attr_offset = (step > center_step) ? step - 1 : step;
// Technically this is a float4 array, but sizeof(float3) is the same as sizeof(float4)
keys = motion_keys->data_float3() + attr_offset * mesh->curve_keys.size();
}
size_t i = step * num_segments;
for (size_t j = 0; j < num_curves; ++j) {
const Mesh::Curve c = mesh->get_curve(j);
for (size_t k = 0; k < c.num_segments(); ++i, ++k) {
BoundBox bounds = BoundBox::empty;
c.bounds_grow(k, keys, mesh->curve_radius.data(), bounds);
aabb_data[i].minX = bounds.min.x;
aabb_data[i].minY = bounds.min.y;
aabb_data[i].minZ = bounds.min.z;
aabb_data[i].maxX = bounds.max.x;
aabb_data[i].maxY = bounds.max.y;
aabb_data[i].maxZ = bounds.max.z;
}
}
}
// Upload AABB data to GPU
aabb_data.copy_to_device();
vector<device_ptr> aabb_ptrs;
aabb_ptrs.reserve(num_motion_steps);
for (size_t step = 0; step < num_motion_steps; ++step) {
aabb_ptrs.push_back(aabb_data.device_pointer + step * num_segments * sizeof(OptixAabb));
}
// Disable visibility test anyhit program, since it is already checked during intersection
// Those trace calls that require anyhit can force it with OPTIX_RAY_FLAG_ENFORCE_ANYHIT
unsigned int build_flags = OPTIX_GEOMETRY_FLAG_DISABLE_ANYHIT;
OptixBuildInput build_input = {};
build_input.type = OPTIX_BUILD_INPUT_TYPE_CUSTOM_PRIMITIVES;
build_input.aabbArray.aabbBuffers = (CUdeviceptr *)aabb_ptrs.data();
build_input.aabbArray.numPrimitives = num_segments;
build_input.aabbArray.strideInBytes = sizeof(OptixAabb);
build_input.aabbArray.flags = &build_flags;
build_input.aabbArray.numSbtRecords = 1;
build_input.aabbArray.primitiveIndexOffset = mesh->prim_offset;
// Allocate memory for new BLAS and build it
blas.emplace_back(this, "blas");
handles.emplace_back();
if (!build_optix_bvh(build_input, num_motion_steps, blas.back(), handles.back()))
return false;
}
// Build BLAS for triangle primitives
if (bvh->params.primitive_mask & PRIMITIVE_ALL_TRIANGLE && mesh->num_triangles() > 0) {
const size_t num_verts = mesh->verts.size();
size_t num_motion_steps = 1;
Attribute *motion_keys = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (motion_blur && mesh->use_motion_blur && motion_keys) {
num_motion_steps = mesh->motion_steps;
}
device_vector<int> index_data(this, "temp_index_data", MEM_READ_ONLY);
index_data.alloc(mesh->triangles.size());
memcpy(index_data.data(), mesh->triangles.data(), mesh->triangles.size() * sizeof(int));
device_vector<float3> vertex_data(this, "temp_vertex_data", MEM_READ_ONLY);
vertex_data.alloc(num_verts * num_motion_steps);
for (size_t step = 0; step < num_motion_steps; ++step) {
const float3 *verts = mesh->verts.data();
size_t center_step = (num_motion_steps - 1) / 2;
// The center step for motion vertices is not stored in the attribute
if (step != center_step) {
verts = motion_keys->data_float3() +
(step > center_step ? step - 1 : step) * num_verts;
}
memcpy(vertex_data.data() + num_verts * step, verts, num_verts * sizeof(float3));
}
// Upload triangle data to GPU
index_data.copy_to_device();
vertex_data.copy_to_device();
vector<device_ptr> vertex_ptrs;
vertex_ptrs.reserve(num_motion_steps);
for (size_t step = 0; step < num_motion_steps; ++step) {
vertex_ptrs.push_back(vertex_data.device_pointer + num_verts * step * sizeof(float3));
}
// No special build flags for triangle primitives
unsigned int build_flags = OPTIX_GEOMETRY_FLAG_NONE;
OptixBuildInput build_input = {};
build_input.type = OPTIX_BUILD_INPUT_TYPE_TRIANGLES;
build_input.triangleArray.vertexBuffers = (CUdeviceptr *)vertex_ptrs.data();
build_input.triangleArray.numVertices = num_verts;
build_input.triangleArray.vertexFormat = OPTIX_VERTEX_FORMAT_FLOAT3;
build_input.triangleArray.vertexStrideInBytes = sizeof(float3);
build_input.triangleArray.indexBuffer = index_data.device_pointer;
build_input.triangleArray.numIndexTriplets = mesh->num_triangles();
build_input.triangleArray.indexFormat = OPTIX_INDICES_FORMAT_UNSIGNED_INT3;
build_input.triangleArray.indexStrideInBytes = 3 * sizeof(int);
build_input.triangleArray.flags = &build_flags;
// The SBT does not store per primitive data since Cycles already allocates separate
// buffers for that purpose. OptiX does not allow this to be zero though, so just pass in
// one and rely on that having the same meaning in this case.
build_input.triangleArray.numSbtRecords = 1;
// Triangle primitives are packed right after the curve primitives of this mesh
build_input.triangleArray.primitiveIndexOffset = mesh->prim_offset + mesh->num_segments();
// Allocate memory for new BLAS and build it
blas.emplace_back(this, "blas");
handles.emplace_back();
if (!build_optix_bvh(build_input, num_motion_steps, blas.back(), handles.back()))
return false;
}
meshes.insert({mesh, handles});
}
// Fill instance descriptions
device_vector<OptixAabb> aabbs(this, "tlas_aabbs", MEM_READ_ONLY);
aabbs.alloc(bvh->objects.size() * 2);
device_vector<OptixInstance> instances(this, "tlas_instances", MEM_READ_ONLY);
instances.alloc(bvh->objects.size() * 2);
for (Object *ob : bvh->objects) {
// Skip non-traceable objects
if (!ob->is_traceable())
continue;
// Create separate instance for triangle/curve meshes of an object
for (OptixTraversableHandle handle : meshes[ob->mesh]) {
OptixAabb &aabb = aabbs[num_instances];
aabb.minX = ob->bounds.min.x;
aabb.minY = ob->bounds.min.y;
aabb.minZ = ob->bounds.min.z;
aabb.maxX = ob->bounds.max.x;
aabb.maxY = ob->bounds.max.y;
aabb.maxZ = ob->bounds.max.z;
OptixInstance &instance = instances[num_instances++];
memset(&instance, 0, sizeof(instance));
// Clear transform to identity matrix
instance.transform[0] = 1.0f;
instance.transform[5] = 1.0f;
instance.transform[10] = 1.0f;
// Set user instance ID to object index
instance.instanceId = ob->get_device_index();
// Volumes have a special bit set in the visibility mask so a trace can mask only volumes
// See 'scene_intersect_volume' in bvh.h
instance.visibilityMask = (ob->mesh->has_volume ? 3 : 1);
// Insert motion traversable if object has motion
if (motion_blur && ob->use_motion()) {
blas.emplace_back(this, "motion_transform");
device_only_memory<uint8_t> &motion_transform_gpu = blas.back();
motion_transform_gpu.alloc_to_device(sizeof(OptixSRTMotionTransform) +
(max(ob->motion.size(), 2) - 2) *
sizeof(OptixSRTData));
// Allocate host side memory for motion transform and fill it with transform data
OptixSRTMotionTransform &motion_transform = *reinterpret_cast<OptixSRTMotionTransform *>(
motion_transform_gpu.host_pointer = new uint8_t[motion_transform_gpu.memory_size()]);
motion_transform.child = handle;
motion_transform.motionOptions.numKeys = ob->motion.size();
motion_transform.motionOptions.flags = OPTIX_MOTION_FLAG_NONE;
motion_transform.motionOptions.timeBegin = 0.0f;
motion_transform.motionOptions.timeEnd = 1.0f;
OptixSRTData *const srt_data = motion_transform.srtData;
array<DecomposedTransform> decomp(ob->motion.size());
transform_motion_decompose(decomp.data(), ob->motion.data(), ob->motion.size());
for (size_t i = 0; i < ob->motion.size(); ++i) {
// scaling
srt_data[i].a = decomp[i].z.x; // scale.x.y
srt_data[i].b = decomp[i].z.y; // scale.x.z
srt_data[i].c = decomp[i].w.x; // scale.y.z
srt_data[i].sx = decomp[i].y.w; // scale.x.x
srt_data[i].sy = decomp[i].z.w; // scale.y.y
srt_data[i].sz = decomp[i].w.w; // scale.z.z
srt_data[i].pvx = 0;
srt_data[i].pvy = 0;
srt_data[i].pvz = 0;
// rotation
srt_data[i].qx = decomp[i].x.x;
srt_data[i].qy = decomp[i].x.y;
srt_data[i].qz = decomp[i].x.z;
srt_data[i].qw = decomp[i].x.w;
// transform
srt_data[i].tx = decomp[i].y.x;
srt_data[i].ty = decomp[i].y.y;
srt_data[i].tz = decomp[i].y.z;
}
// Upload motion transform to GPU
mem_copy_to(motion_transform_gpu);
delete[] reinterpret_cast<uint8_t *>(motion_transform_gpu.host_pointer);
motion_transform_gpu.host_pointer = 0;
// Disable instance transform if object uses motion transform already
instance.flags = OPTIX_INSTANCE_FLAG_DISABLE_TRANSFORM;
// Get traversable handle to motion transform
optixConvertPointerToTraversableHandle(context,
motion_transform_gpu.device_pointer,
OPTIX_TRAVERSABLE_TYPE_SRT_MOTION_TRANSFORM,
&instance.traversableHandle);
}
else {
instance.traversableHandle = handle;
if (ob->mesh->is_instanced()) {
// Set transform matrix
memcpy(instance.transform, &ob->tfm, sizeof(instance.transform));
}
else {
// Disable instance transform if mesh already has it applied to vertex data
instance.flags = OPTIX_INSTANCE_FLAG_DISABLE_TRANSFORM;
// Non-instanced objects read ID from prim_object, so
// distinguish them from instanced objects with high bit set
instance.instanceId |= 0x800000;
}
}
}
}
// Upload instance descriptions
aabbs.resize(num_instances);
aabbs.copy_to_device();
instances.resize(num_instances);
instances.copy_to_device();
// Build top-level acceleration structure
OptixBuildInput build_input = {};
build_input.type = OPTIX_BUILD_INPUT_TYPE_INSTANCES;
build_input.instanceArray.instances = instances.device_pointer;
build_input.instanceArray.numInstances = num_instances;
build_input.instanceArray.aabbs = aabbs.device_pointer;
build_input.instanceArray.numAabbs = num_instances;
return build_optix_bvh(build_input, 0 /* TLAS has no motion itself */, out_data, tlas_handle);
}
void update_texture_info()
{
if (need_texture_info) {
texture_info.copy_to_device();
need_texture_info = false;
}
}
void update_launch_params(const char *name, size_t offset, void *data, size_t data_size)
{
const CUDAContextScope scope(cuda_context);
for (int i = 0; i < info.cpu_threads; ++i)
check_result_cuda(
cuMemcpyHtoD(launch_params.device_pointer + i * launch_params.data_elements + offset,
data,
data_size));
// Set constant memory for CUDA module
// TODO(pmours): This is only used for tonemapping (see 'launch_film_convert').
// Could be removed by moving those functions to filter CUDA module.
size_t bytes = 0;
CUdeviceptr mem = 0;
check_result_cuda(cuModuleGetGlobal(&mem, &bytes, cuda_module, name));
assert(mem != NULL && bytes == data_size);
check_result_cuda(cuMemcpyHtoD(mem, data, data_size));
}
void mem_alloc(device_memory &mem) override
{
const CUDAContextScope scope(cuda_context);
mem.device_size = mem.memory_size();
if (mem.type == MEM_TEXTURE && mem.interpolation != INTERPOLATION_NONE) {
CUDAMem &cmem = cuda_mem_map[&mem]; // Lock and get associated memory information
CUDA_TEXTURE_DESC tex_desc = {};
tex_desc.flags = CU_TRSF_NORMALIZED_COORDINATES;
CUDA_RESOURCE_DESC res_desc = {};
switch (mem.extension) {
default:
assert(0);
case EXTENSION_REPEAT:
tex_desc.addressMode[0] = tex_desc.addressMode[1] = tex_desc.addressMode[2] =
CU_TR_ADDRESS_MODE_WRAP;
break;
case EXTENSION_EXTEND:
tex_desc.addressMode[0] = tex_desc.addressMode[1] = tex_desc.addressMode[2] =
CU_TR_ADDRESS_MODE_CLAMP;
break;
case EXTENSION_CLIP:
tex_desc.addressMode[0] = tex_desc.addressMode[1] = tex_desc.addressMode[2] =
CU_TR_ADDRESS_MODE_BORDER;
break;
}
switch (mem.interpolation) {
default: // Default to linear for unsupported interpolation types
case INTERPOLATION_LINEAR:
tex_desc.filterMode = CU_TR_FILTER_MODE_LINEAR;
break;
case INTERPOLATION_CLOSEST:
tex_desc.filterMode = CU_TR_FILTER_MODE_POINT;
break;
}
CUarray_format format;
switch (mem.data_type) {
default:
assert(0);
case TYPE_UCHAR:
format = CU_AD_FORMAT_UNSIGNED_INT8;
break;
case TYPE_UINT16:
format = CU_AD_FORMAT_UNSIGNED_INT16;
break;
case TYPE_UINT:
format = CU_AD_FORMAT_UNSIGNED_INT32;
break;
case TYPE_INT:
format = CU_AD_FORMAT_SIGNED_INT32;
break;
case TYPE_FLOAT:
format = CU_AD_FORMAT_FLOAT;
break;
case TYPE_HALF:
format = CU_AD_FORMAT_HALF;
break;
}
if (mem.data_depth > 1) { /* 3D texture using array. */
CUDA_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
check_result_cuda(cuArray3DCreate(&cmem.array, &desc));
mem.device_pointer = (device_ptr)cmem.array;
res_desc.resType = CU_RESOURCE_TYPE_ARRAY;
res_desc.res.array.hArray = cmem.array;
}
else if (mem.data_height > 0) { /* 2D texture using array. */
CUDA_ARRAY_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Format = format;
desc.NumChannels = mem.data_elements;
check_result_cuda(cuArrayCreate(&cmem.array, &desc));
mem.device_pointer = (device_ptr)cmem.array;
res_desc.resType = CU_RESOURCE_TYPE_ARRAY;
res_desc.res.array.hArray = cmem.array;
}
else {
check_result_cuda(cuMemAlloc((CUdeviceptr *)&mem.device_pointer, mem.device_size));
res_desc.resType = CU_RESOURCE_TYPE_LINEAR;
res_desc.res.linear.devPtr = (CUdeviceptr)mem.device_pointer;
res_desc.res.linear.format = format;
res_desc.res.linear.numChannels = mem.data_elements;
res_desc.res.linear.sizeInBytes = mem.device_size;
}
check_result_cuda(cuTexObjectCreate(&cmem.texobject, &res_desc, &tex_desc, NULL));
int flat_slot = 0;
if (string_startswith(mem.name, "__tex_image")) {
flat_slot = atoi(mem.name + string(mem.name).rfind("_") + 1);
}
if (flat_slot >= texture_info.size())
texture_info.resize(flat_slot + 128);
TextureInfo &info = texture_info[flat_slot];
info.data = (uint64_t)cmem.texobject;
info.cl_buffer = 0;
info.interpolation = mem.interpolation;
info.extension = mem.extension;
info.width = mem.data_width;
info.height = mem.data_height;
info.depth = mem.data_depth;
// Texture information has changed and needs an update, delay this to next launch
need_texture_info = true;
}
else {
// This is not a texture but simple linear memory
check_result_cuda(cuMemAlloc((CUdeviceptr *)&mem.device_pointer, mem.device_size));
// Update data storage pointers in launch parameters
# define KERNEL_TEX(data_type, tex_name) \
if (strcmp(mem.name, #tex_name) == 0) \
update_launch_params( \
mem.name, offsetof(KernelParams, tex_name), &mem.device_pointer, sizeof(device_ptr));
# include "kernel/kernel_textures.h"
# undef KERNEL_TEX
}
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory &mem) override
{
if (!mem.host_pointer || mem.host_pointer == mem.shared_pointer)
return;
if (!mem.device_pointer)
mem_alloc(mem); // Need to allocate memory first if it does not exist yet
const CUDAContextScope scope(cuda_context);
if (mem.type == MEM_TEXTURE && mem.interpolation != INTERPOLATION_NONE) {
const CUDAMem &cmem = cuda_mem_map[&mem]; // Lock and get associated memory information
size_t src_pitch = mem.data_width * datatype_size(mem.data_type) * mem.data_elements;
if (mem.data_depth > 1) {
CUDA_MEMCPY3D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = cmem.array;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
check_result_cuda(cuMemcpy3D(&param));
}
else if (mem.data_height > 0) {
CUDA_MEMCPY2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = cmem.array;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
check_result_cuda(cuMemcpy2D(&param));
}
else {
check_result_cuda(
cuMemcpyHtoD((CUdeviceptr)mem.device_pointer, mem.host_pointer, mem.device_size));
}
}
else {
// This is not a texture but simple linear memory
check_result_cuda(
cuMemcpyHtoD((CUdeviceptr)mem.device_pointer, mem.host_pointer, mem.device_size));
}
}
void mem_copy_from(device_memory &mem, int y, int w, int h, int elem) override
{
// Calculate linear memory offset and size
const size_t size = elem * w * h;
const size_t offset = elem * y * w;
if (mem.host_pointer && mem.device_pointer) {
const CUDAContextScope scope(cuda_context);
check_result_cuda(cuMemcpyDtoH(
(char *)mem.host_pointer + offset, (CUdeviceptr)mem.device_pointer + offset, size));
}
else if (mem.host_pointer) {
memset((char *)mem.host_pointer + offset, 0, size);
}
}
void mem_zero(device_memory &mem) override
{
if (mem.host_pointer)
memset(mem.host_pointer, 0, mem.memory_size());
if (mem.host_pointer && mem.host_pointer == mem.shared_pointer)
return; // This is shared host memory, so no device memory to update
if (!mem.device_pointer)
mem_alloc(mem); // Need to allocate memory first if it does not exist yet
const CUDAContextScope scope(cuda_context);
check_result_cuda(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size()));
}
void mem_free(device_memory &mem) override
{
assert(mem.device_pointer);
const CUDAContextScope scope(cuda_context);
if (mem.type == MEM_TEXTURE && mem.interpolation != INTERPOLATION_NONE) {
CUDAMem &cmem = cuda_mem_map[&mem]; // Lock and get associated memory information
if (cmem.array)
cuArrayDestroy(cmem.array);
else
cuMemFree((CUdeviceptr)mem.device_pointer);
if (cmem.texobject)
cuTexObjectDestroy(cmem.texobject);
}
else {
// This is not a texture but simple linear memory
cuMemFree((CUdeviceptr)mem.device_pointer);
}
stats.mem_free(mem.device_size);
mem.device_size = 0;
mem.device_pointer = 0;
}
void const_copy_to(const char *name, void *host, size_t size) override
{
if (strcmp(name, "__data") == 0) {
assert(size <= sizeof(KernelData));
// Fix traversable handle on multi devices
KernelData *const data = (KernelData *)host;
*(OptixTraversableHandle *)&data->bvh.scene = tlas_handle;
update_launch_params(name, offsetof(KernelParams, data), host, size);
}
}
device_ptr mem_alloc_sub_ptr(device_memory &mem, int offset, int /*size*/) override
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void task_add(DeviceTask &task) override
{
// Upload texture information to device if it has changed since last launch
update_texture_info();
// Split task into smaller ones
list<DeviceTask> tasks;
task.split(tasks, info.cpu_threads);
// Queue tasks in internal task pool
struct OptiXDeviceTask : public DeviceTask {
OptiXDeviceTask(OptiXDevice *device, DeviceTask &task, int task_index) : DeviceTask(task)
{
// Using task index parameter instead of thread index, since number of CUDA streams may
// differ from number of threads
run = function_bind(&OptiXDevice::thread_run, device, *this, task_index);
}
};
int task_index = 0;
for (DeviceTask &task : tasks)
task_pool.push(new OptiXDeviceTask(this, task, task_index++));
}
void task_wait() override
{
// Wait for all queued tasks to finish
task_pool.wait_work();
}
void task_cancel() override
{
// Cancel any remaining tasks in the internal pool
task_pool.cancel();
}
# define CUDA_GET_BLOCKSIZE(func, w, h) \
int threads; \
check_result_cuda_ret( \
cuFuncGetAttribute(&threads, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, func)); \
threads = (int)sqrt((float)threads); \
int xblocks = ((w) + threads - 1) / threads; \
int yblocks = ((h) + threads - 1) / threads;
# define CUDA_LAUNCH_KERNEL(func, args) \
check_result_cuda_ret(cuLaunchKernel( \
func, xblocks, yblocks, 1, threads, threads, 1, 0, cuda_stream[thread_index], args, 0));
/* Similar as above, but for 1-dimensional blocks. */
# define CUDA_GET_BLOCKSIZE_1D(func, w, h) \
int threads; \
check_result_cuda_ret( \
cuFuncGetAttribute(&threads, CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, func)); \
int xblocks = ((w) + threads - 1) / threads; \
int yblocks = h;
# define CUDA_LAUNCH_KERNEL_1D(func, args) \
check_result_cuda_ret(cuLaunchKernel( \
func, xblocks, yblocks, 1, threads, 1, 1, 0, cuda_stream[thread_index], args, 0));
bool denoising_non_local_means(device_ptr image_ptr,
device_ptr guide_ptr,
device_ptr variance_ptr,
device_ptr out_ptr,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
int stride = task->buffer.stride;
int w = task->buffer.width;
int h = task->buffer.h;
int r = task->nlm_state.r;
int f = task->nlm_state.f;
float a = task->nlm_state.a;
float k_2 = task->nlm_state.k_2;
int pass_stride = task->buffer.pass_stride;
int num_shifts = (2 * r + 1) * (2 * r + 1);
int channel_offset = task->nlm_state.is_color ? task->buffer.pass_stride : 0;
int frame_offset = 0;
CUdeviceptr difference = (CUdeviceptr)task->buffer.temporary_mem.device_pointer;
CUdeviceptr blurDifference = difference + sizeof(float) * pass_stride * num_shifts;
CUdeviceptr weightAccum = difference + 2 * sizeof(float) * pass_stride * num_shifts;
CUdeviceptr scale_ptr = 0;
check_result_cuda_ret(
cuMemsetD8Async(weightAccum, 0, sizeof(float) * pass_stride, cuda_stream[thread_index]));
check_result_cuda_ret(
cuMemsetD8Async(out_ptr, 0, sizeof(float) * pass_stride, cuda_stream[thread_index]));
{
CUfunction cuNLMCalcDifference, cuNLMBlur, cuNLMCalcWeight, cuNLMUpdateOutput;
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMCalcDifference, cuda_filter_module, "kernel_cuda_filter_nlm_calc_difference"));
check_result_cuda_ret(
cuModuleGetFunction(&cuNLMBlur, cuda_filter_module, "kernel_cuda_filter_nlm_blur"));
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMCalcWeight, cuda_filter_module, "kernel_cuda_filter_nlm_calc_weight"));
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMUpdateOutput, cuda_filter_module, "kernel_cuda_filter_nlm_update_output"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMCalcDifference, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMBlur, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMCalcWeight, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMUpdateOutput, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE_1D(cuNLMCalcDifference, w * h, num_shifts);
void *calc_difference_args[] = {&guide_ptr,
&variance_ptr,
&scale_ptr,
&difference,
&w,
&h,
&stride,
&pass_stride,
&r,
&channel_offset,
&frame_offset,
&a,
&k_2};
void *blur_args[] = {&difference, &blurDifference, &w, &h, &stride, &pass_stride, &r, &f};
void *calc_weight_args[] = {
&blurDifference, &difference, &w, &h, &stride, &pass_stride, &r, &f};
void *update_output_args[] = {&blurDifference,
&image_ptr,
&out_ptr,
&weightAccum,
&w,
&h,
&stride,
&pass_stride,
&channel_offset,
&r,
&f};
CUDA_LAUNCH_KERNEL_1D(cuNLMCalcDifference, calc_difference_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMBlur, blur_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMCalcWeight, calc_weight_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMBlur, blur_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMUpdateOutput, update_output_args);
}
{
CUfunction cuNLMNormalize;
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMNormalize, cuda_filter_module, "kernel_cuda_filter_nlm_normalize"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMNormalize, CU_FUNC_CACHE_PREFER_L1));
void *normalize_args[] = {&out_ptr, &weightAccum, &w, &h, &stride};
CUDA_GET_BLOCKSIZE(cuNLMNormalize, w, h);
CUDA_LAUNCH_KERNEL(cuNLMNormalize, normalize_args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
}
return !have_error();
}
bool denoising_construct_transform(DenoisingTask *task, int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterConstructTransform;
check_result_cuda_ret(cuModuleGetFunction(&cuFilterConstructTransform,
cuda_filter_module,
"kernel_cuda_filter_construct_transform"));
check_result_cuda_ret(
cuFuncSetCacheConfig(cuFilterConstructTransform, CU_FUNC_CACHE_PREFER_SHARED));
CUDA_GET_BLOCKSIZE(cuFilterConstructTransform, task->storage.w, task->storage.h);
void *args[] = {&task->buffer.mem.device_pointer,
&task->tile_info_mem.device_pointer,
&task->storage.transform.device_pointer,
&task->storage.rank.device_pointer,
&task->filter_area,
&task->rect,
&task->radius,
&task->pca_threshold,
&task->buffer.pass_stride,
&task->buffer.frame_stride,
&task->buffer.use_time};
CUDA_LAUNCH_KERNEL(cuFilterConstructTransform, args);
check_result_cuda_ret(cuCtxSynchronize());
return !have_error();
}
bool denoising_accumulate(device_ptr color_ptr,
device_ptr color_variance_ptr,
device_ptr scale_ptr,
int frame,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
int r = task->radius;
int f = 4;
float a = 1.0f;
float k_2 = task->nlm_k_2;
int w = task->reconstruction_state.source_w;
int h = task->reconstruction_state.source_h;
int stride = task->buffer.stride;
int frame_offset = frame * task->buffer.frame_stride;
int t = task->tile_info->frames[frame];
int pass_stride = task->buffer.pass_stride;
int num_shifts = (2 * r + 1) * (2 * r + 1);
CUdeviceptr difference = (CUdeviceptr)task->buffer.temporary_mem.device_pointer;
CUdeviceptr blurDifference = difference + sizeof(float) * pass_stride * num_shifts;
CUfunction cuNLMCalcDifference, cuNLMBlur, cuNLMCalcWeight, cuNLMConstructGramian;
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMCalcDifference, cuda_filter_module, "kernel_cuda_filter_nlm_calc_difference"));
check_result_cuda_ret(
cuModuleGetFunction(&cuNLMBlur, cuda_filter_module, "kernel_cuda_filter_nlm_blur"));
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMCalcWeight, cuda_filter_module, "kernel_cuda_filter_nlm_calc_weight"));
check_result_cuda_ret(cuModuleGetFunction(
&cuNLMConstructGramian, cuda_filter_module, "kernel_cuda_filter_nlm_construct_gramian"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMCalcDifference, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMBlur, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(cuFuncSetCacheConfig(cuNLMCalcWeight, CU_FUNC_CACHE_PREFER_L1));
check_result_cuda_ret(
cuFuncSetCacheConfig(cuNLMConstructGramian, CU_FUNC_CACHE_PREFER_SHARED));
CUDA_GET_BLOCKSIZE_1D(cuNLMCalcDifference,
task->reconstruction_state.source_w *
task->reconstruction_state.source_h,
num_shifts);
void *calc_difference_args[] = {&color_ptr,
&color_variance_ptr,
&scale_ptr,
&difference,
&w,
&h,
&stride,
&pass_stride,
&r,
&pass_stride,
&frame_offset,
&a,
&k_2};
void *blur_args[] = {&difference, &blurDifference, &w, &h, &stride, &pass_stride, &r, &f};
void *calc_weight_args[] = {
&blurDifference, &difference, &w, &h, &stride, &pass_stride, &r, &f};
void *construct_gramian_args[] = {&t,
&blurDifference,
&task->buffer.mem.device_pointer,
&task->storage.transform.device_pointer,
&task->storage.rank.device_pointer,
&task->storage.XtWX.device_pointer,
&task->storage.XtWY.device_pointer,
&task->reconstruction_state.filter_window,
&w,
&h,
&stride,
&pass_stride,
&r,
&f,
&frame_offset,
&task->buffer.use_time};
CUDA_LAUNCH_KERNEL_1D(cuNLMCalcDifference, calc_difference_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMBlur, blur_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMCalcWeight, calc_weight_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMBlur, blur_args);
CUDA_LAUNCH_KERNEL_1D(cuNLMConstructGramian, construct_gramian_args);
check_result_cuda_ret(cuCtxSynchronize());
return !have_error();
}
bool denoising_solve(device_ptr output_ptr, DenoisingTask *task, int thread_index)
{
if (have_error())
return false;
CUfunction cuFinalize;
check_result_cuda_ret(
cuModuleGetFunction(&cuFinalize, cuda_filter_module, "kernel_cuda_filter_finalize"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFinalize, CU_FUNC_CACHE_PREFER_L1));
void *finalize_args[] = {&output_ptr,
&task->storage.rank.device_pointer,
&task->storage.XtWX.device_pointer,
&task->storage.XtWY.device_pointer,
&task->filter_area,
&task->reconstruction_state.buffer_params.x,
&task->render_buffer.samples};
CUDA_GET_BLOCKSIZE(
cuFinalize, task->reconstruction_state.source_w, task->reconstruction_state.source_h);
CUDA_LAUNCH_KERNEL(cuFinalize, finalize_args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
bool denoising_combine_halves(device_ptr a_ptr,
device_ptr b_ptr,
device_ptr mean_ptr,
device_ptr variance_ptr,
int r,
int4 rect,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterCombineHalves;
check_result_cuda_ret(cuModuleGetFunction(
&cuFilterCombineHalves, cuda_filter_module, "kernel_cuda_filter_combine_halves"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFilterCombineHalves, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE(
cuFilterCombineHalves, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
void *args[] = {&mean_ptr, &variance_ptr, &a_ptr, &b_ptr, &rect, &r};
CUDA_LAUNCH_KERNEL(cuFilterCombineHalves, args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
bool denoising_divide_shadow(device_ptr a_ptr,
device_ptr b_ptr,
device_ptr sample_variance_ptr,
device_ptr sv_variance_ptr,
device_ptr buffer_variance_ptr,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterDivideShadow;
check_result_cuda_ret(cuModuleGetFunction(
&cuFilterDivideShadow, cuda_filter_module, "kernel_cuda_filter_divide_shadow"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFilterDivideShadow, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE(
cuFilterDivideShadow, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
void *args[] = {&task->render_buffer.samples,
&task->tile_info_mem.device_pointer,
&a_ptr,
&b_ptr,
&sample_variance_ptr,
&sv_variance_ptr,
&buffer_variance_ptr,
&task->rect,
&task->render_buffer.pass_stride,
&task->render_buffer.offset};
CUDA_LAUNCH_KERNEL(cuFilterDivideShadow, args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
bool denoising_get_feature(int mean_offset,
int variance_offset,
device_ptr mean_ptr,
device_ptr variance_ptr,
float scale,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterGetFeature;
check_result_cuda_ret(cuModuleGetFunction(
&cuFilterGetFeature, cuda_filter_module, "kernel_cuda_filter_get_feature"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFilterGetFeature, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE(
cuFilterGetFeature, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
void *args[] = {&task->render_buffer.samples,
&task->tile_info_mem.device_pointer,
&mean_offset,
&variance_offset,
&mean_ptr,
&variance_ptr,
&scale,
&task->rect,
&task->render_buffer.pass_stride,
&task->render_buffer.offset};
CUDA_LAUNCH_KERNEL(cuFilterGetFeature, args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
bool denoising_write_feature(int out_offset,
device_ptr from_ptr,
device_ptr buffer_ptr,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterWriteFeature;
check_result_cuda_ret(cuModuleGetFunction(
&cuFilterWriteFeature, cuda_filter_module, "kernel_cuda_filter_write_feature"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFilterWriteFeature, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE(cuFilterWriteFeature, task->filter_area.z, task->filter_area.w);
void *args[] = {&task->render_buffer.samples,
&task->reconstruction_state.buffer_params,
&task->filter_area,
&from_ptr,
&buffer_ptr,
&out_offset,
&task->rect};
CUDA_LAUNCH_KERNEL(cuFilterWriteFeature, args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
bool denoising_detect_outliers(device_ptr image_ptr,
device_ptr variance_ptr,
device_ptr depth_ptr,
device_ptr output_ptr,
DenoisingTask *task,
int thread_index)
{
if (have_error())
return false;
CUfunction cuFilterDetectOutliers;
check_result_cuda_ret(cuModuleGetFunction(
&cuFilterDetectOutliers, cuda_filter_module, "kernel_cuda_filter_detect_outliers"));
check_result_cuda_ret(cuFuncSetCacheConfig(cuFilterDetectOutliers, CU_FUNC_CACHE_PREFER_L1));
CUDA_GET_BLOCKSIZE(
cuFilterDetectOutliers, task->rect.z - task->rect.x, task->rect.w - task->rect.y);
void *args[] = {&image_ptr,
&variance_ptr,
&depth_ptr,
&output_ptr,
&task->rect,
&task->buffer.pass_stride};
CUDA_LAUNCH_KERNEL(cuFilterDetectOutliers, args);
check_result_cuda_ret(cuStreamSynchronize(cuda_stream[thread_index]));
return !have_error();
}
};
bool device_optix_init()
{
if (g_optixFunctionTable.optixDeviceContextCreate != NULL)
return true; // Already initialized function table
// Need to initialize CUDA as well
if (!device_cuda_init())
return false;
# ifdef WITH_CUDA_DYNLOAD
// Load NVRTC function pointers for adaptive kernel compilation
if (DebugFlags().cuda.adaptive_compile && cuewInit(CUEW_INIT_NVRTC) != CUEW_SUCCESS) {
VLOG(1)
<< "CUEW initialization failed for NVRTC. Adaptive kernel compilation won't be available.";
}
# endif
const OptixResult result = optixInit();
if (result == OPTIX_ERROR_UNSUPPORTED_ABI_VERSION) {
VLOG(1)
<< "OptiX initialization failed because the installed driver does not support ABI version "
<< OPTIX_ABI_VERSION;
return false;
}
else if (result != OPTIX_SUCCESS) {
VLOG(1) << "OptiX initialization failed with error code " << (unsigned int)result;
return false;
}
// Loaded OptiX successfully!
return true;
}
void device_optix_info(vector<DeviceInfo> &devices)
{
// Simply add all supported CUDA devices as OptiX devices again
vector<DeviceInfo> cuda_devices;
device_cuda_info(cuda_devices);
for (auto it = cuda_devices.begin(); it != cuda_devices.end();) {
DeviceInfo &info = *it;
assert(info.type == DEVICE_CUDA);
info.type = DEVICE_OPTIX;
info.id += "_OptiX";
// Figure out RTX support
CUdevice cuda_device = 0;
CUcontext cuda_context = NULL;
unsigned int rtcore_version = 0;
if (cuDeviceGet(&cuda_device, info.num) == CUDA_SUCCESS &&
cuDevicePrimaryCtxRetain(&cuda_context, cuda_device) == CUDA_SUCCESS) {
OptixDeviceContext optix_context = NULL;
if (optixDeviceContextCreate(cuda_context, nullptr, &optix_context) == OPTIX_SUCCESS) {
optixDeviceContextGetProperty(optix_context,
OPTIX_DEVICE_PROPERTY_RTCORE_VERSION,
&rtcore_version,
sizeof(rtcore_version));
optixDeviceContextDestroy(optix_context);
}
cuDevicePrimaryCtxRelease(cuda_device);
}
// Only add devices with RTX support
if (rtcore_version == 0)
it = cuda_devices.erase(it);
else
++it;
}
devices.insert(devices.end(), cuda_devices.begin(), cuda_devices.end());
}
Device *device_optix_create(DeviceInfo &info, Stats &stats, Profiler &profiler, bool background)
{
return new OptiXDevice(info, stats, profiler, background);
}
CCL_NAMESPACE_END
#endif