179 lines
7.1 KiB
C
179 lines
7.1 KiB
C
/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#include "kernel/globals.h"
|
|
|
|
#include "kernel/sample/util.h"
|
|
|
|
#include "util/hash.h"
|
|
|
|
#pragma once
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device uint tabulated_sobol_shuffled_sample_index(KernelGlobals kg,
|
|
uint sample,
|
|
const uint dimension,
|
|
const uint seed)
|
|
{
|
|
const uint sample_count = kernel_data.integrator.tabulated_sobol_sequence_size;
|
|
|
|
/* Shuffle the pattern order and sample index to decorrelate
|
|
* dimensions and make the most of the finite patterns we have.
|
|
* The funky sample mask stuff is to ensure that we only shuffle
|
|
* *within* the current sample pattern, which is necessary to avoid
|
|
* early repeat pattern use. */
|
|
const uint pattern_i = hash_shuffle_uint(dimension, NUM_TAB_SOBOL_PATTERNS, seed);
|
|
/* sample_count should always be a power of two, so this results in a mask. */
|
|
const uint sample_mask = sample_count - 1;
|
|
const uint sample_shuffled = nested_uniform_scramble(sample,
|
|
hash_wang_seeded_uint(dimension, seed));
|
|
sample = (sample & ~sample_mask) | (sample_shuffled & sample_mask);
|
|
|
|
return ((pattern_i * sample_count) + sample) % (sample_count * NUM_TAB_SOBOL_PATTERNS);
|
|
}
|
|
|
|
ccl_device float tabulated_sobol_sample_1D(KernelGlobals kg,
|
|
const uint sample,
|
|
const uint rng_hash,
|
|
const uint dimension)
|
|
{
|
|
uint seed = rng_hash;
|
|
|
|
/* Use the same sample sequence seed for all pixels when using
|
|
* scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
seed = kernel_data.integrator.seed;
|
|
}
|
|
|
|
/* Fetch the sample. */
|
|
const uint index = tabulated_sobol_shuffled_sample_index(kg, sample, dimension, seed);
|
|
float x = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS);
|
|
|
|
/* Do limited Cranley-Patterson rotation when using scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
const float jitter_x = hash_wang_seeded_float(dimension, rng_hash) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
x += jitter_x;
|
|
x -= floorf(x);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
ccl_device float2 tabulated_sobol_sample_2D(KernelGlobals kg,
|
|
const uint sample,
|
|
const uint rng_hash,
|
|
const uint dimension)
|
|
{
|
|
uint seed = rng_hash;
|
|
|
|
/* Use the same sample sequence seed for all pixels when using
|
|
* scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
seed = kernel_data.integrator.seed;
|
|
}
|
|
|
|
/* Fetch the sample. */
|
|
const uint index = tabulated_sobol_shuffled_sample_index(kg, sample, dimension, seed);
|
|
float x = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS);
|
|
float y = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 1);
|
|
|
|
/* Do limited Cranley-Patterson rotation when using scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
const float jitter_x = hash_wang_seeded_float(dimension, rng_hash) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_y = hash_wang_seeded_float(dimension, rng_hash ^ 0xca0e1151) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
x += jitter_x;
|
|
y += jitter_y;
|
|
x -= floorf(x);
|
|
y -= floorf(y);
|
|
}
|
|
|
|
return make_float2(x, y);
|
|
}
|
|
|
|
ccl_device float3 tabulated_sobol_sample_3D(KernelGlobals kg,
|
|
const uint sample,
|
|
const uint rng_hash,
|
|
const uint dimension)
|
|
{
|
|
uint seed = rng_hash;
|
|
|
|
/* Use the same sample sequence seed for all pixels when using
|
|
* scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
seed = kernel_data.integrator.seed;
|
|
}
|
|
|
|
/* Fetch the sample. */
|
|
const uint index = tabulated_sobol_shuffled_sample_index(kg, sample, dimension, seed);
|
|
float x = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS);
|
|
float y = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 1);
|
|
float z = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 2);
|
|
|
|
/* Do limited Cranley-Patterson rotation when using scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
const float jitter_x = hash_wang_seeded_float(dimension, rng_hash) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_y = hash_wang_seeded_float(dimension, rng_hash ^ 0xca0e1151) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_z = hash_wang_seeded_float(dimension, rng_hash ^ 0xbf604c5a) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
x += jitter_x;
|
|
y += jitter_y;
|
|
z += jitter_z;
|
|
x -= floorf(x);
|
|
y -= floorf(y);
|
|
z -= floorf(z);
|
|
}
|
|
|
|
return make_float3(x, y, z);
|
|
}
|
|
|
|
ccl_device float4 tabulated_sobol_sample_4D(KernelGlobals kg,
|
|
const uint sample,
|
|
const uint rng_hash,
|
|
const uint dimension)
|
|
{
|
|
uint seed = rng_hash;
|
|
|
|
/* Use the same sample sequence seed for all pixels when using
|
|
* scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
seed = kernel_data.integrator.seed;
|
|
}
|
|
|
|
/* Fetch the sample. */
|
|
const uint index = tabulated_sobol_shuffled_sample_index(kg, sample, dimension, seed);
|
|
float x = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS);
|
|
float y = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 1);
|
|
float z = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 2);
|
|
float w = kernel_data_fetch(sample_pattern_lut, index * NUM_TAB_SOBOL_DIMENSIONS + 3);
|
|
|
|
/* Do limited Cranley-Patterson rotation when using scrambling distance. */
|
|
if (kernel_data.integrator.scrambling_distance < 1.0f) {
|
|
const float jitter_x = hash_wang_seeded_float(dimension, rng_hash) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_y = hash_wang_seeded_float(dimension, rng_hash ^ 0xca0e1151) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_z = hash_wang_seeded_float(dimension, rng_hash ^ 0xbf604c5a) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
const float jitter_w = hash_wang_seeded_float(dimension, rng_hash ^ 0x99634d1d) *
|
|
kernel_data.integrator.scrambling_distance;
|
|
x += jitter_x;
|
|
y += jitter_y;
|
|
z += jitter_z;
|
|
w += jitter_w;
|
|
x -= floorf(x);
|
|
y -= floorf(y);
|
|
z -= floorf(z);
|
|
w -= floorf(w);
|
|
}
|
|
|
|
return make_float4(x, y, z, w);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|