Files
test2/source/blender/blenkernel/intern/bvhutils.cc

832 lines
27 KiB
C++

/* SPDX-FileCopyrightText: 2024 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "BLI_math_geom.h"
#include "BKE_attribute.hh"
#include "BKE_bvhutils.hh"
#include "BKE_editmesh.hh"
#include "BKE_mesh.hh"
namespace blender::bke {
/* -------------------------------------------------------------------- */
/** \name Local Callbacks
* \{ */
/* Math stuff for ray casting on mesh faces and for nearest surface */
float bvhtree_ray_tri_intersection(const BVHTreeRay *ray,
const float /*m_dist*/,
const float v0[3],
const float v1[3],
const float v2[3])
{
float dist;
#ifdef USE_KDOPBVH_WATERTIGHT
if (isect_ray_tri_watertight_v3(ray->origin, ray->isect_precalc, v0, v1, v2, &dist, nullptr))
#else
if (isect_ray_tri_epsilon_v3(
ray->origin, ray->direction, v0, v1, v2, &dist, nullptr, FLT_EPSILON))
#endif
{
return dist;
}
return FLT_MAX;
}
float bvhtree_sphereray_tri_intersection(const BVHTreeRay *ray,
float radius,
const float m_dist,
const float v0[3],
const float v1[3],
const float v2[3])
{
float idist;
float p1[3];
float hit_point[3];
madd_v3_v3v3fl(p1, ray->origin, ray->direction, m_dist);
if (isect_sweeping_sphere_tri_v3(ray->origin, p1, radius, v0, v1, v2, &idist, hit_point)) {
return idist * m_dist;
}
return FLT_MAX;
}
/*
* BVH from meshes callbacks
*/
/**
* Callback to BVH-tree nearest point.
* The tree must have been built using #bvhtree_from_mesh_faces.
*
* \param userdata: Must be a #BVHMeshCallbackUserdata built from the same mesh as the tree.
*/
static void mesh_faces_nearest_point(void *userdata,
int index,
const float co[3],
BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const MFace *face = data->face + index;
const float *t0, *t1, *t2, *t3;
t0 = data->vert_positions[face->v1];
t1 = data->vert_positions[face->v2];
t2 = data->vert_positions[face->v3];
t3 = face->v4 ? &data->vert_positions[face->v4].x : nullptr;
do {
float nearest_tmp[3], dist_sq;
closest_on_tri_to_point_v3(nearest_tmp, co, t0, t1, t2);
dist_sq = len_squared_v3v3(co, nearest_tmp);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
normal_tri_v3(nearest->no, t0, t1, t2);
}
t1 = t2;
t2 = t3;
t3 = nullptr;
} while (t2);
}
/* copy of function above */
static void mesh_corner_tris_nearest_point(void *userdata,
int index,
const float co[3],
BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const int3 &tri = data->corner_tris[index];
const float *vtri_co[3] = {
data->vert_positions[data->corner_verts[tri[0]]],
data->vert_positions[data->corner_verts[tri[1]]],
data->vert_positions[data->corner_verts[tri[2]]],
};
float nearest_tmp[3], dist_sq;
closest_on_tri_to_point_v3(nearest_tmp, co, UNPACK3(vtri_co));
dist_sq = len_squared_v3v3(co, nearest_tmp);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
normal_tri_v3(nearest->no, UNPACK3(vtri_co));
}
}
/**
* Callback to BVH-tree ray-cast.
* The tree must have been built using bvhtree_from_mesh_faces.
*
* \param userdata: Must be a #BVHMeshCallbackUserdata built from the same mesh as the tree.
*/
static void mesh_faces_spherecast(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const MFace *face = &data->face[index];
const float *t0, *t1, *t2, *t3;
t0 = data->vert_positions[face->v1];
t1 = data->vert_positions[face->v2];
t2 = data->vert_positions[face->v3];
t3 = face->v4 ? &data->vert_positions[face->v4].x : nullptr;
do {
float dist;
if (ray->radius == 0.0f) {
dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2);
}
else {
dist = bvhtree_sphereray_tri_intersection(ray, ray->radius, hit->dist, t0, t1, t2);
}
if (dist >= 0 && dist < hit->dist) {
hit->index = index;
hit->dist = dist;
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
normal_tri_v3(hit->no, t0, t1, t2);
}
t1 = t2;
t2 = t3;
t3 = nullptr;
} while (t2);
}
/* copy of function above */
static void mesh_corner_tris_spherecast(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const Span<float3> positions = data->vert_positions;
const int3 &tri = data->corner_tris[index];
const float *vtri_co[3] = {
positions[data->corner_verts[tri[0]]],
positions[data->corner_verts[tri[1]]],
positions[data->corner_verts[tri[2]]],
};
float dist;
if (ray->radius == 0.0f) {
dist = bvhtree_ray_tri_intersection(ray, hit->dist, UNPACK3(vtri_co));
}
else {
dist = bvhtree_sphereray_tri_intersection(ray, ray->radius, hit->dist, UNPACK3(vtri_co));
}
if (dist >= 0 && dist < hit->dist) {
hit->index = index;
hit->dist = dist;
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
normal_tri_v3(hit->no, UNPACK3(vtri_co));
}
}
/**
* Callback to BVH-tree nearest point.
* The tree must have been built using #bvhtree_from_mesh_edges.
*
* \param userdata: Must be a #BVHMeshCallbackUserdata built from the same mesh as the tree.
*/
static void mesh_edges_nearest_point(void *userdata,
int index,
const float co[3],
BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const Span<float3> positions = data->vert_positions;
const int2 edge = data->edges[index];
float nearest_tmp[3], dist_sq;
const float *t0, *t1;
t0 = positions[edge[0]];
t1 = positions[edge[1]];
closest_to_line_segment_v3(nearest_tmp, co, t0, t1);
dist_sq = len_squared_v3v3(nearest_tmp, co);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
sub_v3_v3v3(nearest->no, t0, t1);
normalize_v3(nearest->no);
}
}
/* Helper, does all the point-sphere-cast work actually. */
static void mesh_verts_spherecast_do(int index,
const float v[3],
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
const float *r1;
float r2[3], i1[3];
r1 = ray->origin;
add_v3_v3v3(r2, r1, ray->direction);
closest_to_line_segment_v3(i1, v, r1, r2);
/* No hit if closest point is 'behind' the origin of the ray, or too far away from it. */
if (dot_v3v3v3(r1, i1, r2) >= 0.0f) {
const float dist = len_v3v3(r1, i1);
if (dist < hit->dist) {
hit->index = index;
hit->dist = dist;
copy_v3_v3(hit->co, i1);
}
}
}
/**
* Callback to BVH-tree ray-cast.
* The tree must have been built using bvhtree_from_mesh_verts.
*
* \param userdata: Must be a #BVHMeshCallbackUserdata built from the same mesh as the tree.
*/
static void mesh_verts_spherecast(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const float *v = data->vert_positions[index];
mesh_verts_spherecast_do(index, v, ray, hit);
}
/**
* Callback to BVH-tree ray-cast.
* The tree must have been built using bvhtree_from_mesh_edges.
*
* \param userdata: Must be a #BVHMeshCallbackUserdata built from the same mesh as the tree.
*/
static void mesh_edges_spherecast(void *userdata,
int index,
const BVHTreeRay *ray,
BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const Span<float3> positions = data->vert_positions;
const int2 edge = data->edges[index];
const float radius_sq = square_f(ray->radius);
const float *v1, *v2, *r1;
float r2[3], i1[3], i2[3];
v1 = positions[edge[0]];
v2 = positions[edge[1]];
/* In case we get a zero-length edge, handle it as a point! */
if (equals_v3v3(v1, v2)) {
mesh_verts_spherecast_do(index, v1, ray, hit);
return;
}
r1 = ray->origin;
add_v3_v3v3(r2, r1, ray->direction);
if (isect_line_line_v3(v1, v2, r1, r2, i1, i2)) {
/* No hit if intersection point is 'behind' the origin of the ray, or too far away from it. */
if (dot_v3v3v3(r1, i2, r2) >= 0.0f) {
const float dist = len_v3v3(r1, i2);
if (dist < hit->dist) {
const float e_fac = line_point_factor_v3(i1, v1, v2);
if (e_fac < 0.0f) {
copy_v3_v3(i1, v1);
}
else if (e_fac > 1.0f) {
copy_v3_v3(i1, v2);
}
/* Ensure ray is really close enough from edge! */
if (len_squared_v3v3(i1, i2) <= radius_sq) {
hit->index = index;
hit->dist = dist;
copy_v3_v3(hit->co, i2);
}
}
}
}
}
/** \} */
/*
* BVH builders
*/
/* -------------------------------------------------------------------- */
/** \name Common Utils
* \{ */
static BVHTreeFromMesh create_verts_tree_data(const BVHTree *tree, const Span<float3> positions)
{
BVHTreeFromMesh data{};
data.tree = tree;
data.vert_positions = positions;
/* a nullptr nearest callback works fine
* remember the min distance to point is the same as the min distance to BV of point */
data.nearest_callback = nullptr;
data.raycast_callback = mesh_verts_spherecast;
return data;
}
static BVHTreeFromMesh create_verts_tree_data(std::unique_ptr<BVHTree, BVHTreeDeleter> tree,
const Span<float3> positions)
{
BVHTreeFromMesh data = create_verts_tree_data(tree.get(), positions);
data.owned_tree = std::move(tree);
return data;
}
static BVHTreeFromMesh create_edges_tree_data(const BVHTree *tree,
const Span<float3> positions,
const Span<int2> edges)
{
BVHTreeFromMesh data{};
data.tree = tree;
data.vert_positions = positions;
data.edges = edges;
data.nearest_callback = mesh_edges_nearest_point;
data.raycast_callback = mesh_edges_spherecast;
return data;
}
static BVHTreeFromMesh create_edges_tree_data(std::unique_ptr<BVHTree, BVHTreeDeleter> tree,
const Span<float3> positions,
const Span<int2> edges)
{
BVHTreeFromMesh data = create_edges_tree_data(tree.get(), positions, edges);
data.owned_tree = std::move(tree);
return data;
}
static BVHTreeFromMesh create_legacy_faces_tree_data(const BVHTree *tree,
const Span<float3> positions,
const MFace *face)
{
BVHTreeFromMesh data{};
data.tree = tree;
data.vert_positions = positions;
data.face = face;
data.nearest_callback = mesh_faces_nearest_point;
data.raycast_callback = mesh_faces_spherecast;
return data;
}
static BVHTreeFromMesh create_tris_tree_data(const BVHTree *tree,
const Span<float3> positions,
const Span<int> corner_verts,
const Span<int3> corner_tris)
{
BVHTreeFromMesh data{};
data.tree = tree;
data.vert_positions = positions;
data.corner_verts = corner_verts;
data.corner_tris = corner_tris;
data.nearest_callback = mesh_corner_tris_nearest_point;
data.raycast_callback = mesh_corner_tris_spherecast;
return data;
}
static BVHTreeFromMesh create_tris_tree_data(std::unique_ptr<BVHTree, BVHTreeDeleter> tree,
const Span<float3> positions,
const Span<int> corner_verts,
const Span<int3> corner_tris)
{
BVHTreeFromMesh data = create_tris_tree_data(tree.get(), positions, corner_verts, corner_tris);
data.owned_tree = std::move(tree);
return data;
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> bvhtree_new_common(int elems_num)
{
if (elems_num == 0) {
return nullptr;
}
return std::unique_ptr<BVHTree, BVHTreeDeleter>(BLI_bvhtree_new(elems_num, 0.0f, 2, 6));
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> create_tree_from_verts(
const Span<float3> positions, const IndexMask &verts_mask)
{
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = bvhtree_new_common(verts_mask.size());
if (!tree) {
return nullptr;
}
verts_mask.foreach_index(
[&](const int i) { BLI_bvhtree_insert(tree.get(), i, positions[i], 1); });
BLI_bvhtree_balance(tree.get());
return tree;
}
BVHTreeFromMesh bvhtree_from_mesh_verts_ex(const Span<float3> vert_positions,
const IndexMask &verts_mask)
{
return create_verts_tree_data(create_tree_from_verts(vert_positions, verts_mask),
vert_positions);
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> create_tree_from_edges(
const Span<float3> positions, const Span<int2> edges, const IndexMask &edges_mask)
{
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = bvhtree_new_common(edges_mask.size());
if (!tree) {
return nullptr;
}
edges_mask.foreach_index([&](const int edge_i) {
const int2 &edge = edges[edge_i];
float co[2][3];
copy_v3_v3(co[0], positions[edge[0]]);
copy_v3_v3(co[1], positions[edge[1]]);
BLI_bvhtree_insert(tree.get(), edge_i, co[0], 2);
});
BLI_bvhtree_balance(tree.get());
return tree;
}
BVHTreeFromMesh bvhtree_from_mesh_edges_ex(const Span<float3> vert_positions,
const Span<int2> edges,
const IndexMask &edges_mask)
{
return create_edges_tree_data(
create_tree_from_edges(vert_positions, edges, edges_mask), vert_positions, edges);
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> create_tree_from_legacy_faces(
const Span<float3> positions, const Span<MFace> faces)
{
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = bvhtree_new_common(faces.size());
if (!tree) {
return nullptr;
}
for (const int i : faces.index_range()) {
float co[4][3];
copy_v3_v3(co[0], positions[faces[i].v1]);
copy_v3_v3(co[1], positions[faces[i].v2]);
copy_v3_v3(co[2], positions[faces[i].v3]);
if (faces[i].v4) {
copy_v3_v3(co[3], positions[faces[i].v4]);
}
BLI_bvhtree_insert(tree.get(), i, co[0], faces[i].v4 ? 4 : 3);
}
BLI_bvhtree_balance(tree.get());
return tree;
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> create_tree_from_tris(const Span<float3> positions,
const Span<int> corner_verts,
const Span<int3> corner_tris)
{
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = bvhtree_new_common(corner_tris.size());
if (!tree) {
return {};
}
for (const int tri : corner_tris.index_range()) {
float co[3][3];
copy_v3_v3(co[0], positions[corner_verts[corner_tris[tri][0]]]);
copy_v3_v3(co[1], positions[corner_verts[corner_tris[tri][1]]]);
copy_v3_v3(co[2], positions[corner_verts[corner_tris[tri][2]]]);
BLI_bvhtree_insert(tree.get(), tri, co[0], 3);
}
BLI_bvhtree_balance(tree.get());
return tree;
}
static std::unique_ptr<BVHTree, BVHTreeDeleter> create_tree_from_tris(
const Span<float3> positions,
const OffsetIndices<int> faces,
const Span<int> corner_verts,
const Span<int3> corner_tris,
const IndexMask &faces_mask)
{
if (faces_mask.size() == faces.size()) {
/* Avoid accessing face offsets if the selection is full. */
return create_tree_from_tris(positions, corner_verts, corner_tris);
}
int tris_num = 0;
faces_mask.foreach_index_optimized<int>(
[&](const int i) { tris_num += mesh::face_triangles_num(faces[i].size()); });
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = bvhtree_new_common(tris_num);
if (!tree) {
return {};
}
faces_mask.foreach_index([&](const int face) {
for (const int tri : mesh::face_triangles_range(faces, face)) {
float co[3][3];
copy_v3_v3(co[0], positions[corner_verts[corner_tris[tri][0]]]);
copy_v3_v3(co[1], positions[corner_verts[corner_tris[tri][1]]]);
copy_v3_v3(co[2], positions[corner_verts[corner_tris[tri][2]]]);
BLI_bvhtree_insert(tree.get(), tri, co[0], 3);
}
});
BLI_bvhtree_balance(tree.get());
return tree;
}
BVHTreeFromMesh bvhtree_from_mesh_corner_tris_ex(const Span<float3> vert_positions,
const OffsetIndices<int> faces,
const Span<int> corner_verts,
const Span<int3> corner_tris,
const IndexMask &faces_mask)
{
return create_tris_tree_data(
create_tree_from_tris(vert_positions, faces, corner_verts, corner_tris, faces_mask),
vert_positions,
corner_verts,
corner_tris);
}
static BitVector<> loose_verts_no_hidden_mask_get(const Mesh &mesh)
{
int count = mesh.verts_num;
BitVector<> verts_mask(count, true);
const AttributeAccessor attributes = mesh.attributes();
const Span<int2> edges = mesh.edges();
const VArray<bool> hide_edge = *attributes.lookup_or_default(
".hide_edge", AttrDomain::Edge, false);
const VArray<bool> hide_vert = *attributes.lookup_or_default(
".hide_vert", AttrDomain::Point, false);
for (const int i : edges.index_range()) {
if (hide_edge[i]) {
continue;
}
for (const int vert : {edges[i][0], edges[i][1]}) {
if (verts_mask[vert]) {
verts_mask[vert].reset();
count--;
}
}
}
if (count) {
for (const int vert : verts_mask.index_range()) {
if (verts_mask[vert] && hide_vert[vert]) {
verts_mask[vert].reset();
}
}
}
return verts_mask;
}
static BitVector<> loose_edges_no_hidden_mask_get(const Mesh &mesh)
{
int count = mesh.edges_num;
BitVector<> edge_mask(count, true);
const AttributeAccessor attributes = mesh.attributes();
const OffsetIndices faces = mesh.faces();
const Span<int> corner_edges = mesh.corner_edges();
const VArray<bool> hide_poly = *attributes.lookup_or_default(
".hide_poly", AttrDomain::Face, false);
const VArray<bool> hide_edge = *attributes.lookup_or_default(
".hide_edge", AttrDomain::Edge, false);
for (const int i : faces.index_range()) {
if (hide_poly[i]) {
continue;
}
for (const int edge : corner_edges.slice(faces[i])) {
if (edge_mask[edge]) {
edge_mask[edge].reset();
count--;
}
}
}
if (count) {
for (const int edge : edge_mask.index_range()) {
if (edge_mask[edge] && hide_edge[edge]) {
edge_mask[edge].reset();
}
}
}
return edge_mask;
}
} // namespace blender::bke
blender::bke::BVHTreeFromMesh Mesh::bvh_loose_verts() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
this->runtime->bvh_cache_loose_verts.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
const LooseVertCache &loose_verts = this->loose_verts();
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_bits(loose_verts.is_loose_bits, memory);
data = create_tree_from_verts(positions, mask);
});
return create_verts_tree_data(this->runtime->bvh_cache_loose_verts.data().get(), positions);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_loose_no_hidden_verts() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
this->runtime->bvh_cache_loose_verts_no_hidden.ensure(
[&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
const BitVector<> mask = loose_verts_no_hidden_mask_get(*this);
IndexMaskMemory memory;
data = create_tree_from_verts(positions, IndexMask::from_bits(mask, memory));
});
return create_verts_tree_data(this->runtime->bvh_cache_loose_verts_no_hidden.data().get(),
positions);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_verts() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
this->runtime->bvh_cache_verts.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
data = create_tree_from_verts(positions, positions.index_range());
});
return create_verts_tree_data(this->runtime->bvh_cache_verts.data().get(), positions);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_loose_edges() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
const Span<int2> edges = this->edges();
this->runtime->bvh_cache_loose_edges.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
const LooseEdgeCache &loose_edges = this->loose_edges();
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_bits(loose_edges.is_loose_bits, memory);
data = create_tree_from_edges(positions, edges, mask);
});
return create_edges_tree_data(
this->runtime->bvh_cache_loose_edges.data().get(), positions, edges);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_loose_no_hidden_edges() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
const Span<int2> edges = this->edges();
this->runtime->bvh_cache_loose_edges_no_hidden.ensure(
[&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
const BitVector<> mask = loose_edges_no_hidden_mask_get(*this);
IndexMaskMemory memory;
data = create_tree_from_edges(positions, edges, IndexMask::from_bits(mask, memory));
});
return create_edges_tree_data(
this->runtime->bvh_cache_loose_edges_no_hidden.data().get(), positions, edges);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_edges() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
const Span<int2> edges = this->edges();
this->runtime->bvh_cache_edges.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
data = create_tree_from_edges(positions, edges, edges.index_range());
});
return create_edges_tree_data(this->runtime->bvh_cache_edges.data().get(), positions, edges);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_legacy_faces() const
{
using namespace blender;
using namespace blender::bke;
BLI_assert(!(this->totface_legacy == 0 && this->faces_num != 0));
Span legacy_faces{
static_cast<const MFace *>(CustomData_get_layer(&this->fdata_legacy, CD_MFACE)),
this->totface_legacy};
const Span<float3> positions = this->vert_positions();
this->runtime->bvh_cache_faces.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
data = create_tree_from_legacy_faces(positions, legacy_faces);
});
return create_legacy_faces_tree_data(
this->runtime->bvh_cache_faces.data().get(), positions, legacy_faces.data());
}
blender::bke::BVHTreeFromMesh Mesh::bvh_corner_tris_no_hidden() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
const Span<int> corner_verts = this->corner_verts();
const Span<int3> corner_tris = this->corner_tris();
const AttributeAccessor attributes = this->attributes();
const VArray hide_poly = *attributes.lookup<bool>(".hide_poly", AttrDomain::Face);
if (!hide_poly) {
return this->bvh_corner_tris();
}
this->runtime->bvh_cache_corner_tris_no_hidden.ensure(
[&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
const OffsetIndices<int> faces = this->faces();
IndexMaskMemory memory;
const IndexMask visible_faces = IndexMask::from_bools_inverse(
faces.index_range(), VArraySpan(hide_poly), memory);
data = create_tree_from_tris(positions, faces, corner_verts, corner_tris, visible_faces);
});
return create_tris_tree_data(this->runtime->bvh_cache_corner_tris_no_hidden.data().get(),
positions,
corner_verts,
corner_tris);
}
blender::bke::BVHTreeFromMesh Mesh::bvh_corner_tris() const
{
using namespace blender;
using namespace blender::bke;
const Span<float3> positions = this->vert_positions();
const Span<int> corner_verts = this->corner_verts();
const Span<int3> corner_tris = this->corner_tris();
this->runtime->bvh_cache_corner_tris.ensure([&](std::unique_ptr<BVHTree, BVHTreeDeleter> &data) {
data = create_tree_from_tris(positions, corner_verts, corner_tris);
});
return create_tris_tree_data(
this->runtime->bvh_cache_corner_tris.data().get(), positions, corner_verts, corner_tris);
}
namespace blender::bke {
BVHTreeFromMesh bvhtree_from_mesh_tris_init(const Mesh &mesh, const IndexMask &faces_mask)
{
if (faces_mask.size() == mesh.faces_num) {
return mesh.bvh_corner_tris();
}
return bvhtree_from_mesh_corner_tris_ex(
mesh.vert_positions(), mesh.faces(), mesh.corner_verts(), mesh.corner_tris(), faces_mask);
}
BVHTreeFromMesh bvhtree_from_mesh_edges_init(const Mesh &mesh, const IndexMask &edges_mask)
{
if (edges_mask.size() == mesh.edges_num) {
return mesh.bvh_edges();
}
return bvhtree_from_mesh_edges_ex(mesh.vert_positions(), mesh.edges(), edges_mask);
}
BVHTreeFromMesh bvhtree_from_mesh_verts_init(const Mesh &mesh, const IndexMask &verts_mask)
{
if (verts_mask.size() == mesh.verts_num) {
return mesh.bvh_verts();
}
return bvhtree_from_mesh_verts_ex(mesh.vert_positions(), verts_mask);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Point Cloud BVH Building
* \{ */
BVHTreeFromPointCloud bvhtree_from_pointcloud_get(const PointCloud &pointcloud,
const IndexMask &points_mask)
{
const Span<float3> positions = pointcloud.positions();
std::unique_ptr<BVHTree, BVHTreeDeleter> tree = create_tree_from_verts(positions, points_mask);
if (!tree) {
return {};
}
BVHTreeFromPointCloud data{};
data.tree = std::move(tree);
data.nearest_callback = nullptr;
data.coords = (const float(*)[3])positions.data();
return data;
}
/** \} */
} // namespace blender::bke