Files
test2/source/blender/compositor/algorithms/intern/smaa.cc

1708 lines
63 KiB
C++
Raw Blame History

/* SPDX-FileCopyrightText: 2013 Jorge Jimenez <jorge@iryoku.com>
* SPDX-FileCopyrightText: 2013 Jose I. Echevarria <joseignacioechevarria@gmail.com>
* SPDX-FileCopyrightText: 2013 Belen Masia <bmasia@unizar.es>
* SPDX-FileCopyrightText: 2013 Fernando Navarro <fernandn@microsoft.com>
* SPDX-FileCopyrightText: 2013 Diego Gutierrez <diegog@unizar.es>
* SPDX-FileCopyrightText: 2019-2023 Blender Authors
*
* SPDX-License-Identifier: MIT AND GPL-2.0-or-later */
#include "BLI_assert.h"
#include "BLI_math_vector.hh"
#include "IMB_colormanagement.hh"
#include "GPU_shader.hh"
#include "GPU_texture.hh"
#include "COM_context.hh"
#include "COM_result.hh"
#include "COM_utilities.hh"
#include "COM_algorithm_smaa.hh"
#include "COM_smaa_precomputed_textures.hh"
namespace blender::compositor {
/**
* _______ ___ ___ ___ ___
* / || \/ | / \ / \
* | (---- | \ / | / ^ \ / ^ \
* \ \ | |\/| | / /_\ \ / /_\ \
* ----) | | | | | / _____ \ / _____ \
* |_______/ |__| |__| /__/ \__\ /__/ \__\
*
* E N H A N C E D
* S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G
*
* http://www.iryoku.com/smaa/
*
* Hi, welcome aboard!
*
* Here you'll find instructions to get the shader up and running as fast as
* possible.
*
* IMPORTANTE NOTICE: when updating, remember to update both this file and the
* precomputed textures! They may change from version to version.
*
* The shader has three passes, chained together as follows:
*
* |input|------------------<2D>
* v |
* [ SMAA*EdgeDetection ] |
* v |
* |edgesTex| |
* v |
* [ SMAABlendingWeightCalculation ] |
* v |
* |blendTex| |
* v |
* [ SMAANeighborhoodBlending ] <------<2D>
* v
* |output|
*
* Note that each [pass] has its own vertex and pixel shader. Remember to use
* over-sized triangles instead of quads to avoid over-shading along the
* diagonal.
*
* You've three edge detection methods to choose from: luma, color or depth.
* They represent different quality/performance and anti-aliasing/sharpness
* tradeoffs, so our recommendation is for you to choose the one that best
* suits your particular scenario:
*
* - Depth edge detection is usually the fastest but it may miss some edges.
*
* - Luma edge detection is usually more expensive than depth edge detection,
* but catches visible edges that depth edge detection can miss.
*
* - Color edge detection is usually the most expensive one but catches
* chroma-only edges.
*
* For quick-starters: just use luma edge detection.
*
* The general advice is to not rush the integration process and ensure each
* step is done correctly (don't try to integrate SMAA T2x with predicated edge
* detection from the start!). Ok then, let's go!
*
* 1. The first step is to create two RGBA temporal render targets for holding
* |edgesTex| and |blendTex|.
*
* In DX10 or DX11, you can use a RG render target for the edges texture.
* In the case of NVIDIA GPUs, using RG render targets seems to actually be
* slower.
*
* On the Xbox 360, you can use the same render target for resolving both
* |edgesTex| and |blendTex|, as they aren't needed simultaneously.
*
* 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared
* each frame. Do not forget to clear the alpha channel!
*
* 3. The next step is loading the two supporting precalculated textures,
* 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as
* C++ headers, and also as regular DDS files. They'll be needed for the
* 'SMAABlendingWeightCalculation' pass.
*
* If you use the C++ headers, be sure to load them in the format specified
* inside of them.
*
* You can also compress 'areaTex' and 'searchTex' using BC5 and BC4
* respectively, if you have that option in your content processor pipeline.
* When compressing then, you get a non-perceptible quality decrease, and a
* marginal performance increase.
*
* 4. All samplers must be set to linear filtering and clamp.
*
* After you get the technique working, remember that 64-bit inputs have
* half-rate linear filtering on GCN.
*
* If SMAA is applied to 64-bit color buffers, switching to point filtering
* when accessing them will increase the performance. Search for
* 'SMAASamplePoint' to see which textures may benefit from point
* filtering, and where (which is basically the color input in the edge
* detection and resolve passes).
*
* 5. All texture reads and buffer writes must be non-sRGB, with the exception
* of the input read and the output write in
* 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in
* this last pass are not possible, the technique will work anyway, but
* will perform anti-aliasing in gamma space.
*
* IMPORTANT: for best results the input read for the color/luma edge
* detection should *NOT* be sRGB.
*
* 6. Before including SMAA.h you'll have to setup the render target metrics,
* the target and any optional configuration defines. Optionally you can
* use a preset.
*
* You have the following targets available:
* SMAA_HLSL_3
* SMAA_HLSL_4
* SMAA_HLSL_4_1
* SMAA_GLSL_3 *
* SMAA_GLSL_4 *
*
* * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below).
*
* And four presets:
* SMAA_PRESET_LOW (%60 of the quality)
* SMAA_PRESET_MEDIUM (%80 of the quality)
* SMAA_PRESET_HIGH (%95 of the quality)
* SMAA_PRESET_ULTRA (%99 of the quality)
*
* For example:
* #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0)
* #define SMAA_HLSL_4
* #define SMAA_PRESET_HIGH
* #include "SMAA.h"
*
* Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a
* uniform variable. The code is designed to minimize the impact of not
* using a constant value, but it is still better to hard-code it.
*
* Depending on how you encoded 'areaTex' and 'searchTex', you may have to
* add (and customize) the following defines before including SMAA.h:
* #define SMAA_AREATEX_SELECT(sample) sample.rg
* #define SMAA_SEARCHTEX_SELECT(sample) sample.r
*
* If your engine is already using porting macros, you can define
* SMAA_CUSTOM_SL, and define the porting functions by yourself.
*
* 7. Then, you'll have to setup the passes as indicated in the scheme above.
* You can take a look into SMAA.fx, to see how we did it for our demo.
* Checkout the function wrappers, you may want to copy-paste them!
*
* 8. It's recommended to validate the produced |edgesTex| and |blendTex|.
* You can use a screenshot from your engine to compare the |edgesTex|
* and |blendTex| produced inside of the engine with the results obtained
* with the reference demo.
*
* 9. After you get the last pass to work, it's time to optimize. You'll have
* to initialize a stencil buffer in the first pass (discard is already in
* the code), then mask execution by using it the second pass. The last
* pass should be executed in all pixels.
*
*
* After this point you can choose to enable predicated thresholding,
* temporal supersampling and motion blur integration:
*
* a) If you want to use predicated thresholding, take a look into
* SMAA_PREDICATION; you'll need to pass an extra texture in the edge
* detection pass.
*
* b) If you want to enable temporal supersampling (SMAA T2x):
*
* 1. The first step is to render using sub-pixel jitters. I won't go into
* detail, but it's as simple as moving each vertex position in the
* vertex shader, you can check how we do it in our DX10 demo.
*
* 2. Then, you must setup the temporal resolve. You may want to take a look
* into SMAAResolve for resolving 2x modes. After you get it working, you'll
* probably see ghosting everywhere. But fear not, you can enable the
* CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro.
* Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded.
*
* 3. The next step is to apply SMAA to each sub-pixel jittered frame, just as
* done for 1x.
*
* 4. At this point you should already have something usable, but for best
* results the proper area textures must be set depending on current jitter.
* For this, the parameter 'subsampleIndices' of
* 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x
* mode:
*
* @SUBSAMPLE_INDICES
*
* | S# | Camera Jitter | subsampleIndices |
* +----+------------------+---------------------+
* | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) |
* | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) |
*
* These jitter positions assume a bottom-to-top y axis. S# stands for the
* sample number.
*
* More information about temporal supersampling here:
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
*
* c) If you want to enable spatial multisampling (SMAA S2x):
*
* 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be
* created with:
* - DX10: see below (*)
* - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or
* - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN
*
* This allows to ensure that the subsample order matches the table in
* @SUBSAMPLE_INDICES.
*
* (*) In the case of DX10, we refer the reader to:
* - SMAA::detectMSAAOrder and
* - SMAA::msaaReorder
*
* These functions allow matching the standard multisample patterns by
* detecting the subsample order for a specific GPU, and reordering
* them appropriately.
*
* 2. A shader must be run to output each subsample into a separate buffer
* (DX10 is required). You can use SMAASeparate for this purpose, or just do
* it in an existing pass (for example, in the tone mapping pass, which has
* the advantage of feeding tone mapped subsamples to SMAA, which will yield
* better results).
*
* 3. The full SMAA 1x pipeline must be run for each separated buffer, storing
* the results in the final buffer. The second run should alpha blend with
* the existing final buffer using a blending factor of 0.5.
* 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point
* b).
*
* d) If you want to enable temporal supersampling on top of SMAA S2x
* (which actually is SMAA 4x):
*
* 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is
* to calculate SMAA S2x for current frame. In this case, 'subsampleIndices'
* must be set as follows:
*
* | F# | S# | Camera Jitter | Net Jitter | subsampleIndices |
* +----+----+--------------------+-------------------+----------------------+
* | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) |
* | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) |
* +----+----+--------------------+-------------------+----------------------+
* | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) |
* | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) |
*
* These jitter positions assume a bottom-to-top y axis. F# stands for the
* frame number. S# stands for the sample number.
*
* 2. After calculating SMAA S2x for current frame (with the new subsample
* indices), previous frame must be reprojected as in SMAA T2x mode (see
* point b).
*
* e) If motion blur is used, you may want to do the edge detection pass
* together with motion blur. This has two advantages:
*
* 1. Pixels under heavy motion can be omitted from the edge detection process.
* For these pixels we can just store "no edge", as motion blur will take
* care of them.
* 2. The center pixel tap is reused.
*
* Note that in this case depth testing should be used instead of stenciling,
* as we have to write all the pixels in the motion blur pass.
*
* That's it!
*/
/* ----------------------------------------------------------------------------
* Blender's Defines */
#define SMAA_CUSTOM_SL
#define SMAA_AREATEX_SELECT(sample) sample.xy()
#define SMAA_SEARCHTEX_SELECT(sample) sample.x
#define SMAATexture2D(tex) const Result &tex
#define SMAATexturePass2D(tex) tex
#define SMAASampleLevelZero(tex, coord) tex.sample_bilinear_extended(coord)
#define SMAASampleLevelZeroPoint(tex, coord) tex.sample_bilinear_extended(coord)
#define SMAASampleLevelZeroOffset(tex, coord, offset, size) \
tex.sample_bilinear_extended(coord + float2(offset) / float2(size))
#define SMAASample(tex, coord) tex.sample_bilinear_extended(coord)
#define SMAASamplePoint(tex, coord) tex.sample_nearest_extended(coord)
#define SMAASamplePointOffset(tex, coord, offset, size) \
tex.sample_nearest_extended(coord + float2(offset) / float2(size))
#define SMAASampleOffset(tex, coord, offset, size) \
tex.sample_bilinear_extended(coord + float2(offset) / float2(size))
#define SMAA_FLATTEN
#define SMAA_BRANCH
#define lerp(a, b, t) math::interpolate(a, b, t)
#define saturate(a) math::clamp(a, 0.0f, 1.0f)
#define mad(a, b, c) (a * b + c)
/* ----------------------------------------------------------------------------
* SMAA Presets */
/**
* Note that if you use one of these presets, the following configuration
* macros will be ignored if set in the "Configurable Defines" section.
*/
#if defined(SMAA_PRESET_LOW)
# define SMAA_THRESHOLD 0.15f
# define SMAA_MAX_SEARCH_STEPS 4
# define SMAA_DISABLE_DIAG_DETECTION
# define SMAA_DISABLE_CORNER_DETECTION
#elif defined(SMAA_PRESET_MEDIUM)
# define SMAA_THRESHOLD 0.1f
# define SMAA_MAX_SEARCH_STEPS 8
# define SMAA_DISABLE_DIAG_DETECTION
# define SMAA_DISABLE_CORNER_DETECTION
#elif defined(SMAA_PRESET_HIGH)
# define SMAA_THRESHOLD 0.1f
# define SMAA_MAX_SEARCH_STEPS 16
# define SMAA_MAX_SEARCH_STEPS_DIAG 8
# define SMAA_CORNER_ROUNDING 25
#elif defined(SMAA_PRESET_ULTRA)
# define SMAA_THRESHOLD 0.05f
# define SMAA_MAX_SEARCH_STEPS 32
# define SMAA_MAX_SEARCH_STEPS_DIAG 16
# define SMAA_CORNER_ROUNDING 25
#endif
/* ----------------------------------------------------------------------------
* Configurable Defines */
/**
* SMAA_THRESHOLD specifies the threshold or sensitivity to edges.
* Lowering this value you will be able to detect more edges at the expense of
* performance.
*
* Range: [0, 0.5]
* 0.1 is a reasonable value, and allows to catch most visible edges.
* 0.05 is a rather overkill value, that allows to catch 'em all.
*
* If temporal supersampling is used, 0.2 could be a reasonable value, as low
* contrast edges are properly filtered by just 2x.
*/
#ifndef SMAA_THRESHOLD
# define SMAA_THRESHOLD 0.1f
#endif
/**
* SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection.
*
* Range: depends on the depth range of the scene.
*/
#ifndef SMAA_DEPTH_THRESHOLD
# define SMAA_DEPTH_THRESHOLD (0.1f * SMAA_THRESHOLD)
#endif
/**
* SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the
* horizontal/vertical pattern searches, at each side of the pixel.
*
* In number of pixels, it's actually the double. So the maximum line length
* perfectly handled by, for example 16, is 64 (by perfectly, we meant that
* longer lines won't look as good, but still anti-aliased).
*
* Range: [0, 112]
*/
#ifndef SMAA_MAX_SEARCH_STEPS
# define SMAA_MAX_SEARCH_STEPS 16
#endif
/**
* SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the
* diagonal pattern searches, at each side of the pixel. In this case we jump
* one pixel at time, instead of two.
*
* Range: [0, 20]
*
* On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16
* steps), but it can have a significant impact on older machines.
*
* Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing.
*/
#ifndef SMAA_MAX_SEARCH_STEPS_DIAG
# define SMAA_MAX_SEARCH_STEPS_DIAG 8
#endif
/**
* SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded.
*
* Range: [0, 100]
*
* Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing.
*/
#ifndef SMAA_CORNER_ROUNDING
# define SMAA_CORNER_ROUNDING 25
#endif
/**
* If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times
* bigger contrast than current edge, current edge will be discarded.
*
* This allows to eliminate spurious crossing edges, and is based on the fact
* that, if there is too much contrast in a direction, that will hide
* perceptually contrast in the other neighbors.
*/
#ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR
# define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0f
#endif
/**
* Predicated thresholding allows to better preserve texture details and to
* improve performance, by decreasing the number of detected edges using an
* additional buffer like the light accumulation buffer, object ids or even the
* depth buffer (the depth buffer usage may be limited to indoor or short range
* scenes).
*
* It locally decreases the luma or color threshold if an edge is found in an
* additional buffer (so the global threshold can be higher).
*
* This method was developed by Playstation EDGE MLAA team, and used in
* Killzone 3, by using the light accumulation buffer. More information here:
* http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx
*/
#ifndef SMAA_PREDICATION
# define SMAA_PREDICATION 0
#endif
/**
* Threshold to be used in the additional predication buffer.
*
* Range: depends on the input, so you'll have to find the magic number that
* works for you.
*/
#ifndef SMAA_PREDICATION_THRESHOLD
# define SMAA_PREDICATION_THRESHOLD 0.01f
#endif
/**
* How much to scale the global threshold used for luma or color edge
* detection when using predication.
*
* Range: [1, 5]
*/
#ifndef SMAA_PREDICATION_SCALE
# define SMAA_PREDICATION_SCALE 2.0f
#endif
/**
* How much to locally decrease the threshold.
*
* Range: [0, 1]
*/
#ifndef SMAA_PREDICATION_STRENGTH
# define SMAA_PREDICATION_STRENGTH 0.4f
#endif
/**
* Temporal reprojection allows to remove ghosting artifacts when using
* temporal supersampling. We use the CryEngine 3 method which also introduces
* velocity weighting. This feature is of extreme importance for totally
* removing ghosting. More information here:
* http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
*
* Note that you'll need to setup a velocity buffer for enabling reprojection.
* For static geometry, saving the previous depth buffer is a viable
* alternative.
*/
#ifndef SMAA_REPROJECTION
# define SMAA_REPROJECTION 0
#endif
/**
* SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to
* remove ghosting trails behind the moving object, which are not removed by
* just using reprojection. Using low values will exhibit ghosting, while using
* high values will disable temporal supersampling under motion.
*
* Behind the scenes, velocity weighting removes temporal supersampling when
* the velocity of the subsamples differs (meaning they are different objects).
*
* Range: [0, 80]
*/
#ifndef SMAA_REPROJECTION_WEIGHT_SCALE
# define SMAA_REPROJECTION_WEIGHT_SCALE 30.0f
#endif
/**
* On some compilers, discard cannot be used in vertex shaders. Thus, they need
* to be compiled separately.
*/
#ifndef SMAA_INCLUDE_VS
# define SMAA_INCLUDE_VS 1
#endif
#ifndef SMAA_INCLUDE_PS
# define SMAA_INCLUDE_PS 1
#endif
/* ----------------------------------------------------------------------------
* Texture Access Defines */
#ifndef SMAA_AREATEX_SELECT
# if defined(SMAA_HLSL_3)
# define SMAA_AREATEX_SELECT(sample) sample.ra
# else
# define SMAA_AREATEX_SELECT(sample) sample.rg
# endif
#endif
#ifndef SMAA_SEARCHTEX_SELECT
# define SMAA_SEARCHTEX_SELECT(sample) sample.r
#endif
#ifndef SMAA_DECODE_VELOCITY
# define SMAA_DECODE_VELOCITY(sample) sample.rg
#endif
/* ----------------------------------------------------------------------------
* Non-Configurable Defines */
#define SMAA_AREATEX_MAX_DISTANCE 16
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
#define SMAA_AREATEX_PIXEL_SIZE (1.0f / float2(160.0f, 560.0f))
#define SMAA_AREATEX_SUBTEX_SIZE (1.0f / 7.0f)
#define SMAA_SEARCHTEX_SIZE float2(66.0f, 33.0f)
#define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0f, 16.0f)
#define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0f)
/* ----------------------------------------------------------------------------
* Porting Functions */
#if defined(SMAA_HLSL_3)
# define SMAATexture2D(tex) sampler2D tex
# define SMAATexturePass2D(tex) tex
# define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
# define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0))
/* clang-format off */
# define SMAASampleLevelZeroOffset(tex, coord, offset) tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0))
/* clang-format on */
# define SMAASample(tex, coord) tex2D(tex, coord)
# define SMAASamplePoint(tex, coord) tex2D(tex, coord)
# define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy)
# define SMAA_FLATTEN [flatten]
# define SMAA_BRANCH [branch]
#endif
#if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1)
SamplerState LinearSampler
{
Filter = MIN_MAG_LINEAR_MIP_POINT;
AddressU = Clamp;
AddressV = Clamp;
};
SamplerState PointSampler
{
Filter = MIN_MAG_MIP_POINT;
AddressU = Clamp;
AddressV = Clamp;
};
# define SMAATexture2D(tex) Texture2D tex
# define SMAATexturePass2D(tex) tex
# define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0)
# define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0)
/* clang-format off */
# define SMAASampleLevelZeroOffset(tex, coord, offset) tex.SampleLevel(LinearSampler, coord, 0, offset)
/* clang-format on */
# define SMAASample(tex, coord) tex.Sample(LinearSampler, coord)
# define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord)
# define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset)
# define SMAA_FLATTEN [flatten]
# define SMAA_BRANCH [branch]
# define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex
# define SMAALoad(tex, pos, sample) tex.Load(pos, sample)
# if defined(SMAA_HLSL_4_1)
# define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0)
# endif
#endif
#if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4) || defined(GPU_METAL) || defined(GPU_VULKAN)
# define SMAATexture2D(tex) sampler2D tex
# define SMAATexturePass2D(tex) tex
# define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0)
# define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0)
# define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset)
# define SMAASample(tex, coord) texture(tex, coord)
# define SMAASamplePoint(tex, coord) texture(tex, coord)
# define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset)
# define SMAA_FLATTEN
# define SMAA_BRANCH
# define lerp(a, b, t) mix(a, b, t)
# define saturate(a) clamp(a, 0.0, 1.0)
# if defined(SMAA_GLSL_4)
# define SMAAGather(tex, coord) textureGather(tex, coord)
# endif
# if defined(SMAA_GLSL_4)
# define mad(a, b, c) fma(a, b, c)
# elif defined(GPU_VULKAN)
/* NOTE(Vulkan) mad macro doesn't work, define each override as work-around. */
vec4 mad(vec4 a, vec4 b, vec4 c)
{
return fma(a, b, c);
}
vec3 mad(vec3 a, vec3 b, vec3 c)
{
return fma(a, b, c);
}
vec2 mad(vec2 a, vec2 b, vec2 c)
{
return fma(a, b, c);
}
float mad(float a, float b, float c)
{
return fma(a, b, c);
}
# else
# define mad(a, b, c) (a * b + c)
# endif
/* NOTE(Metal): Types already natively declared in MSL. */
# ifndef GPU_METAL
# define float2 vec2
# define float3 vec3
# define float4 vec4
# define int2 ivec2
# define int3 ivec3
# define int4 ivec4
# define bool2 bvec2
# define bool3 bvec3
# define bool4 bvec4
# endif
#endif
/* clang-format off */
#if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL)
# error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL
#endif
/* clang-format on */
/* ----------------------------------------------------------------------------
* Misc functions */
/**
* Conditional move:
*/
static void SMAAMovc(float2 cond, float2 &variable, float2 value)
{
/* Use select function (select(genType A, genType B, genBType cond)). */
variable = math::interpolate(variable, value, cond);
}
static void SMAAMovc(float4 cond, float4 &variable, float4 value)
{
/* Use select function (select(genType A, genType B, genBType cond)). */
variable = math::interpolate(variable, value, cond);
}
#if SMAA_INCLUDE_VS
/* ----------------------------------------------------------------------------
* Vertex Shaders */
/**
* Edge Detection Vertex Shader
*/
static void SMAAEdgeDetectionVS(float2 texcoord, int2 size, float4 offset[3])
{
offset[0] = float4(texcoord.xy(), texcoord.xy()) +
float4(-1.0f, 0.0f, 0.0f, -1.0f) / float4(size, size);
offset[1] = float4(texcoord.xy(), texcoord.xy()) +
float4(1.0f, 0.0f, 0.0f, 1.0f) / float4(size, size);
offset[2] = float4(texcoord.xy(), texcoord.xy()) +
float4(-2.0f, 0.0f, 0.0f, -2.0f) / float4(size, size);
}
/**
* Blend Weight Calculation Vertex Shader
*/
static void SMAABlendingWeightCalculationVS(float2 texcoord,
int2 size,
float2 &pixcoord,
float4 offset[3])
{
pixcoord = texcoord * float2(size);
/* We will use these offsets for the searches later on (see @PSEUDO_GATHER4): */
offset[0] = float4(texcoord.xy(), texcoord.xy()) +
float4(-0.25f, -0.125f, 1.25f, -0.125f) / float4(size, size);
offset[1] = float4(texcoord.xy(), texcoord.xy()) +
float4(-0.125f, -0.25f, -0.125f, 1.25f) / float4(size, size);
/* And these for the searches, they indicate the ends of the loops: */
offset[2] = float4(offset[0].x, offset[0].z, offset[1].y, offset[1].w) +
(float4(-2.0f, 2.0f, -2.0f, 2.0f) * float(SMAA_MAX_SEARCH_STEPS)) /
float4(float2(size.x), float2(size.y));
}
/**
* Neighborhood Blending Vertex Shader
*/
static void SMAANeighborhoodBlendingVS(float2 texcoord, int2 size, float4 &offset)
{
offset = float4(texcoord, texcoord) + float4(1.0f, 0.0f, 0.0f, 1.0f) / float4(size, size);
}
#endif /* SMAA_INCLUDE_VS */
/**
* Luma Edge Detection
*
* IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and
* thus 'colorTex' should be a non-sRGB texture.
*/
static float2 SMAALumaEdgeDetectionPS(float2 texcoord,
float4 offset[3],
SMAATexture2D(colorTex),
#if SMAA_PREDICATION
SMAATexture2D(predicationTex),
#endif
float edge_threshold,
float3 luminance_coefficients,
float local_contrast_adaptation_factor)
{
#if SMAA_PREDICATION
float2 threshold = SMAACalculatePredicatedThreshold(
texcoord, offset, SMAATexturePass2D(predicationTex));
#else
/* Calculate the threshold: */
float2 threshold = float2(edge_threshold, edge_threshold);
#endif
/* Calculate lumas: */
// float4 weights = float4(0.2126, 0.7152, 0.0722, 0.0);
float4 weights = float4(luminance_coefficients, 0.0f);
float L = math::dot(SMAASamplePoint(colorTex, texcoord), weights);
float Lleft = math::dot(SMAASamplePoint(colorTex, offset[0].xy()), weights);
float Ltop = math::dot(SMAASamplePoint(colorTex, offset[0].zw()), weights);
/* We do the usual threshold: */
float4 delta;
float2 delta_left_top = math::abs(L - float2(Lleft, Ltop));
delta.x = delta_left_top.x;
delta.y = delta_left_top.y;
float2 edges = math::step(threshold, delta.xy());
/* Then return early if there is no edge: */
if (math::dot(edges, float2(1.0f, 1.0f)) == 0.0f) {
return float2(0.0f);
}
/* Calculate right and bottom deltas: */
float Lright = math::dot(SMAASamplePoint(colorTex, offset[1].xy()), weights);
float Lbottom = math::dot(SMAASamplePoint(colorTex, offset[1].zw()), weights);
float2 delta_right_bottom = math::abs(L - float2(Lright, Lbottom));
delta.z = delta_right_bottom.x;
delta.w = delta_right_bottom.y;
/* Calculate the maximum delta in the direct neighborhood: */
float2 maxDelta = math::max(delta.xy(), delta.zw());
/* Calculate left-left and top-top deltas: */
float Lleftleft = math::dot(SMAASamplePoint(colorTex, offset[2].xy()), weights);
float Ltoptop = math::dot(SMAASamplePoint(colorTex, offset[2].zw()), weights);
float2 delta_left_left_top_top = math::abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop));
delta.z = delta_left_left_top_top.x;
delta.w = delta_left_left_top_top.y;
/* Calculate the final maximum delta: */
maxDelta = math::max(maxDelta.xy(), delta.zw());
float finalDelta = math::max(maxDelta.x, maxDelta.y);
/* Local contrast adaptation: */
edges *= math::step(finalDelta, local_contrast_adaptation_factor * delta.xy());
return edges;
}
/* ----------------------------------------------------------------------------
* Diagonal Search Functions */
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
/**
* Allows to decode two binary values from a bilinear-filtered access.
*/
static float2 SMAADecodeDiagBilinearAccess(float2 e)
{
/* Bilinear access for fetching 'e' have a 0.25 offset, and we are
* interested in the R and G edges:
*
* +---G---+-------+
* | x o R x |
* +-------+-------+
*
* Then, if one of these edge is enabled:
* Red: `(0.75 * X + 0.25 * 1) => 0.25 or 1.0`
* Green: `(0.75 * 1 + 0.25 * X) => 0.75 or 1.0`
*
* This function will unpack the values `(mad + mul + round)`:
* wolframalpha.com: `round(x * abs(5 * x - 5 * 0.75))` plot 0 to 1
*/
e.x = e.x * math::abs(5.0f * e.x - 5.0f * 0.75f);
return math::round(e);
}
static float4 SMAADecodeDiagBilinearAccess(float4 e)
{
e.x = e.x * math::abs(5.0f * e.x - 5.0f * 0.75f);
e.z = e.z * math::abs(5.0f * e.z - 5.0f * 0.75f);
return math::round(e);
}
/**
* These functions allows to perform diagonal pattern searches.
*/
static float2 SMAASearchDiag1(
SMAATexture2D(edgesTex), float2 texcoord, float2 dir, int2 size, float2 &e)
{
float4 coord = float4(texcoord, -1.0f, 1.0f);
float3 t = float3(1.0f / float2(size), 1.0f);
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9f) {
float3 increment = mad(t, float3(dir, 1.0f), coord.xyz());
coord.x = increment.x;
coord.y = increment.y;
coord.z = increment.z;
e = SMAASamplePoint(edgesTex, coord.xy()).xy();
coord.w = math::dot(e, float2(0.5f, 0.5f));
}
return coord.zw();
}
static float2 SMAASearchDiag2(
SMAATexture2D(edgesTex), float2 texcoord, float2 dir, int2 size, float2 &e)
{
float4 coord = float4(texcoord, -1.0f, 1.0f);
coord.x += 0.25f / size.x; /* See @SearchDiag2Optimization */
float3 t = float3(1.0f / float2(size), 1.0f);
while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9f) {
float3 increment = mad(t, float3(dir, 1.0f), coord.xyz());
coord.x = increment.x;
coord.y = increment.y;
coord.z = increment.z;
/* @SearchDiag2Optimization */
/* Fetch both edges at once using bilinear filtering: */
e = SMAASampleLevelZero(edgesTex, coord.xy()).xy();
e = SMAADecodeDiagBilinearAccess(e);
/* Non-optimized version: */
// e.g = SMAASampleLevelZero(edgesTex, coord.xy).g;
// e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0), size).r;
coord.w = math::dot(e, float2(0.5f, 0.5f));
}
return coord.zw();
}
/**
* Similar to SMAAArea, this calculates the area corresponding to a certain
* diagonal distance and crossing edges 'e'.
*/
static float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset)
{
float2 texcoord = mad(
float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist);
/* We do a scale and bias for mapping to texel space: */
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5f * SMAA_AREATEX_PIXEL_SIZE);
/* Diagonal areas are on the second half of the texture: */
texcoord.x += 0.5f;
/* Move to proper place, according to the sub-pixel offset: */
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
/* Do it! */
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));
}
/**
* This searches for diagonal patterns and returns the corresponding weights.
*/
static float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex),
SMAATexture2D(areaTex),
float2 texcoord,
float2 e,
float4 subsampleIndices,
int2 size)
{
float2 weights = float2(0.0f, 0.0f);
/* Search for the line ends: */
float4 d;
float2 end;
if (e.x > 0.0f) {
float2 negative_diagonal = SMAASearchDiag1(
SMAATexturePass2D(edgesTex), texcoord, float2(-1.0f, 1.0f), size, end);
d.x = negative_diagonal.x;
d.z = negative_diagonal.y;
d.x += float(end.y > 0.9f);
}
else {
d.x = 0.0f;
d.z = 0.0f;
}
float2 positive_diagonal = SMAASearchDiag1(
SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), size, end);
d.y = positive_diagonal.x;
d.w = positive_diagonal.y;
SMAA_BRANCH
if (d.x + d.y > 2.0f) { /* `d.x + d.y + 1 > 3`. */
/* Fetch the crossing edges: */
float4 coords = float4(texcoord, texcoord) +
float4(-d.x + 0.25f, d.x, d.y, -d.y - 0.25f) / float4(size, size);
float4 c;
float2 left_edge = SMAASampleLevelZeroOffset(edgesTex, coords.xy(), int2(-1, 0), size).xy();
float2 right_edge = SMAASampleLevelZeroOffset(edgesTex, coords.zw(), int2(1, 0), size).xy();
c.x = left_edge.x;
c.y = left_edge.y;
c.z = right_edge.x;
c.w = right_edge.y;
float4 decoded_access = SMAADecodeDiagBilinearAccess(c);
c.y = decoded_access.x;
c.x = decoded_access.y;
c.w = decoded_access.z;
c.z = decoded_access.w;
/* Non-optimized version: */
// float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy);
// float4 c;
// c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0), size).g;
// c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0), size).r;
// c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0), size).g;
// c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1), size).r;
/* Merge crossing edges at each side into a single value: */
float2 cc = mad(float2(2.0f, 2.0f), float2(c.x, c.z), float2(c.y, c.w));
/* Remove the crossing edge if we didn't found the end of the line: */
SMAAMovc(math::step(0.9f, d.zw()), cc, float2(0.0f, 0.0f));
/* Fetch the areas for this line: */
weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy(), cc, subsampleIndices.z);
}
/* Search for the line ends: */
float2 negative_diagonal = SMAASearchDiag2(
SMAATexturePass2D(edgesTex), texcoord, float2(-1.0f, -1.0f), size, end);
d.x = negative_diagonal.x;
d.z = negative_diagonal.y;
if (SMAASamplePointOffset(edgesTex, texcoord, int2(1, 0), size).x > 0.0f) {
float2 positive_diagonal = SMAASearchDiag2(
SMAATexturePass2D(edgesTex), texcoord, float2(1.0f, 1.0f), size, end);
d.y = positive_diagonal.x;
d.w = positive_diagonal.y;
d.y += float(end.y > 0.9f);
}
else {
d.y = 0.0f;
d.w = 0.0f;
}
SMAA_BRANCH
if (d.x + d.y > 2.0f) { /* `d.x + d.y + 1 > 3` */
/* Fetch the crossing edges: */
float4 coords = float4(texcoord, texcoord) + float4(-d.x, -d.x, d.y, d.y) / float4(size, size);
float4 c;
c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy(), int2(-1, 0), size).y;
c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy(), int2(0, -1), size).x;
float2 left_edge = SMAASampleLevelZeroOffset(edgesTex, coords.zw(), int2(1, 0), size).xy();
c.z = left_edge.y;
c.w = left_edge.x;
float2 cc = mad(float2(2.0f, 2.0f), float2(c.x, c.z), float2(c.y, c.w));
/* Remove the crossing edge if we didn't found the end of the line: */
SMAAMovc(math::step(0.9f, d.zw()), cc, float2(0.0f, 0.0f));
/* Fetch the areas for this line: */
float2 area = SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy(), cc, subsampleIndices.w).xy();
weights.x += area.y;
weights.y += area.x;
}
return weights;
}
#endif
/* ----------------------------------------------------------------------------
* Horizontal/Vertical Search Functions */
/**
* This allows to determine how much length should we add in the last step
* of the searches. It takes the bilinearly interpolated edge (see
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
* crossing edges are active.
*/
static float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset)
{
/* The texture is flipped vertically, with left and right cases taking half
* of the space horizontally: */
float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5f, -1.0f);
float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0f);
/* Scale and bias to access texel centers: */
scale += float2(-1.0f, 1.0f);
bias += float2(0.5f, -0.5f);
/* Convert from pixel coordinates to texcoords:
* (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped). */
scale *= 1.0f / SMAA_SEARCHTEX_PACKED_SIZE;
bias *= 1.0f / SMAA_SEARCHTEX_PACKED_SIZE;
/* Lookup the search texture: */
return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, mad(scale, e, bias)));
}
/**
* Horizontal/vertical search functions for the 2nd pass.
*/
static float SMAASearchXLeft(
SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end, int2 size)
{
/**
* @PSEUDO_GATHER4
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
* sample between edge, thus fetching four edges in a row.
* Sampling with different offsets in each direction allows to disambiguate
* which edges are active from the four fetched ones.
*/
float2 e = float2(0.0f, 1.0f);
while (texcoord.x > end && e.y > 0.8281f && /* Is there some edge not activated? */
e.x == 0.0f) /* Or is there a crossing edge that breaks the line? */
{
e = SMAASampleLevelZero(edgesTex, texcoord).xy();
texcoord = texcoord - float2(2.0f, 0.0f) / float2(size);
}
float offset = mad(
-(255.0f / 127.0f), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0f), 3.25f);
return texcoord.x + offset / size.x;
/* Non-optimized version:
* We correct the previous (-0.25, -0.125) offset we applied: */
// texcoord.x += 0.25 * SMAA_RT_METRICS.x;
/* The searches are bias by 1, so adjust the coords accordingly: */
// texcoord.x += SMAA_RT_METRICS.x;
/* Disambiguate the length added by the last step: */
// texcoord.x += 2.0 * SMAA_RT_METRICS.x; /* Undo last step. */
// texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) *
// SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0);
// return mad(SMAA_RT_METRICS.x, offset, texcoord.x);
}
static float SMAASearchXRight(
SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end, int2 size)
{
float2 e = float2(0.0f, 1.0f);
while (texcoord.x < end && e.y > 0.8281f && /* Is there some edge not activated? */
e.x == 0.0f) /* Or is there a crossing edge that breaks the line? */
{
e = SMAASampleLevelZero(edgesTex, texcoord).xy();
texcoord = texcoord + float2(2.0f, 0.0f) / float2(size);
}
float offset = mad(
-(255.0f / 127.0f), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5f), 3.25f);
return texcoord.x - offset / size.x;
}
static float SMAASearchYUp(
SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end, int2 size)
{
float2 e = float2(1.0f, 0.0f);
while (texcoord.y > end && e.x > 0.8281f && /* Is there some edge not activated? */
e.y == 0.0f) /* Or is there a crossing edge that breaks the line? */
{
e = SMAASampleLevelZero(edgesTex, texcoord).xy();
texcoord = texcoord - float2(0.0f, 2.0f) / float2(size);
}
float2 flipped_edge = float2(e.y, e.x);
float offset = mad(-(255.0f / 127.0f),
SMAASearchLength(SMAATexturePass2D(searchTex), flipped_edge, 0.0f),
3.25f);
return texcoord.y + offset / size.y;
}
static float SMAASearchYDown(
SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end, int2 size)
{
float2 e = float2(1.0f, 0.0f);
while (texcoord.y < end && e.x > 0.8281f && /* Is there some edge not activated? */
e.y == 0.0f) /* Or is there a crossing edge that breaks the line? */
{
e = SMAASampleLevelZero(edgesTex, texcoord).xy();
texcoord = texcoord + float2(0.0f, 2.0f) / float2(size);
}
float2 flipped_edge = float2(e.y, e.x);
float offset = mad(-(255.0f / 127.0f),
SMAASearchLength(SMAATexturePass2D(searchTex), flipped_edge, 0.5f),
3.25f);
return texcoord.y - offset / size.y;
}
/**
* Ok, we have the distance and both crossing edges. So, what are the areas
* at each side of current edge?
*/
static float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset)
{
/* Rounding prevents precision errors of bilinear filtering: */
float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE),
math::round(4.0f * float2(e1, e2)),
dist);
/* We do a scale and bias for mapping to texel space: */
texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5f * SMAA_AREATEX_PIXEL_SIZE);
/* Move to proper place, according to the sub-pixel offset: */
texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y);
/* Do it! */
return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord));
}
/* ----------------------------------------------------------------------------
* Corner Detection Functions */
static void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex),
float2 &weights,
float4 texcoord,
float2 d,
int2 size,
int corner_rounding)
{
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
float2 leftRight = math::step(d, float2(d.y, d.x));
float2 rounding = (1.0f - corner_rounding / 100.0f) * leftRight;
rounding /= leftRight.x + leftRight.y; /* Reduce blending for pixels in the center of a line. */
float2 factor = float2(1.0f, 1.0f);
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy(), int2(0, 1), size).x;
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw(), int2(1, 1), size).x;
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy(), int2(0, -2), size).x;
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw(), int2(1, -2), size).x;
weights *= saturate(factor);
#endif
}
static void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex),
float2 &weights,
float4 texcoord,
float2 d,
int2 size,
int corner_rounding)
{
#if !defined(SMAA_DISABLE_CORNER_DETECTION)
float2 leftRight = math::step(d, float2(d.y, d.x));
float2 rounding = (1.0f - corner_rounding / 100.0f) * leftRight;
rounding /= leftRight.x + leftRight.y;
float2 factor = float2(1.0f, 1.0f);
factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy(), int2(1, 0), size).y;
factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw(), int2(1, 1), size).y;
factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy(), int2(-2, 0), size).y;
factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw(), int2(-2, 1), size).y;
weights *= saturate(factor);
#endif
}
/* ----------------------------------------------------------------------------
* Blending Weight Calculation Pixel Shader (Second Pass) */
static float4 SMAABlendingWeightCalculationPS(float2 texcoord,
float2 pixcoord,
float4 offset[3],
SMAATexture2D(edgesTex),
SMAATexture2D(areaTex),
SMAATexture2D(searchTex),
float4 subsampleIndices,
int2 size,
int corner_rounding)
{
/* Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. */
float4 weights = float4(0.0f, 0.0f, 0.0f, 0.0f);
float2 e = SMAASamplePoint(edgesTex, texcoord).xy();
SMAA_BRANCH
if (e.y > 0.0f) { /* Edge at north. */
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
/* Diagonals have both north and west edges, so searching for them in
* one of the boundaries is enough. */
float2 diagonal_weights = SMAACalculateDiagWeights(SMAATexturePass2D(edgesTex),
SMAATexturePass2D(areaTex),
texcoord,
e,
subsampleIndices,
size);
weights.x = diagonal_weights.x;
weights.y = diagonal_weights.y;
/* We give priority to diagonals, so if we find a diagonal we skip
* horizontal/vertical processing. */
SMAA_BRANCH
if (weights.x == -weights.y) { /* `weights.x + weights.y == 0.0` */
#endif
float2 d;
/* Find the distance to the left: */
float3 coords;
coords.x = SMAASearchXLeft(SMAATexturePass2D(edgesTex),
SMAATexturePass2D(searchTex),
offset[0].xy(),
offset[2].x,
size);
coords.y =
offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET)
d.x = coords.x;
/* Now fetch the left crossing edges, two at a time using bilinear
* filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
* discern what value each edge has: */
float e1 = SMAASampleLevelZero(edgesTex, coords.xy()).x;
/* Find the distance to the right: */
coords.z = SMAASearchXRight(SMAATexturePass2D(edgesTex),
SMAATexturePass2D(searchTex),
offset[0].zw(),
offset[2].y,
size);
d.y = coords.z;
/* We want the distances to be in pixel units (doing this here allows
* better interleaving of arithmetic and memory accesses): */
d = math::abs(math::round(mad(float2(size.x), d, -float2(pixcoord.x))));
/* SMAAArea below needs a sqrt, as the areas texture is compressed quadratically: */
float2 sqrt_d = math::sqrt(d);
/* Fetch the right crossing edges: */
float e2 =
SMAASampleLevelZeroOffset(edgesTex, float2(coords.z, coords.y), int2(1, 0), size).x;
/* Ok, we know how this pattern looks like, now it is time for getting the actual area: */
float2 area = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y);
weights.x = area.x;
weights.y = area.y;
/* Fix corners: */
coords.y = texcoord.y;
float2 corner_weight = weights.xy();
SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex),
corner_weight,
float4(coords.xy(), coords.z, coords.y),
d,
size,
corner_rounding);
weights.x = corner_weight.x;
weights.y = corner_weight.y;
#if !defined(SMAA_DISABLE_DIAG_DETECTION)
}
else {
e.x = 0.0f; /* Skip vertical processing. */
}
#endif
}
SMAA_BRANCH
if (e.x > 0.0f) { /* Edge at west. */
float2 d;
/* Find the distance to the top: */
float3 coords;
coords.y = SMAASearchYUp(SMAATexturePass2D(edgesTex),
SMAATexturePass2D(searchTex),
offset[1].xy(),
offset[2].z,
size);
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x;
d.x = coords.y;
/* Fetch the top crossing edges: */
float e1 = SMAASampleLevelZero(edgesTex, coords.xy()).y;
/* Find the distance to the bottom: */
coords.z = SMAASearchYDown(SMAATexturePass2D(edgesTex),
SMAATexturePass2D(searchTex),
offset[1].zw(),
offset[2].w,
size);
d.y = coords.z;
/* We want the distances to be in pixel units: */
d = math::abs(math::round(mad(float2(size.y), d, -float2(pixcoord.y))));
/* SMAAArea below needs a sqrt, as the areas texture is compressed quadratically: */
float2 sqrt_d = math::sqrt(d);
/* Fetch the bottom crossing edges: */
float e2 = SMAASampleLevelZeroOffset(edgesTex, float2(coords.x, coords.z), int2(0, 1), size).y;
/* Get the area for this direction: */
float2 area = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x);
weights.z = area.x;
weights.w = area.y;
/* Fix corners: */
coords.x = texcoord.x;
float2 corner_weight = weights.zw();
SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex),
corner_weight,
float4(coords.xy(), coords.x, coords.z),
d,
size,
corner_rounding);
weights.z = corner_weight.x;
weights.w = corner_weight.y;
}
return weights;
}
/* ----------------------------------------------------------------------------
* Neighborhood Blending Pixel Shader (Third Pass) */
static float4 SMAANeighborhoodBlendingPS(float2 texcoord,
float4 offset,
SMAATexture2D(colorTex),
SMAATexture2D(blendTex),
#if SMAA_REPROJECTION
SMAATexture2D(velocityTex),
#endif
int2 size)
{
/* Fetch the blending weights for current pixel: */
float4 a;
a.x = SMAASample(blendTex, offset.xy()).w; // Right
a.y = SMAASample(blendTex, offset.zw()).y; // Top
a.z = SMAASample(blendTex, texcoord).z; // Left
a.w = SMAASample(blendTex, texcoord).x; // Bottom
/* Is there any blending weight with a value greater than 0.0? */
SMAA_BRANCH
if (math::dot(a, float4(1.0f, 1.0f, 1.0f, 1.0f)) < 1e-5f) {
float4 color = SMAASampleLevelZero(colorTex, texcoord);
#if SMAA_REPROJECTION
float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord));
/* Pack velocity into the alpha channel: */
color.a = math::sqrt(5.0f * math::length(velocity));
#endif
return color;
}
bool h = math::max(a.x, a.z) > math::max(a.y, a.w); /* `max(horizontal) > max(vertical)`. */
/* Calculate the blending offsets: */
float4 blendingOffset = float4(0.0f, a.y, 0.0f, a.w);
float2 blendingWeight = float2(a.y, a.w);
SMAAMovc(float4(h), blendingOffset, float4(a.x, 0.0f, a.z, 0.0f));
SMAAMovc(float2(h), blendingWeight, float2(a.x, a.z));
blendingWeight /= math::dot(blendingWeight, float2(1.0f, 1.0f));
/* Calculate the texture coordinates: */
float4 blendingCoord = float4(texcoord, texcoord) + blendingOffset / float4(size, -size);
/* We exploit bilinear filtering to mix current pixel with the chosen neighbor: */
float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy());
color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw());
#if SMAA_REPROJECTION
/* Anti-alias velocity for proper reprojection in a later stage: */
float2 velocity = blendingWeight.x *
SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy()));
velocity += blendingWeight.y *
SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw()));
/* Pack velocity into the alpha channel: */
color.a = math::sqrt(5.0f * math::length(velocity));
#endif
return color;
}
static float3 get_luminance_coefficients(ResultType type)
{
switch (type) {
case ResultType::Color: {
float3 luminance_coefficients;
IMB_colormanagement_get_luminance_coefficients(luminance_coefficients);
return luminance_coefficients;
}
case ResultType::Vector:
return float3(1.0f, 1.0f, 1.0f);
case ResultType::Float:
return float3(1.0f, 0.0f, 0.0f);
case ResultType::Float2:
return float3(1.0f, 1.0f, 0.0f);
case ResultType::Float3:
/* GPU module does not support float3 outputs. */
break;
case ResultType::Int:
case ResultType::Int2:
/* SMAA does not support integer types. */
break;
}
BLI_assert_unreachable();
return float3(0.0f);
}
static Result detect_edges_gpu(Context &context,
Result &input,
const float threshold,
const float local_contrast_adaptation_factor)
{
GPUShader *shader = context.get_shader("compositor_smaa_edge_detection");
GPU_shader_bind(shader);
const float3 luminance_coefficients = get_luminance_coefficients(input.type());
GPU_shader_uniform_3fv(shader, "luminance_coefficients", luminance_coefficients);
GPU_shader_uniform_1f(shader, "smaa_threshold", threshold);
GPU_shader_uniform_1f(
shader, "smaa_local_contrast_adaptation_factor", local_contrast_adaptation_factor);
GPU_texture_filter_mode(input, true);
input.bind_as_texture(shader, "input_tx");
Result edges = context.create_result(ResultType::Color);
edges.allocate_texture(input.domain());
edges.bind_as_image(shader, "edges_img");
compute_dispatch_threads_at_least(shader, input.domain().size);
GPU_shader_unbind();
input.unbind_as_texture();
edges.unbind_as_image();
return edges;
}
static Result detect_edges_cpu(Context &context,
Result &input,
const float threshold,
const float local_contrast_adaptation_factor)
{
const float3 luminance_coefficients = get_luminance_coefficients(input.type());
Result edges = context.create_result(ResultType::Float2);
edges.allocate_texture(input.domain());
const int2 size = input.domain().size;
parallel_for(size, [&](const int2 texel) {
const float2 coordinates = (float2(texel) + float2(0.5f)) / float2(size);
float4 offset[3];
SMAAEdgeDetectionVS(coordinates, size, offset);
const float2 edge = SMAALumaEdgeDetectionPS(coordinates,
offset,
input,
threshold,
luminance_coefficients,
local_contrast_adaptation_factor);
edges.store_pixel(texel, edge);
});
return edges;
}
static Result detect_edges(Context &context,
Result &input,
const float threshold,
const float local_contrast_adaptation_factor)
{
if (context.use_gpu()) {
return detect_edges_gpu(context, input, threshold, local_contrast_adaptation_factor);
}
return detect_edges_cpu(context, input, threshold, local_contrast_adaptation_factor);
}
static Result calculate_blending_weights_gpu(Context &context,
Result &edges,
const int corner_rounding)
{
GPUShader *shader = context.get_shader("compositor_smaa_blending_weight_calculation");
GPU_shader_bind(shader);
GPU_shader_uniform_1i(shader, "smaa_corner_rounding", corner_rounding);
GPU_texture_filter_mode(edges, true);
edges.bind_as_texture(shader, "edges_tx");
const SMAAPrecomputedTextures &smaa_precomputed_textures =
context.cache_manager().smaa_precomputed_textures.get(context);
smaa_precomputed_textures.bind_area_texture(shader, "area_tx");
smaa_precomputed_textures.bind_search_texture(shader, "search_tx");
Result weights = context.create_result(ResultType::Color);
weights.allocate_texture(edges.domain());
weights.bind_as_image(shader, "weights_img");
compute_dispatch_threads_at_least(shader, edges.domain().size);
GPU_shader_unbind();
edges.unbind_as_texture();
smaa_precomputed_textures.unbind_area_texture();
smaa_precomputed_textures.unbind_search_texture();
weights.unbind_as_image();
return weights;
}
static Result calculate_blending_weights_cpu(Context &context,
Result &edges,
const int corner_rounding)
{
const SMAAPrecomputedTextures &smaa_precomputed_textures =
context.cache_manager().smaa_precomputed_textures.get(context);
Result weights_result = context.create_result(ResultType::Color);
weights_result.allocate_texture(edges.domain());
const int2 size = edges.domain().size;
parallel_for(size, [&](const int2 texel) {
const float2 coordinates = (float2(texel) + float2(0.5f)) / float2(size);
float4 offset[3];
float2 pixel_coordinates;
SMAABlendingWeightCalculationVS(coordinates, size, pixel_coordinates, offset);
const float4 weights = SMAABlendingWeightCalculationPS(
coordinates,
pixel_coordinates,
offset,
edges,
smaa_precomputed_textures.area_texture,
smaa_precomputed_textures.search_texture,
float4(0.0f),
size,
corner_rounding);
weights_result.store_pixel(texel, weights);
});
return weights_result;
}
static Result calculate_blending_weights(Context &context,
Result &edges,
const int corner_rounding)
{
if (context.use_gpu()) {
return calculate_blending_weights_gpu(context, edges, corner_rounding);
}
return calculate_blending_weights_cpu(context, edges, corner_rounding);
}
static const char *get_blend_shader_name(ResultType type)
{
switch (type) {
case ResultType::Color:
case ResultType::Vector:
return "compositor_smaa_neighborhood_blending_float4";
case ResultType::Float2:
return "compositor_smaa_neighborhood_blending_float2";
case ResultType::Float:
return "compositor_smaa_neighborhood_blending_float";
case ResultType::Float3:
/* GPU module does not support float3 outputs. */
break;
case ResultType::Int:
case ResultType::Int2:
/* SMAA does not support integer types. */
break;
}
BLI_assert_unreachable();
return "";
}
static void blend_neighborhood_gpu(Context &context,
Result &input,
Result &weights,
Result &output)
{
GPUShader *shader = context.get_shader(get_blend_shader_name(input.type()));
GPU_shader_bind(shader);
GPU_texture_filter_mode(input, true);
input.bind_as_texture(shader, "input_tx");
GPU_texture_filter_mode(weights, true);
weights.bind_as_texture(shader, "weights_tx");
output.allocate_texture(input.domain());
output.bind_as_image(shader, "output_img");
compute_dispatch_threads_at_least(shader, input.domain().size);
GPU_shader_unbind();
input.unbind_as_texture();
weights.unbind_as_texture();
output.unbind_as_image();
}
static void blend_neighborhood_cpu(Result &input, Result &weights, Result &output)
{
output.allocate_texture(input.domain());
const int2 size = input.domain().size;
parallel_for(size, [&](const int2 texel) {
const float2 coordinates = (float2(texel) + float2(0.5f)) / float2(size);
float4 offset;
SMAANeighborhoodBlendingVS(coordinates, size, offset);
const float4 result = SMAANeighborhoodBlendingPS(coordinates, offset, input, weights, size);
output.store_pixel_generic_type(texel, result);
});
}
static void blend_neighborhood(Context &context, Result &input, Result &weights, Result &output)
{
if (context.use_gpu()) {
blend_neighborhood_gpu(context, input, weights, output);
}
else {
blend_neighborhood_cpu(input, weights, output);
}
}
static void compute_single_value(Result &input, Result &output)
{
output.allocate_single_value();
switch (input.type()) {
case ResultType::Color:
output.set_single_value(input.get_single_value<float4>());
break;
case ResultType::Vector:
output.set_single_value(input.get_single_value<float4>());
break;
case ResultType::Float2:
output.set_single_value(input.get_single_value<float2>());
break;
case ResultType::Float:
output.set_single_value(input.get_single_value<float>());
break;
case ResultType::Float3:
output.set_single_value(input.get_single_value<float3>());
break;
case ResultType::Int:
output.set_single_value(input.get_single_value<int>());
break;
case ResultType::Int2:
output.set_single_value(input.get_single_value<int2>());
break;
}
}
void smaa(Context &context,
Result &input,
Result &output,
const float threshold,
const float local_contrast_adaptation_factor,
const int corner_rounding)
{
if (input.is_single_value()) {
compute_single_value(input, output);
return;
}
Result edges = detect_edges(context, input, threshold, local_contrast_adaptation_factor);
Result weights = calculate_blending_weights(context, edges, corner_rounding);
edges.release();
blend_neighborhood(context, input, weights, output);
weights.release();
}
} // namespace blender::compositor