Files
test2/source/blender/render/intern/texture_image.cc
Brecht Van Lommel 920e709069 Refactor: Make header files more clangd and clang-tidy friendly
When using clangd or running clang-tidy on headers there are
currently many errors. These are noisy in IDEs, make auto fixes
impossible, and break features like code completion, refactoring
and navigation.

This makes source/blender headers work by themselves, which is
generally the goal anyway. But #includes and forward declarations
were often incomplete.

* Add #includes and forward declarations
* Add IWYU pragma: export in a few places
* Remove some unused #includes (but there are many more)
* Tweak ShaderCreateInfo macros to work better with clangd

Some types of headers still have errors, these could be fixed or
worked around with more investigation. Mostly preprocessor
template headers like NOD_static_types.h.

Note that that disabling WITH_UNITY_BUILD is required for clangd to
work properly, otherwise compile_commands.json does not contain
the information for the relevant source files.

For more details see the developer docs:
https://developer.blender.org/docs/handbook/tooling/clangd/

Pull Request: https://projects.blender.org/blender/blender/pulls/132608
2025-01-07 12:39:13 +01:00

1775 lines
47 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup render
*/
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <cstring>
#include <fcntl.h>
#ifndef WIN32
# include <unistd.h>
#else
# include <io.h>
#endif
#include "IMB_imbuf.hh"
#include "IMB_imbuf_types.hh"
#include "DNA_image_types.h"
#include "DNA_texture_types.h"
#include "BLI_math_color.h"
#include "BLI_math_interp.hh"
#include "BLI_math_vector.h"
#include "BLI_rect.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "BKE_image.hh"
#include "RE_texture.h"
#include "texture_common.h"
static void boxsample(ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
TexResult *texres,
const short imaprepeat,
const short imapextend);
/* *********** IMAGEWRAPPING ****************** */
/* x and y have to be checked for image size */
static void ibuf_get_color(float col[4], ImBuf *ibuf, int x, int y)
{
int ofs = y * ibuf->x + x;
if (ibuf->float_buffer.data) {
if (ibuf->channels == 4) {
const float *fp = ibuf->float_buffer.data + 4 * ofs;
copy_v4_v4(col, fp);
}
else if (ibuf->channels == 3) {
const float *fp = ibuf->float_buffer.data + 3 * ofs;
copy_v3_v3(col, fp);
col[3] = 1.0f;
}
else {
const float *fp = ibuf->float_buffer.data + ofs;
col[0] = col[1] = col[2] = col[3] = *fp;
}
}
else {
const uchar *rect = ibuf->byte_buffer.data + 4 * ofs;
col[0] = float(rect[0]) * (1.0f / 255.0f);
col[1] = float(rect[1]) * (1.0f / 255.0f);
col[2] = float(rect[2]) * (1.0f / 255.0f);
col[3] = float(rect[3]) * (1.0f / 255.0f);
/* Bytes are internally straight, however render pipeline seems to expect pre-multiplied. */
col[0] *= col[3];
col[1] *= col[3];
col[2] *= col[3];
}
}
int imagewrap(Tex *tex,
Image *ima,
const float texvec[3],
TexResult *texres,
ImagePool *pool,
const bool skip_load_image)
{
float fx, fy;
int x, y, retval;
int xi, yi; /* original values */
texres->tin = texres->trgba[3] = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = 0.0f;
retval = TEX_RGB;
/* quick tests */
if (ima == nullptr) {
return retval;
}
/* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ImageUser *iuser = &tex->iuser;
ImageUser local_iuser;
if (ima->source == IMA_SRC_TILED) {
/* tex->iuser might be shared by threads, so create a local copy. */
local_iuser = tex->iuser;
iuser = &local_iuser;
float new_uv[2];
iuser->tile = BKE_image_get_tile_from_pos(ima, texvec, new_uv, nullptr);
fx = new_uv[0];
fy = new_uv[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(ima, iuser, pool);
ima->flag |= IMA_USED_FOR_RENDER;
if (ibuf == nullptr || (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr))
{
BKE_image_pool_release_ibuf(ima, ibuf, pool);
return retval;
}
/* setup mapping */
if (tex->imaflag & TEX_IMAROT) {
std::swap(fx, fy);
}
if (tex->extend == TEX_CHECKER) {
int xs, ys;
xs = int(floor(fx));
ys = int(floor(fy));
fx -= xs;
fy -= ys;
if ((tex->flag & TEX_CHECKER_ODD) == 0) {
if ((xs + ys) & 1) {
/* pass */
}
else {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0) {
if ((xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
fx = (fx - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
fy = (fy - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
}
}
x = xi = int(floorf(fx * ibuf->x));
y = yi = int(floorf(fy * ibuf->y));
if (tex->extend == TEX_CLIPCUBE) {
if (x < 0 || y < 0 || x >= ibuf->x || y >= ibuf->y || texvec[2] < -1.0f || texvec[2] > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if (x < 0 || y < 0 || x >= ibuf->x || y >= ibuf->y) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (tex->extend == TEX_EXTEND) {
if (x >= ibuf->x) {
x = ibuf->x - 1;
}
else if (x < 0) {
x = 0;
}
}
else {
x = x % ibuf->x;
if (x < 0) {
x += ibuf->x;
}
}
if (tex->extend == TEX_EXTEND) {
if (y >= ibuf->y) {
y = ibuf->y - 1;
}
else if (y < 0) {
y = 0;
}
}
else {
y = y % ibuf->y;
if (y < 0) {
y += ibuf->y;
}
}
}
/* Keep this before interpolation #29761. */
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
/* interpolate */
if (tex->imaflag & TEX_INTERPOL) {
float filterx, filtery;
filterx = (0.5f * tex->filtersize) / ibuf->x;
filtery = (0.5f * tex->filtersize) / ibuf->y;
/* Important that this value is wrapped #27782.
* this applies the modifications made by the checks above,
* back to the floating point values */
fx -= float(xi - x) / float(ibuf->x);
fy -= float(yi - y) / float(ibuf->y);
boxsample(ibuf,
fx - filterx,
fy - filtery,
fx + filterx,
fy + filtery,
texres,
(tex->extend == TEX_REPEAT),
(tex->extend == TEX_EXTEND));
}
else { /* no filtering */
ibuf_get_color(texres->trgba, ibuf, x, y);
}
if (texres->talpha) {
texres->tin = texres->trgba[3];
}
else if (tex->imaflag & TEX_CALCALPHA) {
texres->trgba[3] = texres->tin = max_fff(texres->trgba[0], texres->trgba[1], texres->trgba[2]);
}
else {
texres->trgba[3] = texres->tin = 1.0;
}
if (tex->flag & TEX_NEGALPHA) {
texres->trgba[3] = 1.0f - texres->trgba[3];
}
/* De-pre-multiply, this is being pre-multiplied in #shade_input_do_shade()
* do not de-pre-multiply for generated alpha, it is already in straight. */
if (texres->trgba[3] != 1.0f && texres->trgba[3] > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
fx = 1.0f / texres->trgba[3];
texres->trgba[0] *= fx;
texres->trgba[1] *= fx;
texres->trgba[2] *= fx;
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
static void clipx_rctf_swap(rctf *stack, short *count, float x1, float x2)
{
rctf *rf, *newrct;
short a;
a = *count;
rf = stack;
for (; a > 0; a--) {
if (rf->xmin < x1) {
if (rf->xmax < x1) {
rf->xmin += (x2 - x1);
rf->xmax += (x2 - x1);
}
else {
if (rf->xmax > x2) {
rf->xmax = x2;
}
newrct = stack + *count;
(*count)++;
newrct->xmax = x2;
newrct->xmin = rf->xmin + (x2 - x1);
newrct->ymin = rf->ymin;
newrct->ymax = rf->ymax;
if (newrct->xmin == newrct->xmax) {
(*count)--;
}
rf->xmin = x1;
}
}
else if (rf->xmax > x2) {
if (rf->xmin > x2) {
rf->xmin -= (x2 - x1);
rf->xmax -= (x2 - x1);
}
else {
if (rf->xmin < x1) {
rf->xmin = x1;
}
newrct = stack + *count;
(*count)++;
newrct->xmin = x1;
newrct->xmax = rf->xmax - (x2 - x1);
newrct->ymin = rf->ymin;
newrct->ymax = rf->ymax;
if (newrct->xmin == newrct->xmax) {
(*count)--;
}
rf->xmax = x2;
}
}
rf++;
}
}
static void clipy_rctf_swap(rctf *stack, short *count, float y1, float y2)
{
rctf *rf, *newrct;
short a;
a = *count;
rf = stack;
for (; a > 0; a--) {
if (rf->ymin < y1) {
if (rf->ymax < y1) {
rf->ymin += (y2 - y1);
rf->ymax += (y2 - y1);
}
else {
if (rf->ymax > y2) {
rf->ymax = y2;
}
newrct = stack + *count;
(*count)++;
newrct->ymax = y2;
newrct->ymin = rf->ymin + (y2 - y1);
newrct->xmin = rf->xmin;
newrct->xmax = rf->xmax;
if (newrct->ymin == newrct->ymax) {
(*count)--;
}
rf->ymin = y1;
}
}
else if (rf->ymax > y2) {
if (rf->ymin > y2) {
rf->ymin -= (y2 - y1);
rf->ymax -= (y2 - y1);
}
else {
if (rf->ymin < y1) {
rf->ymin = y1;
}
newrct = stack + *count;
(*count)++;
newrct->ymin = y1;
newrct->ymax = rf->ymax - (y2 - y1);
newrct->xmin = rf->xmin;
newrct->xmax = rf->xmax;
if (newrct->ymin == newrct->ymax) {
(*count)--;
}
rf->ymax = y2;
}
}
rf++;
}
}
static float square_rctf(const rctf *rf)
{
float x, y;
x = BLI_rctf_size_x(rf);
y = BLI_rctf_size_y(rf);
return x * y;
}
static float clipx_rctf(rctf *rf, float x1, float x2)
{
float size;
size = BLI_rctf_size_x(rf);
if (rf->xmin < x1) {
rf->xmin = x1;
}
if (rf->xmax > x2) {
rf->xmax = x2;
}
if (rf->xmin > rf->xmax) {
rf->xmin = rf->xmax;
return 0.0;
}
if (size != 0.0f) {
return BLI_rctf_size_x(rf) / size;
}
return 1.0;
}
static float clipy_rctf(rctf *rf, float y1, float y2)
{
float size;
size = BLI_rctf_size_y(rf);
if (rf->ymin < y1) {
rf->ymin = y1;
}
if (rf->ymax > y2) {
rf->ymax = y2;
}
if (rf->ymin > rf->ymax) {
rf->ymin = rf->ymax;
return 0.0;
}
if (size != 0.0f) {
return BLI_rctf_size_y(rf) / size;
}
return 1.0;
}
static void boxsampleclip(ImBuf *ibuf, const rctf *rf, TexResult *texres)
{
/* Sample box, is clipped already, and minx etc. have been set at ibuf size.
* Enlarge with anti-aliased edges of the pixels. */
float muly, mulx, div, col[4];
int x, y, startx, endx, starty, endy;
startx = int(floor(rf->xmin));
endx = int(floor(rf->xmax));
starty = int(floor(rf->ymin));
endy = int(floor(rf->ymax));
if (startx < 0) {
startx = 0;
}
if (starty < 0) {
starty = 0;
}
if (endx >= ibuf->x) {
endx = ibuf->x - 1;
}
if (endy >= ibuf->y) {
endy = ibuf->y - 1;
}
if (starty == endy && startx == endx) {
ibuf_get_color(texres->trgba, ibuf, startx, starty);
}
else {
div = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = texres->trgba[3] = 0.0;
for (y = starty; y <= endy; y++) {
muly = 1.0;
if (starty == endy) {
/* pass */
}
else {
if (y == starty) {
muly = 1.0f - (rf->ymin - y);
}
if (y == endy) {
muly = (rf->ymax - y);
}
}
if (startx == endx) {
mulx = muly;
ibuf_get_color(col, ibuf, startx, y);
madd_v4_v4fl(texres->trgba, col, mulx);
div += mulx;
}
else {
for (x = startx; x <= endx; x++) {
mulx = muly;
if (x == startx) {
mulx *= 1.0f - (rf->xmin - x);
}
if (x == endx) {
mulx *= (rf->xmax - x);
}
ibuf_get_color(col, ibuf, x, y);
/* TODO(jbakker): No need to do manual optimization. Branching is slower than multiplying
* with 1. */
if (mulx == 1.0f) {
add_v4_v4(texres->trgba, col);
div += 1.0f;
}
else {
madd_v4_v4fl(texres->trgba, col, mulx);
div += mulx;
}
}
}
}
if (div != 0.0f) {
div = 1.0f / div;
mul_v4_fl(texres->trgba, div);
}
else {
zero_v4(texres->trgba);
}
}
}
static void boxsample(ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
TexResult *texres,
const short imaprepeat,
const short imapextend)
{
/* Sample box, performs clip. minx etc are in range 0.0 - 1.0 .
* Enlarge with anti-aliased edges of pixels.
* If variable 'imaprepeat' has been set, the
* clipped-away parts are sampled as well.
*/
/* NOTE: actually minx etc isn't in the proper range...
* this due to filter size and offset vectors for bump. */
/* NOTE: talpha must be initialized. */
/* NOTE: even when 'imaprepeat' is set, this can only repeat once in any direction.
* the point which min/max is derived from is assumed to be wrapped. */
TexResult texr;
rctf *rf, stack[8];
float opp, tot, alphaclip = 1.0;
short count = 1;
rf = stack;
rf->xmin = minx * (ibuf->x);
rf->xmax = maxx * (ibuf->x);
rf->ymin = miny * (ibuf->y);
rf->ymax = maxy * (ibuf->y);
texr.talpha = texres->talpha; /* is read by boxsample_clip */
if (imapextend) {
CLAMP(rf->xmin, 0.0f, ibuf->x - 1);
CLAMP(rf->xmax, 0.0f, ibuf->x - 1);
}
else if (imaprepeat) {
clipx_rctf_swap(stack, &count, 0.0, float(ibuf->x));
}
else {
alphaclip = clipx_rctf(rf, 0.0, float(ibuf->x));
if (alphaclip <= 0.0f) {
texres->trgba[0] = texres->trgba[2] = texres->trgba[1] = texres->trgba[3] = 0.0;
return;
}
}
if (imapextend) {
CLAMP(rf->ymin, 0.0f, ibuf->y - 1);
CLAMP(rf->ymax, 0.0f, ibuf->y - 1);
}
else if (imaprepeat) {
clipy_rctf_swap(stack, &count, 0.0, float(ibuf->y));
}
else {
alphaclip *= clipy_rctf(rf, 0.0, float(ibuf->y));
if (alphaclip <= 0.0f) {
texres->trgba[0] = texres->trgba[2] = texres->trgba[1] = texres->trgba[3] = 0.0;
return;
}
}
if (count > 1) {
tot = texres->trgba[0] = texres->trgba[2] = texres->trgba[1] = texres->trgba[3] = 0.0;
while (count--) {
boxsampleclip(ibuf, rf, &texr);
opp = square_rctf(rf);
tot += opp;
texres->trgba[0] += opp * texr.trgba[0];
texres->trgba[1] += opp * texr.trgba[1];
texres->trgba[2] += opp * texr.trgba[2];
if (texres->talpha) {
texres->trgba[3] += opp * texr.trgba[3];
}
rf++;
}
if (tot != 0.0f) {
texres->trgba[0] /= tot;
texres->trgba[1] /= tot;
texres->trgba[2] /= tot;
if (texres->talpha) {
texres->trgba[3] /= tot;
}
}
}
else {
boxsampleclip(ibuf, rf, texres);
}
if (texres->talpha == 0) {
texres->trgba[3] = 1.0;
}
if (alphaclip != 1.0f) {
/* Pre-multiply it all. */
texres->trgba[0] *= alphaclip;
texres->trgba[1] *= alphaclip;
texres->trgba[2] *= alphaclip;
texres->trgba[3] *= alphaclip;
}
}
/* -------------------------------------------------------------------- */
/* from here, some functions only used for the new filtering */
/* anisotropic filters, data struct used instead of long line of (possibly unused) func args */
struct afdata_t {
float dxt[2], dyt[2];
int intpol, extflag;
/* feline only */
float majrad, minrad, theta;
int iProbes;
float dusc, dvsc;
};
/* this only used here to make it easier to pass extend flags as single int */
enum { TXC_XMIR = 1, TXC_YMIR, TXC_REPT, TXC_EXTD };
/**
* Similar to `ibuf_get_color()` but clips/wraps coords according to repeat/extend flags
* returns true if out of range in clip-mode.
*/
static int ibuf_get_color_clip(float col[4], ImBuf *ibuf, int x, int y, int extflag)
{
int clip = 0;
switch (extflag) {
case TXC_XMIR: /* y rep */
x %= 2 * ibuf->x;
x += x < 0 ? 2 * ibuf->x : 0;
x = x >= ibuf->x ? 2 * ibuf->x - x - 1 : x;
y %= ibuf->y;
y += y < 0 ? ibuf->y : 0;
break;
case TXC_YMIR: /* x rep */
x %= ibuf->x;
x += x < 0 ? ibuf->x : 0;
y %= 2 * ibuf->y;
y += y < 0 ? 2 * ibuf->y : 0;
y = y >= ibuf->y ? 2 * ibuf->y - y - 1 : y;
break;
case TXC_EXTD:
x = (x < 0) ? 0 : ((x >= ibuf->x) ? (ibuf->x - 1) : x);
y = (y < 0) ? 0 : ((y >= ibuf->y) ? (ibuf->y - 1) : y);
break;
case TXC_REPT:
x %= ibuf->x;
x += (x < 0) ? ibuf->x : 0;
y %= ibuf->y;
y += (y < 0) ? ibuf->y : 0;
break;
default: { /* as extend, if clipped, set alpha to 0.0 */
if (x < 0) {
x = 0;
} /* TXF alpha: clip = 1; } */
if (x >= ibuf->x) {
x = ibuf->x - 1;
} /* TXF alpha: clip = 1; } */
if (y < 0) {
y = 0;
} /* TXF alpha: clip = 1; } */
if (y >= ibuf->y) {
y = ibuf->y - 1;
} /* TXF alpha: clip = 1; } */
}
}
if (ibuf->float_buffer.data) {
const float *fp = ibuf->float_buffer.data + (x + y * ibuf->x) * ibuf->channels;
if (ibuf->channels == 1) {
col[0] = col[1] = col[2] = col[3] = *fp;
}
else {
col[0] = fp[0];
col[1] = fp[1];
col[2] = fp[2];
col[3] = clip ? 0.0f : (ibuf->channels == 4 ? fp[3] : 1.0f);
}
}
else {
const uchar *rect = ibuf->byte_buffer.data + 4 * (x + y * ibuf->x);
float inv_alpha_fac = (1.0f / 255.0f) * rect[3] * (1.0f / 255.0f);
col[0] = rect[0] * inv_alpha_fac;
col[1] = rect[1] * inv_alpha_fac;
col[2] = rect[2] * inv_alpha_fac;
col[3] = clip ? 0.0f : rect[3] * (1.0f / 255.0f);
}
return clip;
}
/* as above + bilerp */
static int ibuf_get_color_clip_bilerp(
float col[4], ImBuf *ibuf, float u, float v, int intpol, int extflag)
{
if (intpol) {
float c00[4], c01[4], c10[4], c11[4];
const float ufl = floorf(u -= 0.5f), vfl = floorf(v -= 0.5f);
const float uf = u - ufl, vf = v - vfl;
const float w00 = (1.0f - uf) * (1.0f - vf), w10 = uf * (1.0f - vf), w01 = (1.0f - uf) * vf,
w11 = uf * vf;
const int x1 = int(ufl), y1 = int(vfl), x2 = x1 + 1, y2 = y1 + 1;
int clip = ibuf_get_color_clip(c00, ibuf, x1, y1, extflag);
clip |= ibuf_get_color_clip(c10, ibuf, x2, y1, extflag);
clip |= ibuf_get_color_clip(c01, ibuf, x1, y2, extflag);
clip |= ibuf_get_color_clip(c11, ibuf, x2, y2, extflag);
col[0] = w00 * c00[0] + w10 * c10[0] + w01 * c01[0] + w11 * c11[0];
col[1] = w00 * c00[1] + w10 * c10[1] + w01 * c01[1] + w11 * c11[1];
col[2] = w00 * c00[2] + w10 * c10[2] + w01 * c01[2] + w11 * c11[2];
col[3] = clip ? 0.0f : w00 * c00[3] + w10 * c10[3] + w01 * c01[3] + w11 * c11[3];
return clip;
}
return ibuf_get_color_clip(col, ibuf, int(u), int(v), extflag);
}
static void area_sample(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afdata_t *AFD)
{
int xs, ys, clip = 0;
float tc[4], xsd, ysd, cw = 0.0f;
const float ux = ibuf->x * AFD->dxt[0], uy = ibuf->y * AFD->dxt[1];
const float vx = ibuf->x * AFD->dyt[0], vy = ibuf->y * AFD->dyt[1];
int xsam = int(0.5f * sqrtf(ux * ux + uy * uy) + 0.5f);
int ysam = int(0.5f * sqrtf(vx * vx + vy * vy) + 0.5f);
const int minsam = AFD->intpol ? 2 : 4;
xsam = std::clamp(xsam, minsam, ibuf->x * 2);
ysam = std::clamp(ysam, minsam, ibuf->y * 2);
xsd = 1.0f / xsam;
ysd = 1.0f / ysam;
texr->trgba[0] = texr->trgba[1] = texr->trgba[2] = texr->trgba[3] = 0.0f;
for (ys = 0; ys < ysam; ys++) {
for (xs = 0; xs < xsam; xs++) {
const float su = (xs + ((ys & 1) + 0.5f) * 0.5f) * xsd - 0.5f;
const float sv = (ys + ((xs & 1) + 0.5f) * 0.5f) * ysd - 0.5f;
const float pu = fx + su * AFD->dxt[0] + sv * AFD->dyt[0];
const float pv = fy + su * AFD->dxt[1] + sv * AFD->dyt[1];
const int out = ibuf_get_color_clip_bilerp(
tc, ibuf, pu * ibuf->x, pv * ibuf->y, AFD->intpol, AFD->extflag);
clip |= out;
cw += out ? 0.0f : 1.0f;
texr->trgba[0] += tc[0];
texr->trgba[1] += tc[1];
texr->trgba[2] += tc[2];
texr->trgba[3] += texr->talpha ? tc[3] : 0.0f;
}
}
xsd *= ysd;
texr->trgba[0] *= xsd;
texr->trgba[1] *= xsd;
texr->trgba[2] *= xsd;
/* clipping can be ignored if alpha used, texr->trgba[3] already includes filtered edge */
texr->trgba[3] = texr->talpha ? texr->trgba[3] * xsd : (clip ? cw * xsd : 1.0f);
}
struct ReadEWAData {
ImBuf *ibuf;
const afdata_t *AFD;
};
static void ewa_read_pixel_cb(void *userdata, int x, int y, float result[4])
{
ReadEWAData *data = (ReadEWAData *)userdata;
ibuf_get_color_clip(result, data->ibuf, x, y, data->AFD->extflag);
}
static void ewa_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afdata_t *AFD)
{
ReadEWAData data;
const float uv[2] = {fx, fy};
data.ibuf = ibuf;
data.AFD = AFD;
BLI_ewa_filter(ibuf->x,
ibuf->y,
AFD->intpol != 0,
texr->talpha,
uv,
AFD->dxt,
AFD->dyt,
ewa_read_pixel_cb,
&data,
texr->trgba);
}
static void feline_eval(TexResult *texr, ImBuf *ibuf, float fx, float fy, const afdata_t *AFD)
{
const int maxn = AFD->iProbes - 1;
const float ll = ((AFD->majrad == AFD->minrad) ? 2.0f * AFD->majrad :
2.0f * (AFD->majrad - AFD->minrad)) /
(maxn ? float(maxn) : 1.0f);
float du = maxn ? cosf(AFD->theta) * ll : 0.0f;
float dv = maxn ? sinf(AFD->theta) * ll : 0.0f;
// const float D = -0.5f*(du*du + dv*dv) / (AFD->majrad*AFD->majrad);
const float D = (EWA_MAXIDX + 1) * 0.25f * (du * du + dv * dv) / (AFD->majrad * AFD->majrad);
float d; /* TXF alpha: `cw = 0.0f`. */
int n; /* TXF alpha: `clip = 0`. */
/* Have to use same scaling for du/dv here as for Ux/Vx/Uy/Vy (*after* D is calculated.) */
du *= AFD->dusc;
dv *= AFD->dvsc;
d = texr->trgba[0] = texr->trgba[2] = texr->trgba[1] = texr->trgba[3] = 0.0f;
for (n = -maxn; n <= maxn; n += 2) {
float tc[4];
const float hn = n * 0.5f;
const float u = fx + hn * du, v = fy + hn * dv;
/* Can use ewa table here too. */
#if 0
const float wt = expf(n * n * D);
#else
const float wt = EWA_WTS[int(n * n * D)];
#endif
/* `const int out =` */ ibuf_get_color_clip_bilerp(
tc, ibuf, ibuf->x * u, ibuf->y * v, AFD->intpol, AFD->extflag);
/* TXF alpha: `clip |= out;`
* TXF alpha: `cw += out ? 0.0f : wt;` */
texr->trgba[0] += tc[0] * wt;
texr->trgba[1] += tc[1] * wt;
texr->trgba[2] += tc[2] * wt;
texr->trgba[3] += texr->talpha ? tc[3] * wt : 0.0f;
d += wt;
}
d = 1.0f / d;
texr->trgba[0] *= d;
texr->trgba[1] *= d;
texr->trgba[2] *= d;
/* Clipping can be ignored if alpha used, `texr->trgba[3]` already includes filtered edge */
texr->trgba[3] = texr->talpha ? texr->trgba[3] * d :
1.0f; /* TXF alpha: `(clip ? cw*d : 1.0f);` */
}
#undef EWA_MAXIDX
static void alpha_clip_aniso(const ImBuf *ibuf,
float minx,
float miny,
float maxx,
float maxy,
int extflag,
TexResult *texres)
{
float alphaclip;
rctf rf;
/* TXF alpha: we're doing the same alpha-clip here as box-sample, but I'm doubting
* if this is actually correct for the all the filtering algorithms. */
if (!ELEM(extflag, TXC_REPT, TXC_EXTD)) {
rf.xmin = minx * (ibuf->x);
rf.xmax = maxx * (ibuf->x);
rf.ymin = miny * (ibuf->y);
rf.ymax = maxy * (ibuf->y);
alphaclip = clipx_rctf(&rf, 0.0, float(ibuf->x));
alphaclip *= clipy_rctf(&rf, 0.0, float(ibuf->y));
alphaclip = max_ff(alphaclip, 0.0f);
if (alphaclip != 1.0f) {
/* Pre-multiply it all. */
texres->trgba[0] *= alphaclip;
texres->trgba[1] *= alphaclip;
texres->trgba[2] *= alphaclip;
texres->trgba[3] *= alphaclip;
}
}
}
static void image_mipmap_test(Tex *tex, ImBuf *ibuf)
{
if (tex->imaflag & TEX_MIPMAP) {
if (ibuf->mipmap[0] && (ibuf->userflags & IB_MIPMAP_INVALID)) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->userflags & IB_MIPMAP_INVALID) {
IMB_remakemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
ibuf->userflags &= ~IB_MIPMAP_INVALID;
}
BLI_thread_unlock(LOCK_IMAGE);
}
if (ibuf->mipmap[0] == nullptr) {
BLI_thread_lock(LOCK_IMAGE);
if (ibuf->mipmap[0] == nullptr) {
IMB_makemipmap(ibuf, tex->imaflag & TEX_GAUSS_MIP);
}
BLI_thread_unlock(LOCK_IMAGE);
}
/* if no mipmap could be made, fall back on non-mipmap render */
if (ibuf->mipmap[0] == nullptr) {
tex->imaflag &= ~TEX_MIPMAP;
}
}
}
static int imagewraposa_aniso(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
float dxt[2],
float dyt[2],
TexResult *texres,
ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy;
float maxd;
int curmap, retval, intpol, extflag = 0;
afdata_t AFD;
void (*filterfunc)(TexResult *, ImBuf *, float, float, const afdata_t *);
switch (tex->texfilter) {
case TXF_EWA:
filterfunc = ewa_eval;
break;
case TXF_FELINE:
filterfunc = feline_eval;
break;
case TXF_AREA:
default:
filterfunc = area_sample;
}
texres->tin = texres->trgba[3] = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = 0.0f;
retval = TEX_RGB;
/* quick tests */
if (ibuf == nullptr && ima == nullptr) {
return retval;
}
if (ima) { /* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
}
if ((ibuf == nullptr) ||
((ibuf->byte_buffer.data == nullptr) && (ibuf->float_buffer.data == nullptr)))
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if (ima) {
ima->flag |= IMA_USED_FOR_RENDER;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) * 0.5f;
miny = (maxy - miny) * 0.5f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
const float addval = (0.5f * tex->filtersize) / float(std::min(ibuf->x, ibuf->y));
if (addval > minx) {
minx = addval;
}
if (addval > miny) {
miny = addval;
}
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
float t;
std::swap(minx, miny);
/* must rotate dxt/dyt 90 deg
* yet another blender problem is that swapping X/Y axes (or any tex projection switches)
* should do something similar, but it doesn't, it only swaps coords,
* so filter area will be incorrect in those cases. */
t = dxt[0];
dxt[0] = dxt[1];
dxt[1] = -t;
t = dyt[0];
dyt[0] = dyt[1];
dyt[1] = -t;
}
/* side faces of unit-cube */
minx = (minx > 0.25f) ? 0.25f : ((minx < 1e-5f) ? 1e-5f : minx);
miny = (miny > 0.25f) ? 0.25f : ((miny < 1e-5f) ? 1e-5f : miny);
/* repeat and clip */
if (tex->extend == TEX_REPEAT) {
if ((tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) == (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
extflag = TXC_EXTD;
}
else if (tex->flag & TEX_REPEAT_XMIR) {
extflag = TXC_XMIR;
}
else if (tex->flag & TEX_REPEAT_YMIR) {
extflag = TXC_YMIR;
}
else {
extflag = TXC_REPT;
}
}
else if (tex->extend == TEX_EXTEND) {
extflag = TXC_EXTD;
}
if (tex->extend == TEX_CHECKER) {
int xs = int(floorf(fx)), ys = int(floorf(fy));
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
int xs1 = int(floorf(fx - minx));
int ys1 = int(floorf(fy - miny));
int xs2 = int(floorf(fx + minx));
int ys2 = int(floorf(fy + miny));
if ((xs1 != xs2) || (ys1 != ys2)) {
if (tex->flag & TEX_CHECKER_ODD) {
fx -= ((xs1 + ys) & 1) ? xs2 : xs1;
fy -= ((ys1 + xs) & 1) ? ys2 : ys1;
}
if (tex->flag & TEX_CHECKER_EVEN) {
fx -= ((xs1 + ys) & 1) ? xs1 : xs2;
fy -= ((ys1 + xs) & 1) ? ys1 : ys2;
}
}
else {
if ((tex->flag & TEX_CHECKER_ODD) == 0 && ((xs + ys) & 1) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0 && (xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
fx -= xs;
fy -= ys;
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
const float omcd = 1.0f / (1.0f - tex->checkerdist);
fx = (fx - 0.5f) * omcd + 0.5f;
fy = (fy - 0.5f) * omcd + 0.5f;
minx *= omcd;
miny *= omcd;
}
}
if (tex->extend == TEX_CLIPCUBE) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f)
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if ((fx + minx) < 0.0f || (fy + miny) < 0.0f || (fx - minx) > 1.0f || (fy - miny) > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (tex->extend == TEX_EXTEND) {
fx = (fx > 1.0f) ? 1.0f : ((fx < 0.0f) ? 0.0f : fx);
fy = (fy > 1.0f) ? 1.0f : ((fy < 0.0f) ? 0.0f : fy);
}
else {
fx -= floorf(fx);
fy -= floorf(fy);
}
}
intpol = tex->imaflag & TEX_INTERPOL;
/* struct common data */
copy_v2_v2(AFD.dxt, dxt);
copy_v2_v2(AFD.dyt, dyt);
AFD.intpol = intpol;
AFD.extflag = extflag;
/* NOTE(@brecht): added stupid clamping here, large dx/dy can give very large
* filter sizes which take ages to render, it may be better to do this
* more intelligently later in the code .. probably it's not noticeable */
if (AFD.dxt[0] * AFD.dxt[0] + AFD.dxt[1] * AFD.dxt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dxt, 2.0f / len_v2(AFD.dxt));
}
if (AFD.dyt[0] * AFD.dyt[0] + AFD.dyt[1] * AFD.dyt[1] > 2.0f * 2.0f) {
mul_v2_fl(AFD.dyt, 2.0f / len_v2(AFD.dyt));
}
/* choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
float levf;
int maxlev;
ImBuf *mipmaps[IMB_MIPMAP_LEVELS + 1];
/* Modify ellipse minor axis if too eccentric, use for area sampling as well
* scaling `dxt/dyt` as done in PBRT is not the same
* (as in `ewa_eval()`, scale by `sqrt(ibuf->x)` to maximize precision). */
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
if (tex->texfilter == TXF_FELINE) {
float fProbes;
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
AFD.iProbes = round_fl_to_int(fProbes);
AFD.iProbes = std::min(AFD.iProbes, tex->afmax);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / float(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / float(ibuf->y);
}
else { /* EWA & area */
if (ecc > float(tex->afmax)) {
b = a / float(tex->afmax);
}
b *= ff;
}
maxd = max_ff(b, 1e-8f);
levf = float(M_LOG2E) * logf(maxd);
curmap = 0;
maxlev = 1;
mipmaps[0] = ibuf;
while (curmap < IMB_MIPMAP_LEVELS) {
mipmaps[curmap + 1] = ibuf->mipmap[curmap];
if (ibuf->mipmap[curmap]) {
maxlev++;
}
curmap++;
}
/* mipmap level */
if (levf < 0.0f) { /* original image only */
previbuf = curibuf = mipmaps[0];
levf = 0.0f;
}
else if (levf >= maxlev - 1) {
previbuf = curibuf = mipmaps[maxlev - 1];
levf = 0.0f;
if (tex->texfilter == TXF_FELINE) {
AFD.iProbes = 1;
}
}
else {
const int lev = isnan(levf) ? 0 : int(levf);
curibuf = mipmaps[lev];
previbuf = mipmaps[lev + 1];
levf -= floorf(levf);
}
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
filterfunc(texres, curibuf, fx, fy, &AFD);
if (previbuf != curibuf) { /* interpolate */
filterfunc(&texr, previbuf, fx, fy, &AFD);
texres->trgba[0] += levf * (texr.trgba[0] - texres->trgba[0]);
texres->trgba[1] += levf * (texr.trgba[1] - texres->trgba[1]);
texres->trgba[2] += levf * (texr.trgba[2] - texres->trgba[2]);
texres->trgba[3] += levf * (texr.trgba[3] - texres->trgba[3]);
}
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
else { /* no mipmap */
/* filter functions take care of interpolation themselves, no need to modify dxt/dyt here */
if (tex->texfilter == TXF_FELINE) {
const float ff = sqrtf(ibuf->x), q = ibuf->y / ff;
const float Ux = dxt[0] * ff, Vx = dxt[1] * q, Uy = dyt[0] * ff, Vy = dyt[1] * q;
const float A = Vx * Vx + Vy * Vy;
const float B = -2.0f * (Ux * Vx + Uy * Vy);
const float C = Ux * Ux + Uy * Uy;
const float F = A * C - B * B * 0.25f;
float a, b, th, ecc, fProbes;
BLI_ewa_imp2radangle(A, B, C, F, &a, &b, &th, &ecc);
a *= ff;
b *= ff;
a = max_ff(a, 1.0f);
b = max_ff(b, 1.0f);
fProbes = 2.0f * (a / b) - 1.0f;
/* no limit to number of Probes here */
AFD.iProbes = round_fl_to_int(fProbes);
if (AFD.iProbes < fProbes) {
b = 2.0f * a / float(AFD.iProbes + 1);
}
AFD.majrad = a / ff;
AFD.minrad = b / ff;
AFD.theta = th;
AFD.dusc = 1.0f / ff;
AFD.dvsc = ff / float(ibuf->y);
}
filterfunc(texres, ibuf, fx, fy, &AFD);
if (tex->texfilter != TXF_EWA) {
alpha_clip_aniso(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, extflag, texres);
}
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->trgba[3] = texres->tin = texres->trgba[3] *
max_fff(texres->trgba[0], texres->trgba[1], texres->trgba[2]);
}
else {
texres->tin = texres->trgba[3];
}
if (tex->flag & TEX_NEGALPHA) {
texres->trgba[3] = 1.0f - texres->trgba[3];
}
/* de-pre-multiply, this is being pre-multiplied in shade_input_do_shade()
* TXF: this currently does not (yet?) work properly, destroys edge AA in clip/checker mode,
* so for now commented out also disabled in #imagewraposa()
* to be able to compare results with blender's default texture filtering */
/* brecht: tried to fix this, see "TXF alpha" comments */
/* do not de-pre-multiply for generated alpha, it is already in straight */
if (texres->trgba[3] != 1.0f && texres->trgba[3] > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
fx = 1.0f / texres->trgba[3];
texres->trgba[0] *= fx;
texres->trgba[1] *= fx;
texres->trgba[2] *= fx;
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
int imagewraposa(Tex *tex,
Image *ima,
ImBuf *ibuf,
const float texvec[3],
const float DXT[2],
const float DYT[2],
TexResult *texres,
ImagePool *pool,
const bool skip_load_image)
{
TexResult texr;
float fx, fy, minx, maxx, miny, maxy, dx, dy, dxt[2], dyt[2];
float maxd, pixsize;
int curmap, retval, imaprepeat, imapextend;
/* TXF: since dxt/dyt might be modified here and since they might be needed after imagewraposa()
* call, make a local copy here so that original vecs remain untouched. */
copy_v2_v2(dxt, DXT);
copy_v2_v2(dyt, DYT);
/* anisotropic filtering */
if (tex->texfilter != TXF_BOX) {
return imagewraposa_aniso(tex, ima, ibuf, texvec, dxt, dyt, texres, pool, skip_load_image);
}
texres->tin = texres->trgba[3] = texres->trgba[0] = texres->trgba[1] = texres->trgba[2] = 0.0f;
retval = TEX_RGB;
/* quick tests */
if (ibuf == nullptr && ima == nullptr) {
return retval;
}
if (ima) {
/* hack for icon render */
if (skip_load_image && !BKE_image_has_loaded_ibuf(ima)) {
return retval;
}
ibuf = BKE_image_pool_acquire_ibuf(ima, &tex->iuser, pool);
ima->flag |= IMA_USED_FOR_RENDER;
}
if (ibuf == nullptr || (ibuf->byte_buffer.data == nullptr && ibuf->float_buffer.data == nullptr))
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
/* mipmap test */
image_mipmap_test(tex, ibuf);
if (ima) {
if ((tex->imaflag & TEX_USEALPHA) && (ima->alpha_mode != IMA_ALPHA_IGNORE)) {
if ((tex->imaflag & TEX_CALCALPHA) == 0) {
texres->talpha = true;
}
}
}
texr.talpha = texres->talpha;
if (tex->imaflag & TEX_IMAROT) {
fy = texvec[0];
fx = texvec[1];
}
else {
fx = texvec[0];
fy = texvec[1];
}
/* pixel coordinates */
minx = min_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
maxx = max_fff(dxt[0], dyt[0], dxt[0] + dyt[0]);
miny = min_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
maxy = max_fff(dxt[1], dyt[1], dxt[1] + dyt[1]);
/* tex_sharper has been removed */
minx = (maxx - minx) / 2.0f;
miny = (maxy - miny) / 2.0f;
if (tex->imaflag & TEX_FILTER_MIN) {
/* Make sure the filtersize is minimal in pixels
* (normal, ref map can have miniature pixel dx/dy). */
float addval = (0.5f * tex->filtersize) / float(std::min(ibuf->x, ibuf->y));
if (addval > minx) {
minx = addval;
}
if (addval > miny) {
miny = addval;
}
}
else if (tex->filtersize != 1.0f) {
minx *= tex->filtersize;
miny *= tex->filtersize;
dxt[0] *= tex->filtersize;
dxt[1] *= tex->filtersize;
dyt[0] *= tex->filtersize;
dyt[1] *= tex->filtersize;
}
if (tex->imaflag & TEX_IMAROT) {
std::swap(minx, miny);
}
if (minx > 0.25f) {
minx = 0.25f;
}
else if (minx < 0.00001f) {
minx = 0.00001f; /* side faces of unit-cube */
}
if (miny > 0.25f) {
miny = 0.25f;
}
else if (miny < 0.00001f) {
miny = 0.00001f;
}
/* repeat and clip */
imaprepeat = (tex->extend == TEX_REPEAT);
imapextend = (tex->extend == TEX_EXTEND);
if (tex->extend == TEX_REPEAT) {
if (tex->flag & (TEX_REPEAT_XMIR | TEX_REPEAT_YMIR)) {
imaprepeat = 0;
imapextend = 1;
}
}
if (tex->extend == TEX_CHECKER) {
int xs, ys, xs1, ys1, xs2, ys2, boundary;
xs = int(floor(fx));
ys = int(floor(fy));
/* both checkers available, no boundary exceptions, checkerdist will eat aliasing */
if ((tex->flag & TEX_CHECKER_ODD) && (tex->flag & TEX_CHECKER_EVEN)) {
fx -= xs;
fy -= ys;
}
else if ((tex->flag & TEX_CHECKER_ODD) == 0 && (tex->flag & TEX_CHECKER_EVEN) == 0) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
else {
xs1 = int(floor(fx - minx));
ys1 = int(floor(fy - miny));
xs2 = int(floor(fx + minx));
ys2 = int(floor(fy + miny));
boundary = (xs1 != xs2) || (ys1 != ys2);
if (boundary == 0) {
if ((tex->flag & TEX_CHECKER_ODD) == 0) {
if ((xs + ys) & 1) {
/* pass */
}
else {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
if ((tex->flag & TEX_CHECKER_EVEN) == 0) {
if ((xs + ys) & 1) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
fx -= xs;
fy -= ys;
}
else {
if (tex->flag & TEX_CHECKER_ODD) {
if ((xs1 + ys) & 1) {
fx -= xs2;
}
else {
fx -= xs1;
}
if ((ys1 + xs) & 1) {
fy -= ys2;
}
else {
fy -= ys1;
}
}
if (tex->flag & TEX_CHECKER_EVEN) {
if ((xs1 + ys) & 1) {
fx -= xs1;
}
else {
fx -= xs2;
}
if ((ys1 + xs) & 1) {
fy -= ys1;
}
else {
fy -= ys2;
}
}
}
}
/* scale around center, (0.5, 0.5) */
if (tex->checkerdist < 1.0f) {
fx = (fx - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
fy = (fy - 0.5f) / (1.0f - tex->checkerdist) + 0.5f;
minx /= (1.0f - tex->checkerdist);
miny /= (1.0f - tex->checkerdist);
}
}
if (tex->extend == TEX_CLIPCUBE) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f ||
texvec[2] < -1.0f || texvec[2] > 1.0f)
{
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else if (ELEM(tex->extend, TEX_CLIP, TEX_CHECKER)) {
if (fx + minx < 0.0f || fy + miny < 0.0f || fx - minx > 1.0f || fy - miny > 1.0f) {
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
return retval;
}
}
else {
if (imapextend) {
if (fx > 1.0f) {
fx = 1.0f;
}
else if (fx < 0.0f) {
fx = 0.0f;
}
}
else {
if (fx > 1.0f) {
fx -= int(fx);
}
else if (fx < 0.0f) {
fx += 1 - int(fx);
}
}
if (imapextend) {
if (fy > 1.0f) {
fy = 1.0f;
}
else if (fy < 0.0f) {
fy = 0.0f;
}
}
else {
if (fy > 1.0f) {
fy -= int(fy);
}
else if (fy < 0.0f) {
fy += 1 - int(fy);
}
}
}
/* Choice: */
if (tex->imaflag & TEX_MIPMAP) {
ImBuf *previbuf, *curibuf;
dx = minx;
dy = miny;
maxd = max_ff(dx, dy);
if (maxd > 0.5f) {
maxd = 0.5f;
}
pixsize = 1.0f / float(std::min(ibuf->x, ibuf->y));
curmap = 0;
previbuf = curibuf = ibuf;
while (curmap < IMB_MIPMAP_LEVELS && ibuf->mipmap[curmap]) {
if (maxd < pixsize) {
break;
}
previbuf = curibuf;
curibuf = ibuf->mipmap[curmap];
pixsize = 1.0f / float(std::min(curibuf->x, curibuf->y));
curmap++;
}
if (previbuf != curibuf || (tex->imaflag & TEX_INTERPOL)) {
/* sample at least 1 pixel */
if (minx < 0.5f / ibuf->x) {
minx = 0.5f / ibuf->x;
}
if (miny < 0.5f / ibuf->y) {
miny = 0.5f / ibuf->y;
}
}
maxx = fx + minx;
minx = fx - minx;
maxy = fy + miny;
miny = fy - miny;
boxsample(curibuf, minx, miny, maxx, maxy, texres, imaprepeat, imapextend);
if (previbuf != curibuf) { /* interpolate */
boxsample(previbuf, minx, miny, maxx, maxy, &texr, imaprepeat, imapextend);
fx = 2.0f * (pixsize - maxd) / pixsize;
if (fx >= 1.0f) {
texres->trgba[3] = texr.trgba[3];
texres->trgba[2] = texr.trgba[2];
texres->trgba[1] = texr.trgba[1];
texres->trgba[0] = texr.trgba[0];
}
else {
fy = 1.0f - fx;
texres->trgba[2] = fy * texres->trgba[2] + fx * texr.trgba[2];
texres->trgba[1] = fy * texres->trgba[1] + fx * texr.trgba[1];
texres->trgba[0] = fy * texres->trgba[0] + fx * texr.trgba[0];
texres->trgba[3] = fy * texres->trgba[3] + fx * texr.trgba[3];
}
}
}
else {
const int intpol = tex->imaflag & TEX_INTERPOL;
if (intpol) {
/* sample 1 pixel minimum */
if (minx < 0.5f / ibuf->x) {
minx = 0.5f / ibuf->x;
}
if (miny < 0.5f / ibuf->y) {
miny = 0.5f / ibuf->y;
}
}
boxsample(ibuf, fx - minx, fy - miny, fx + minx, fy + miny, texres, imaprepeat, imapextend);
}
if (tex->imaflag & TEX_CALCALPHA) {
texres->trgba[3] = texres->tin = texres->trgba[3] *
max_fff(texres->trgba[0], texres->trgba[1], texres->trgba[2]);
}
else {
texres->tin = texres->trgba[3];
}
if (tex->flag & TEX_NEGALPHA) {
texres->trgba[3] = 1.0f - texres->trgba[3];
}
/* de-pre-multiply, this is being pre-multiplied in shade_input_do_shade() */
/* do not de-pre-multiply for generated alpha, it is already in straight */
if (texres->trgba[3] != 1.0f && texres->trgba[3] > 1e-4f && !(tex->imaflag & TEX_CALCALPHA)) {
mul_v3_fl(texres->trgba, 1.0f / texres->trgba[3]);
}
if (ima) {
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
BRICONTRGB;
return retval;
}
void image_sample(
Image *ima, float fx, float fy, float dx, float dy, float result[4], ImagePool *pool)
{
TexResult texres;
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(ima, nullptr, pool);
if (UNLIKELY(ibuf == nullptr)) {
zero_v4(result);
return;
}
texres.talpha = true; /* boxsample expects to be initialized */
boxsample(ibuf, fx, fy, fx + dx, fy + dy, &texres, 0, 1);
copy_v4_v4(result, texres.trgba);
ima->flag |= IMA_USED_FOR_RENDER;
BKE_image_pool_release_ibuf(ima, ibuf, pool);
}
void ibuf_sample(ImBuf *ibuf, float fx, float fy, float dx, float dy, float result[4])
{
TexResult texres = {0};
afdata_t AFD;
AFD.dxt[0] = dx;
AFD.dxt[1] = dx;
AFD.dyt[0] = dy;
AFD.dyt[1] = dy;
// copy_v2_v2(AFD.dxt, dx);
// copy_v2_v2(AFD.dyt, dy);
AFD.intpol = 1;
AFD.extflag = TXC_EXTD;
ewa_eval(&texres, ibuf, fx, fy, &AFD);
copy_v4_v4(result, texres.trgba);
}