Files
test2/source/blender/blenkernel/intern/implicit.c

2426 lines
65 KiB
C

/* implicit.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "MEM_guardedalloc.h"
/* types */
#include "DNA_curve_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_cloth_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_lattice_types.h"
#include "DNA_scene_types.h"
#include "DNA_modifier_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_threads.h"
#include "BKE_collisions.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_object.h"
#include "BKE_cloth.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_global.h"
#include "BIF_editdeform.h"
#ifdef _WIN32
#include <windows.h>
static LARGE_INTEGER _itstart, _itend;
static LARGE_INTEGER ifreq;
void itstart(void)
{
static int first = 1;
if(first) {
QueryPerformanceFrequency(&ifreq);
first = 0;
}
QueryPerformanceCounter(&_itstart);
}
void itend(void)
{
QueryPerformanceCounter(&_itend);
}
double itval()
{
return ((double)_itend.QuadPart -
(double)_itstart.QuadPart)/((double)ifreq.QuadPart);
}
#else
#include <sys/time.h>
// intrinsics need better compile flag checking
// #include <xmmintrin.h>
// #include <pmmintrin.h>
// #include <pthread.h>
static struct timeval _itstart, _itend;
static struct timezone itz;
void itstart(void)
{
gettimeofday(&_itstart, &itz);
}
void itend(void)
{
gettimeofday(&_itend,&itz);
}
double itval()
{
double t1, t2;
t1 = (double)_itstart.tv_sec + (double)_itstart.tv_usec/(1000*1000);
t2 = (double)_itend.tv_sec + (double)_itend.tv_usec/(1000*1000);
return t2-t1;
}
#endif
/*
#define C99
#ifdef C99
#defineDO_INLINE inline
#else
#defineDO_INLINE static
#endif
*/
struct Cloth;
//////////////////////////////////////////
/* fast vector / matrix library, enhancements are welcome :) -dg */
/////////////////////////////////////////
/* DEFINITIONS */
typedef float lfVector[3];
typedef struct fmatrix3x3 {
float m[3][3]; /* 4x4 matrix */
unsigned int c,r; /* column and row number */
int pinned; /* is this vertex allowed to move? */
float n1,n2,n3; /* three normal vectors for collision constrains */
unsigned int vcount; /* vertex count */
unsigned int scount; /* spring count */
} fmatrix3x3;
///////////////////////////
// float[3] vector
///////////////////////////
/* simple vector code */
/* STATUS: verified */
DO_INLINE void mul_fvector_S(float to[3], float from[3], float scalar)
{
to[0] = from[0] * scalar;
to[1] = from[1] * scalar;
to[2] = from[2] * scalar;
}
/* simple cross product */
/* STATUS: verified */
DO_INLINE void cross_fvector(float to[3], float vectorA[3], float vectorB[3])
{
to[0] = vectorA[1] * vectorB[2] - vectorA[2] * vectorB[1];
to[1] = vectorA[2] * vectorB[0] - vectorA[0] * vectorB[2];
to[2] = vectorA[0] * vectorB[1] - vectorA[1] * vectorB[0];
}
/* simple v^T * v product ("outer product") */
/* STATUS: HAS TO BE verified (*should* work) */
DO_INLINE void mul_fvectorT_fvector(float to[3][3], float vectorA[3], float vectorB[3])
{
mul_fvector_S(to[0], vectorB, vectorA[0]);
mul_fvector_S(to[1], vectorB, vectorA[1]);
mul_fvector_S(to[2], vectorB, vectorA[2]);
}
/* simple v^T * v product with scalar ("outer product") */
/* STATUS: HAS TO BE verified (*should* work) */
DO_INLINE void mul_fvectorT_fvectorS(float to[3][3], float vectorA[3], float vectorB[3], float aS)
{
mul_fvector_S(to[0], vectorB, vectorA[0]* aS);
mul_fvector_S(to[1], vectorB, vectorA[1]* aS);
mul_fvector_S(to[2], vectorB, vectorA[2]* aS);
}
/* printf vector[3] on console: for debug output */
void print_fvector(float m3[3])
{
printf("%f\n%f\n%f\n\n",m3[0],m3[1],m3[2]);
}
///////////////////////////
// long float vector float (*)[3]
///////////////////////////
/* print long vector on console: for debug output */
DO_INLINE void print_lfvector(float (*fLongVector)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
print_fvector(fLongVector[i]);
}
}
/* create long vector */
DO_INLINE lfVector *create_lfvector(unsigned int verts)
{
// TODO: check if memory allocation was successfull */
return (lfVector *)MEM_callocN (verts * sizeof(lfVector), "cloth_implicit_alloc_vector");
// return (lfVector *)cloth_aligned_malloc(&MEMORY_BASE, verts * sizeof(lfVector));
}
/* delete long vector */
DO_INLINE void del_lfvector(float (*fLongVector)[3])
{
if (fLongVector != NULL)
{
MEM_freeN (fLongVector);
// cloth_aligned_free(&MEMORY_BASE, fLongVector);
}
}
/* copy long vector */
DO_INLINE void cp_lfvector(float (*to)[3], float (*from)[3], unsigned int verts)
{
memcpy(to, from, verts * sizeof(lfVector));
}
/* init long vector with float[3] */
DO_INLINE void init_lfvector(float (*fLongVector)[3], float vector[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECCOPY(fLongVector[i], vector);
}
}
/* zero long vector with float[3] */
DO_INLINE void zero_lfvector(float (*to)[3], unsigned int verts)
{
memset(to, 0.0f, verts * sizeof(lfVector));
}
/* multiply long vector with scalar*/
DO_INLINE void mul_lfvectorS(float (*to)[3], float (*fLongVector)[3], float scalar, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
mul_fvector_S(to[i], fLongVector[i], scalar);
}
}
/* multiply long vector with scalar*/
/* A -= B * float */
DO_INLINE void submul_lfvectorS(float (*to)[3], float (*fLongVector)[3], float scalar, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUBMUL(to[i], fLongVector[i], scalar);
}
}
/* dot product for big vector */
DO_INLINE float dot_lfvector(float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
unsigned int i = 0;
float temp = 0.0;
// schedule(guided, 2)
#pragma omp parallel for reduction(+: temp)
for(i = 0; i < verts; i++)
{
temp += INPR(fLongVectorA[i], fLongVectorB[i]);
}
return temp;
}
/* A = B + C --> for big vector */
DO_INLINE void add_lfvector_lfvector(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADD(to[i], fLongVectorA[i], fLongVectorB[i]);
}
}
/* A = B + C * float --> for big vector */
DO_INLINE void add_lfvector_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADDS(to[i], fLongVectorA[i], fLongVectorB[i], bS);
}
}
/* A = B * float + C * float --> for big vector */
DO_INLINE void add_lfvectorS_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float aS, float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADDSS(to[i], fLongVectorA[i], aS, fLongVectorB[i], bS);
}
}
/* A = B - C * float --> for big vector */
DO_INLINE void sub_lfvector_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUBS(to[i], fLongVectorA[i], fLongVectorB[i], bS);
}
}
/* A = B - C --> for big vector */
DO_INLINE void sub_lfvector_lfvector(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUB(to[i], fLongVectorA[i], fLongVectorB[i]);
}
}
///////////////////////////
// 4x4 matrix
///////////////////////////
/* printf 4x4 matrix on console: for debug output */
void print_fmatrix(float m3[3][3])
{
printf("%f\t%f\t%f\n",m3[0][0],m3[0][1],m3[0][2]);
printf("%f\t%f\t%f\n",m3[1][0],m3[1][1],m3[1][2]);
printf("%f\t%f\t%f\n\n",m3[2][0],m3[2][1],m3[2][2]);
}
/* copy 4x4 matrix */
DO_INLINE void cp_fmatrix(float to[3][3], float from[3][3])
{
// memcpy(to, from, sizeof (float) * 9);
VECCOPY(to[0], from[0]);
VECCOPY(to[1], from[1]);
VECCOPY(to[2], from[2]);
}
/* calculate determinant of 4x4 matrix */
DO_INLINE float det_fmatrix(float m[3][3])
{
return m[0][0]*m[1][1]*m[2][2] + m[1][0]*m[2][1]*m[0][2] + m[0][1]*m[1][2]*m[2][0]
-m[0][0]*m[1][2]*m[2][1] - m[0][1]*m[1][0]*m[2][2] - m[2][0]*m[1][1]*m[0][2];
}
DO_INLINE void inverse_fmatrix(float to[3][3], float from[3][3])
{
unsigned int i, j;
float d;
if((d=det_fmatrix(from))==0)
{
printf("can't build inverse");
exit(0);
}
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
int i1=(i+1)%3;
int i2=(i+2)%3;
int j1=(j+1)%3;
int j2=(j+2)%3;
// reverse indexs i&j to take transpose
to[j][i] = (from[i1][j1]*from[i2][j2]-from[i1][j2]*from[i2][j1])/d;
/*
if(i==j)
to[i][j] = 1.0f / from[i][j];
else
to[i][j] = 0;
*/
}
}
}
/* 4x4 matrix multiplied by a scalar */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_S(float matrix[3][3], float scalar)
{
mul_fvector_S(matrix[0], matrix[0],scalar);
mul_fvector_S(matrix[1], matrix[1],scalar);
mul_fvector_S(matrix[2], matrix[2],scalar);
}
/* a vector multiplied by a 4x4 matrix */
/* STATUS: verified */
DO_INLINE void mul_fvector_fmatrix(float *to, float *from, float matrix[3][3])
{
to[0] = matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] = matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] = matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 4x4 matrix multiplied by a vector */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_fvector(float *to, float matrix[3][3], float *from)
{
to[0] = INPR(matrix[0],from);
to[1] = INPR(matrix[1],from);
to[2] = INPR(matrix[2],from);
}
/* 4x4 matrix multiplied by a 4x4 matrix */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
mul_fvector_fmatrix(to[0], matrixA[0],matrixB);
mul_fvector_fmatrix(to[1], matrixA[1],matrixB);
mul_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* 4x4 matrix addition with 4x4 matrix */
DO_INLINE void add_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADD(to[0], matrixA[0], matrixB[0]);
VECADD(to[1], matrixA[1], matrixB[1]);
VECADD(to[2], matrixA[2], matrixB[2]);
}
/* 4x4 matrix add-addition with 4x4 matrix */
DO_INLINE void addadd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADDADD(to[0], matrixA[0], matrixB[0]);
VECADDADD(to[1], matrixA[1], matrixB[1]);
VECADDADD(to[2], matrixA[2], matrixB[2]);
}
/* 4x4 matrix sub-addition with 4x4 matrix */
DO_INLINE void addsub_fmatrixS_fmatrixS(float to[3][3], float matrixA[3][3], float aS, float matrixB[3][3], float bS)
{
VECADDSUBSS(to[0], matrixA[0], aS, matrixB[0], bS);
VECADDSUBSS(to[1], matrixA[1], aS, matrixB[1], bS);
VECADDSUBSS(to[2], matrixA[2], aS, matrixB[2], bS);
}
/* A -= B + C (4x4 matrix sub-addition with 4x4 matrix) */
DO_INLINE void subadd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECSUBADD(to[0], matrixA[0], matrixB[0]);
VECSUBADD(to[1], matrixA[1], matrixB[1]);
VECSUBADD(to[2], matrixA[2], matrixB[2]);
}
/* A -= B*x + C*y (4x4 matrix sub-addition with 4x4 matrix) */
DO_INLINE void subadd_fmatrixS_fmatrixS(float to[3][3], float matrixA[3][3], float aS, float matrixB[3][3], float bS)
{
VECSUBADDSS(to[0], matrixA[0], aS, matrixB[0], bS);
VECSUBADDSS(to[1], matrixA[1], aS, matrixB[1], bS);
VECSUBADDSS(to[2], matrixA[2], aS, matrixB[2], bS);
}
/* A = B - C (4x4 matrix subtraction with 4x4 matrix) */
DO_INLINE void sub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECSUB(to[0], matrixA[0], matrixB[0]);
VECSUB(to[1], matrixA[1], matrixB[1]);
VECSUB(to[2], matrixA[2], matrixB[2]);
}
/* A += B - C (4x4 matrix add-subtraction with 4x4 matrix) */
DO_INLINE void addsub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADDSUB(to[0], matrixA[0], matrixB[0]);
VECADDSUB(to[1], matrixA[1], matrixB[1]);
VECADDSUB(to[2], matrixA[2], matrixB[2]);
}
/////////////////////////////////////////////////////////////////
// special functions
/////////////////////////////////////////////////////////////////
/* a vector multiplied and added to/by a 4x4 matrix */
DO_INLINE void muladd_fvector_fmatrix(float to[3], float from[3], float matrix[3][3])
{
to[0] += matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] += matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] += matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 4x4 matrix multiplied and added to/by a 4x4 matrix and added to another 4x4 matrix */
DO_INLINE void muladd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
muladd_fvector_fmatrix(to[0], matrixA[0],matrixB);
muladd_fvector_fmatrix(to[1], matrixA[1],matrixB);
muladd_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* a vector multiplied and sub'd to/by a 4x4 matrix */
DO_INLINE void mulsub_fvector_fmatrix(float to[3], float from[3], float matrix[3][3])
{
to[0] -= matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] -= matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] -= matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 4x4 matrix multiplied and sub'd to/by a 4x4 matrix and added to another 4x4 matrix */
DO_INLINE void mulsub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
mulsub_fvector_fmatrix(to[0], matrixA[0],matrixB);
mulsub_fvector_fmatrix(to[1], matrixA[1],matrixB);
mulsub_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* 4x4 matrix multiplied+added by a vector */
/* STATUS: verified */
DO_INLINE void muladd_fmatrix_fvector(float to[3], float matrix[3][3], float from[3])
{
to[0] += INPR(matrix[0],from);
to[1] += INPR(matrix[1],from);
to[2] += INPR(matrix[2],from);
}
/* 4x4 matrix multiplied+sub'ed by a vector */
DO_INLINE void mulsub_fmatrix_fvector(float to[3], float matrix[3][3], float from[3])
{
to[0] -= INPR(matrix[0],from);
to[1] -= INPR(matrix[1],from);
to[2] -= INPR(matrix[2],from);
}
/////////////////////////////////////////////////////////////////
///////////////////////////
// SPARSE SYMMETRIC big matrix with 4x4 matrix entries
///////////////////////////
/* printf a big matrix on console: for debug output */
void print_bfmatrix(fmatrix3x3 *m3)
{
unsigned int i = 0;
for(i = 0; i < m3[0].vcount + m3[0].scount; i++)
{
print_fmatrix(m3[i].m);
}
}
/* create big matrix */
DO_INLINE fmatrix3x3 *create_bfmatrix(unsigned int verts, unsigned int springs)
{
// TODO: check if memory allocation was successfull */
fmatrix3x3 *temp = (fmatrix3x3 *)MEM_callocN (sizeof (fmatrix3x3) * (verts + springs), "cloth_implicit_alloc_matrix");
temp[0].vcount = verts;
temp[0].scount = springs;
return temp;
}
/* delete big matrix */
DO_INLINE void del_bfmatrix(fmatrix3x3 *matrix)
{
if (matrix != NULL)
{
MEM_freeN (matrix);
}
}
/* copy big matrix */
DO_INLINE void cp_bfmatrix(fmatrix3x3 *to, fmatrix3x3 *from)
{
// TODO bounds checking
memcpy(to, from, sizeof(fmatrix3x3) * (from[0].vcount+from[0].scount) );
}
/* init the diagonal of big matrix */
// slow in parallel
DO_INLINE void initdiag_bfmatrix(fmatrix3x3 *matrix, float m3[3][3])
{
unsigned int i,j;
float tmatrix[3][3] = {{0,0,0},{0,0,0},{0,0,0}};
for(i = 0; i < matrix[0].vcount; i++)
{
cp_fmatrix(matrix[i].m, m3);
}
for(j = matrix[0].vcount; j < matrix[0].vcount+matrix[0].scount; j++)
{
cp_fmatrix(matrix[j].m, tmatrix);
}
}
/* init big matrix */
DO_INLINE void init_bfmatrix(fmatrix3x3 *matrix, float m3[3][3])
{
unsigned int i;
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
cp_fmatrix(matrix[i].m, m3);
}
}
/* multiply big matrix with scalar*/
DO_INLINE void mul_bfmatrix_S(fmatrix3x3 *matrix, float scalar)
{
unsigned int i = 0;
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
mul_fmatrix_S(matrix[i].m, scalar);
}
}
/* SPARSE SYMMETRIC multiply big matrix with long vector*/
/* STATUS: verified */
DO_INLINE void mul_bfmatrix_lfvector( float (*to)[3], fmatrix3x3 *from, float (*fLongVector)[3])
{
unsigned int i = 0;
zero_lfvector(to, from[0].vcount);
/* process diagonal elements */
for(i = 0; i < from[0].vcount; i++)
{
muladd_fmatrix_fvector(to[from[i].r], from[i].m, fLongVector[from[i].c]);
}
/* process off-diagonal entries (every off-diagonal entry needs to be symmetric) */
// TODO: pragma below is wrong, correct it!
// #pragma omp parallel for shared(to,from, fLongVector) private(i)
for(i = from[0].vcount; i < from[0].vcount+from[0].scount; i++)
{
// muladd_fmatrix_fvector(to[from[i].c], from[i].m, fLongVector[from[i].r]);
to[from[i].c][0] += INPR(from[i].m[0],fLongVector[from[i].r]);
to[from[i].c][1] += INPR(from[i].m[1],fLongVector[from[i].r]);
to[from[i].c][2] += INPR(from[i].m[2],fLongVector[from[i].r]);
// muladd_fmatrix_fvector(to[from[i].r], from[i].m, fLongVector[from[i].c]);
to[from[i].r][0] += INPR(from[i].m[0],fLongVector[from[i].c]);
to[from[i].r][1] += INPR(from[i].m[1],fLongVector[from[i].c]);
to[from[i].r][2] += INPR(from[i].m[2],fLongVector[from[i].c]);
}
}
/* SPARSE SYMMETRIC add big matrix with big matrix: A = B + C*/
DO_INLINE void add_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
add_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC add big matrix with big matrix: A += B + C */
DO_INLINE void addadd_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
addadd_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC subadd big matrix with big matrix: A -= B + C */
DO_INLINE void subadd_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
subadd_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* A = B - C (SPARSE SYMMETRIC sub big matrix with big matrix) */
DO_INLINE void sub_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
sub_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC sub big matrix with big matrix S (special constraint matrix with limited entries) */
DO_INLINE void sub_bfmatrix_Smatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount; i++)
{
sub_fmatrix_fmatrix(to[matrix[i].c].m, from[matrix[i].c].m, matrix[i].m);
}
}
/* A += B - C (SPARSE SYMMETRIC addsub big matrix with big matrix) */
DO_INLINE void addsub_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
addsub_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC sub big matrix with big matrix*/
/* A -= B * float + C * float --> for big matrix */
/* VERIFIED */
DO_INLINE void subadd_bfmatrixS_bfmatrixS( fmatrix3x3 *to, fmatrix3x3 *from, float aS, fmatrix3x3 *matrix, float bS)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
subadd_fmatrixS_fmatrixS(to[i].m, from[i].m, aS, matrix[i].m, bS);
}
}
///////////////////////////////////////////////////////////////////
// simulator start
///////////////////////////////////////////////////////////////////
static float I[3][3] = {{1,0,0},{0,1,0},{0,0,1}};
static float ZERO[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};
typedef struct Implicit_Data
{
lfVector *X, *V, *Xnew, *Vnew, *olddV, *F, *B, *dV, *z;
fmatrix3x3 *A, *dFdV, *dFdX, *S, *P, *Pinv, *bigI;
} Implicit_Data;
int implicit_init (Object *ob, ClothModifierData *clmd)
{
unsigned int i = 0;
unsigned int pinned = 0;
Cloth *cloth = NULL;
ClothVertex *verts = NULL;
ClothSpring *spring = NULL;
Implicit_Data *id = NULL;
LinkNode *search = NULL;
// init memory guard
// MEMORY_BASE.first = MEMORY_BASE.last = NULL;
cloth = (Cloth *)clmd->clothObject;
verts = cloth->verts;
// create implicit base
id = (Implicit_Data *)MEM_callocN (sizeof(Implicit_Data), "implicit vecmat");
cloth->implicit = id;
/* process diagonal elements */
id->A = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->dFdV = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->dFdX = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->S = create_bfmatrix(cloth->numverts, 0);
id->Pinv = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->P = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->bigI = create_bfmatrix(cloth->numverts, cloth->numsprings); // TODO 0 springs
id->X = create_lfvector(cloth->numverts);
id->Xnew = create_lfvector(cloth->numverts);
id->V = create_lfvector(cloth->numverts);
id->Vnew = create_lfvector(cloth->numverts);
id->olddV = create_lfvector(cloth->numverts);
zero_lfvector(id->olddV, cloth->numverts);
id->F = create_lfvector(cloth->numverts);
id->B = create_lfvector(cloth->numverts);
id->dV = create_lfvector(cloth->numverts);
id->z = create_lfvector(cloth->numverts);
for(i=0;i<cloth->numverts;i++)
{
id->A[i].r = id->A[i].c = id->dFdV[i].r = id->dFdV[i].c = id->dFdX[i].r = id->dFdX[i].c = id->P[i].c = id->P[i].r = id->Pinv[i].c = id->Pinv[i].r = id->bigI[i].c = id->bigI[i].r = i;
if(verts [i].goal >= SOFTGOALSNAP)
{
id->S[pinned].pinned = 1;
id->S[pinned].c = id->S[pinned].r = i;
pinned++;
}
}
// S is special and needs specific vcount and scount
id->S[0].vcount = pinned; id->S[0].scount = 0;
// init springs */
search = cloth->springs;
for(i=0;i<cloth->numsprings;i++)
{
spring = search->link;
// dFdV_start[i].r = big_I[i].r = big_zero[i].r =
id->A[i+cloth->numverts].r = id->dFdV[i+cloth->numverts].r = id->dFdX[i+cloth->numverts].r =
id->P[i+cloth->numverts].r = id->Pinv[i+cloth->numverts].r = id->bigI[i+cloth->numverts].r = spring->ij;
// dFdV_start[i].c = big_I[i].c = big_zero[i].c =
id->A[i+cloth->numverts].c = id->dFdV[i+cloth->numverts].c = id->dFdX[i+cloth->numverts].c =
id->P[i+cloth->numverts].c = id->Pinv[i+cloth->numverts].c = id->bigI[i+cloth->numverts].c = spring->kl;
spring->matrix_index = i + cloth->numverts;
search = search->next;
}
for(i = 0; i < cloth->numverts; i++)
{
VECCOPY(id->X[i], cloth->x[i]);
}
return 1;
}
int implicit_free (ClothModifierData *clmd)
{
Implicit_Data *id;
Cloth *cloth;
cloth = (Cloth *)clmd->clothObject;
if(cloth)
{
id = cloth->implicit;
if(id)
{
del_bfmatrix(id->A);
del_bfmatrix(id->dFdV);
del_bfmatrix(id->dFdX);
del_bfmatrix(id->S);
del_bfmatrix(id->P);
del_bfmatrix(id->Pinv);
del_bfmatrix(id->bigI);
del_lfvector(id->X);
del_lfvector(id->Xnew);
del_lfvector(id->V);
del_lfvector(id->Vnew);
del_lfvector(id->olddV);
del_lfvector(id->F);
del_lfvector(id->B);
del_lfvector(id->dV);
del_lfvector(id->z);
MEM_freeN(id);
}
}
return 1;
}
DO_INLINE float fb(float length, float L)
{
float x = length/L;
return (-11.541f*pow(x,4)+34.193f*pow(x,3)-39.083f*pow(x,2)+23.116f*x-9.713f);
}
DO_INLINE float fbderiv(float length, float L)
{
float x = length/L;
return (-46.164f*pow(x,3)+102.579f*pow(x,2)-78.166f*x+23.116f);
}
DO_INLINE float fbstar(float length, float L, float kb, float cb)
{
float tempfb = kb * fb(length, L);
float fbstar = cb * (length - L);
if(tempfb < fbstar)
return fbstar;
else
return tempfb;
}
DO_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
{
float tempfb = kb * fb(length, L);
float fbstar = cb * (length - L);
if(tempfb < fbstar)
{
return cb;
}
else
{
return kb * fbderiv(length, L);
}
}
DO_INLINE void filter(lfVector *V, fmatrix3x3 *S)
{
unsigned int i=0;
for(i=0;i<S[0].vcount;i++)
{
mul_fvector_fmatrix(V[S[i].r], V[S[i].r], S[i].m);
}
}
// block diagonalizer
void BuildPPinv(fmatrix3x3 *lA, fmatrix3x3 *P, fmatrix3x3 *Pinv, fmatrix3x3 *S, fmatrix3x3 *bigI)
{
unsigned int i=0;
// Take only the diagonal blocks of A
for(i=0;i<lA[0].vcount;i++)
{
cp_fmatrix(P[i].m, lA[i].m);
}
/*
// SpecialBigSMul(P, S, P);
for(i=0;i<S[0].vcount;i++)
{
mul_fmatrix_fmatrix(P[S[i].r].m, S[i].m, P[S[i].r].m);
}
add_bfmatrix_bfmatrix(P, P, bigI);
*/
for(i=0;i<lA[0].vcount;i++)
{
inverse_fmatrix(Pinv[i].m, P[i].m);
}
}
int cg_filtered(lfVector *ldV, fmatrix3x3 *lA, lfVector *lB, lfVector *z, fmatrix3x3 *S)
{
// Solves for unknown X in equation AX=B
unsigned int conjgrad_loopcount=0, conjgrad_looplimit=100;
float conjgrad_epsilon=0.0001f, conjgrad_lasterror=0;
lfVector *q, *d, *tmp, *r;
float s, starget, a, s_prev;
unsigned int numverts = lA[0].vcount;
q = create_lfvector(numverts);
d = create_lfvector(numverts);
tmp = create_lfvector(numverts);
r = create_lfvector(numverts);
// zero_lfvector(ldV, CLOTHPARTICLES);
filter(ldV, S);
add_lfvector_lfvector(ldV, ldV, z, numverts);
// r = B - Mul(tmp,A,X); // just use B if X known to be zero
cp_lfvector(r, lB, numverts);
mul_bfmatrix_lfvector(tmp, lA, ldV);
sub_lfvector_lfvector(r, r, tmp, numverts);
filter(r,S);
cp_lfvector(d, r, numverts);
s = dot_lfvector(r, r, numverts);
starget = s * sqrt(conjgrad_epsilon);
while((s>starget && conjgrad_loopcount < conjgrad_looplimit))
{
// Mul(q,A,d); // q = A*d;
mul_bfmatrix_lfvector(q, lA, d);
filter(q,S);
a = s/dot_lfvector(d, q, numverts);
// X = X + d*a;
add_lfvector_lfvectorS(ldV, ldV, d, a, numverts);
// r = r - q*a;
sub_lfvector_lfvectorS(r, r, q, a, numverts);
s_prev = s;
s = dot_lfvector(r, r, numverts);
//d = r+d*(s/s_prev);
add_lfvector_lfvectorS(d, r, d, (s/s_prev), numverts);
filter(d,S);
conjgrad_loopcount++;
}
conjgrad_lasterror = s;
del_lfvector(q);
del_lfvector(d);
del_lfvector(tmp);
del_lfvector(r);
// printf("W/O conjgrad_loopcount: %d\n", conjgrad_loopcount);
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
/*
int cg_filtered_pre(lfVector *ldV, fmatrix3x3 *lA, lfVector *lB, lfVector *z, lfVector *X0, fmatrix3x3 *P, fmatrix3x3 *Pinv, float dt)
{
// Solves for unknown X in equation AX=B
unsigned int conjgrad_loopcount=0, conjgrad_looplimit=100;
float conjgrad_epsilon=0.0001f, conjgrad_lasterror=0;
lfVector *q, *c , *tmp, *r, *s, *filterX0, *p_fb, *bhat;
float delta0, deltanew, deltaold, alpha=0, epsilon_sqr;
unsigned int numverts = lA[0].vcount;
int i = 0;
q = create_lfvector(numverts);
c = create_lfvector(numverts);
tmp = create_lfvector(numverts);
r = create_lfvector(numverts);
s = create_lfvector(numverts);
filterX0 = create_lfvector(numverts);
p_fb = create_lfvector(numverts);
bhat = create_lfvector(numverts);
// SpecialBigSSub(bigI, S);
initdiag_bfmatrix(bigI, I);
sub_bfmatrix_Smatrix(bigI, bigI, S); // TODO
BuildPPinv(lA,P,Pinv,S, bigI);
//////////////////////////
// x = S*x0 + (I-S)*z
//////////////////////////
// filterX0 = X0 * 1.0f;
cp_lfvector(filterX0, X0, numverts);
// filter(filterX0,S);
filter(filterX0, S);
// X = filterX0 * 1.0f;
cp_lfvector(ldV, filterX0, numverts);
// X = X + Mul(tmp, bigI, z);
mul_bfmatrix_lfvector(tmp, bigI, z);
add_lfvector_lfvector(ldV, ldV, tmp, numverts);
//////////////////////////
//////////////////////////
// b_hat = S*(b-A*(I-S)*z)
//////////////////////////
// bhat = bigI * z;
mul_bfmatrix_lfvector(bhat, bigI, z);
// bhat = Mul(tmp, A, bhat);
mul_bfmatrix_lfvector(tmp, lA, bhat);
cp_lfvector(bhat, tmp, numverts);
// bhat = B - bhat;
sub_lfvector_lfvector(bhat, lB, bhat, numverts);
// cp_lfvector(bhat, lB, numverts);
filter(bhat,S);
//////////////////////////
//////////////////////////
// r = S*(b - A*x)
//////////////////////////
// r = B - Mul(tmp,A,X); // just use B if X known to be zero
mul_bfmatrix_lfvector(tmp, lA, ldV);
sub_lfvector_lfvector(r, lB, tmp, numverts);
// cp_lfvector(r, lB, numverts);
filter(r,S);
//////////////////////////
//////////////////////////
// (p) = c = S * P^-1 * r
//////////////////////////
// c = Pinv * r;
mul_bfmatrix_lfvector(c, Pinv, r);
filter(c,S);
//////////////////////////
//////////////////////////
// p_fb = P * bhat
// delta0 = dot(bhat, p_fb)
//////////////////////////
// p_fb = P*bhat;
mul_bfmatrix_lfvector(p_fb, P, bhat);
delta0 = dot_lfvector(bhat, p_fb, numverts);
//////////////////////////
//////////////////////////
// deltanew = dot(r,c)
//////////////////////////
deltanew = dot_lfvector(r, c, numverts);
//////////////////////////
epsilon_sqr = conjgrad_epsilon*conjgrad_epsilon; // paper mentiones dt * 0.01
while((deltanew>(epsilon_sqr*delta0))&& (conjgrad_loopcount++ < conjgrad_looplimit))
{
//////////////////////////
// (s) = q = S*A*c
//////////////////////////
// q = A*c;
mul_bfmatrix_lfvector(q, lA, c);
filter(q,S);
//////////////////////////
//////////////////////////
// alpha = deltanew / (c^T * q)
//////////////////////////
alpha = deltanew/dot_lfvector(c, q, numverts);
//////////////////////////
//X = X + c*alpha;
add_lfvector_lfvectorS(ldV, ldV, c, alpha, numverts);
//r = r - q*alpha;
sub_lfvector_lfvectorS(r, r, q, alpha, numverts);
//////////////////////////
// (h) = s = P^-1 * r
//////////////////////////
// s = Pinv * r;
mul_bfmatrix_lfvector(s, Pinv, r);
filter(s,S);
//////////////////////////
deltaold = deltanew;
// deltanew = dot(r,s);
deltanew = dot_lfvector(r, s, numverts);
//////////////////////////
// c = S * (s + (deltanew/deltaold)*c)
//////////////////////////
// c = s + c * (deltanew/deltaold);
add_lfvector_lfvectorS(c, s, c, (deltanew/deltaold), numverts);
filter(c,S);
//////////////////////////
}
conjgrad_lasterror = deltanew;
del_lfvector(q);
del_lfvector(c);
del_lfvector(tmp);
del_lfvector(r);
del_lfvector(s);
del_lfvector(filterX0);
del_lfvector(p_fb);
del_lfvector(bhat);
printf("Bconjgrad_loopcount: %d\n", conjgrad_loopcount);
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
*/
// outer product is NOT cross product!!!
DO_INLINE void dfdx_spring_type1(float to[3][3], float dir[3],float length,float L,float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
// return (outerprod(dir,dir)*k + (I - outerprod(dir,dir))*(k - ((k*L)/length)));
float temp[3][3];
mul_fvectorT_fvector(temp, dir, dir);
sub_fmatrix_fmatrix(to, I, temp);
mul_fmatrix_S(to, k* (1.0f-(L/length)));
mul_fmatrix_S(temp, k);
add_fmatrix_fmatrix(to, temp, to);
}
DO_INLINE void dfdx_spring_type2(float to[3][3], float dir[3],float length,float L,float k, float cb)
{
// return outerprod(dir,dir)*fbstar_jacobi(length, L, k, cb);
mul_fvectorT_fvectorS(to, dir, dir, fbstar_jacobi(length, L, k, cb));
}
DO_INLINE void dfdv_damp(float to[3][3], float dir[3], float damping)
{
// derivative of force wrt velocity.
// return outerprod(dir,dir) * damping;
mul_fvectorT_fvectorS(to, dir, dir, damping);
}
DO_INLINE void dfdx_spring(float to[3][3], float dir[3],float length,float L,float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
//return ( (I-outerprod(dir,dir))*Min(1.0f,rest/length) - I) * -k;
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
mul_fmatrix_S(to, (((L/length)> 1.0f) ? (1.0f): (L/length)));
sub_fmatrix_fmatrix(to, to, I);
mul_fmatrix_S(to, -k);
}
DO_INLINE void dfdx_damp(float to[3][3], float dir[3],float length,const float vel[3],float rest,float damping)
{
// inner spring damping vel is the relative velocity of the endpoints.
// return (I-outerprod(dir,dir)) * (-damping * -(dot(dir,vel)/Max(length,rest)));
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
mul_fmatrix_S(to, (-damping * -(INPR(dir,vel)/MAX2(length,rest))));
}
DO_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s, lfVector *lF, lfVector *X, lfVector *V, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX)
{
float extent[3];
float length = 0;
float dir[3] = {0,0,0};
float vel[3];
float k = 0.0f;
float L = s->restlen;
float cb = clmd->sim_parms.structural;
float nullf[3] = {0,0,0};
float stretch_force[3] = {0,0,0};
float bending_force[3] = {0,0,0};
float damping_force[3] = {0,0,0};
float nulldfdx[3][3]={ {0,0,0}, {0,0,0}, {0,0,0}};
Cloth *cloth = clmd->clothObject;
VECCOPY(s->f, nullf);
cp_fmatrix(s->dfdx, nulldfdx);
cp_fmatrix(s->dfdv, nulldfdx);
// calculate elonglation
VECSUB(extent, X[s->kl], X[s->ij]);
VECSUB(vel, V[s->kl], V[s->ij]);
length = sqrt(INPR(extent, extent));
s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
if(length > ABS(ALMOST_ZERO))
{
/*
if(length>L)
{
if((clmd->sim_parms.flags & CSIMSETT_FLAG_TEARING_ENABLED)
&& ((((length-L)*100.0f/L) > clmd->sim_parms.maxspringlen))) // cut spring!
{
s->flags |= CSPRING_FLAG_DEACTIVATE;
return;
}
}
*/
mul_fvector_S(dir, extent, 1.0f/length);
}
else
{
mul_fvector_S(dir, extent, 0.0f);
}
// calculate force of structural + shear springs
if(s->type != CLOTH_SPRING_TYPE_BENDING)
{
if(length > L) // only on elonglation
{
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms.structural;
mul_fvector_S(stretch_force, dir, (k*(length-L)));
VECADD(s->f, s->f, stretch_force);
// Ascher & Boxman, p.21: Damping only during elonglation
mul_fvector_S(damping_force, extent, clmd->sim_parms.Cdis * ((INPR(vel,extent)/length)));
VECADD(s->f, s->f, damping_force);
dfdx_spring_type1(s->dfdx, dir,length,L,k);
dfdv_damp(s->dfdv, dir,clmd->sim_parms.Cdis);
}
}
else // calculate force of bending springs
{
if(length < L)
{
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms.bending;
mul_fvector_S(bending_force, dir, fbstar(length, L, k, cb));
VECADD(s->f, s->f, bending_force);
dfdx_spring_type2(s->dfdx, dir,length,L,k, cb);
}
}
}
DO_INLINE void cloth_apply_spring_force(ClothModifierData *clmd, ClothSpring *s, lfVector *lF, lfVector *X, lfVector *V, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX)
{
if(s->flags & CLOTH_SPRING_FLAG_NEEDED)
{
if(s->type != CLOTH_SPRING_TYPE_BENDING)
{
sub_fmatrix_fmatrix(dFdV[s->ij].m, dFdV[s->ij].m, s->dfdv);
sub_fmatrix_fmatrix(dFdV[s->kl].m, dFdV[s->kl].m, s->dfdv);
add_fmatrix_fmatrix(dFdV[s->matrix_index].m, dFdV[s->matrix_index].m, s->dfdv);
}
VECADD(lF[s->ij], lF[s->ij], s->f);
VECSUB(lF[s->kl], lF[s->kl], s->f);
sub_fmatrix_fmatrix(dFdX[s->ij].m, dFdX[s->ij].m, s->dfdx);
sub_fmatrix_fmatrix(dFdX[s->kl].m, dFdX[s->kl].m, s->dfdx);
add_fmatrix_fmatrix(dFdX[s->matrix_index].m, dFdX[s->matrix_index].m, s->dfdx);
}
}
DO_INLINE void calculateTriangleNormal(float to[3], lfVector *X, MFace mface)
{
float v1[3], v2[3];
VECSUB(v1, X[mface.v2], X[mface.v1]);
VECSUB(v2, X[mface.v3], X[mface.v1]);
cross_fvector(to, v1, v2);
}
DO_INLINE void calculatQuadNormal(float to[3], lfVector *X, MFace mface)
{
float temp = CalcNormFloat4(X[mface.v1],X[mface.v2],X[mface.v3],X[mface.v4],to);
mul_fvector_S(to, to, temp);
}
void calculateWeightedVertexNormal(ClothModifierData *clmd, MFace *mfaces, float to[3], int index, lfVector *X)
{
float temp[3];
int i;
Cloth *cloth = clmd->clothObject;
for(i = 0; i < cloth->numfaces; i++)
{
// check if this triangle contains the selected vertex
if(mfaces[i].v1 == index || mfaces[i].v2 == index || mfaces[i].v3 == index || mfaces[i].v4 == index)
{
calculatQuadNormal(temp, X, mfaces[i]);
VECADD(to, to, temp);
}
}
}
float calculateVertexWindForce(float wind[3], float vertexnormal[3])
{
return fabs(INPR(wind, vertexnormal) * 0.5f);
}
DO_INLINE void calc_triangle_force(ClothModifierData *clmd, MFace mface, lfVector *F, lfVector *X, lfVector *V, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, ListBase *effectors)
{
}
void cloth_calc_force(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, ListBase *effectors, float time)
{
/* Collect forces and derivatives: F,dFdX,dFdV */
Cloth *cloth = clmd->clothObject;
unsigned int i = 0;
float spring_air = clmd->sim_parms.Cvi * 0.01f; /* viscosity of air scaled in percent */
float gravity[3];
float tm2[3][3] = {{-spring_air,0,0}, {0,-spring_air,0},{0,0,-spring_air}};
ClothVertex *verts = cloth->verts;
MFace *mfaces = cloth->mfaces;
float wind_normalized[3];
unsigned int numverts = cloth->numverts;
float auxvect[3], velgoal[3], tvect[3];
float kd, ks;
LinkNode *search = cloth->springs;
VECCOPY(gravity, clmd->sim_parms.gravity);
mul_fvector_S(gravity, gravity, 0.001f); /* scale gravity force */
/* set dFdX jacobi matrix to zero */
init_bfmatrix(dFdX, ZERO);
/* set dFdX jacobi matrix diagonal entries to -spring_air */
initdiag_bfmatrix(dFdV, tm2);
init_lfvector(lF, gravity, numverts);
submul_lfvectorS(lF, lV, spring_air, numverts);
/* do goal stuff */
if(clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_GOAL)
{
for(i = 0; i < numverts; i++)
{
if(verts [i].goal < SOFTGOALSNAP)
{
// current_position = xold + t * (newposition - xold)
VECSUB(tvect, verts[i].xconst, cloth->xold[i]);
mul_fvector_S(tvect, tvect, time);
VECADD(tvect, tvect, cloth->xold[i]);
VECSUB(auxvect, tvect, lX[i]);
ks = 1.0f/(1.0f- verts [i].goal*clmd->sim_parms.goalspring)-1.0f ;
VECADDS(lF[i], lF[i], auxvect, -ks);
// calulate damping forces generated by goals
VECSUB(velgoal, cloth->xold[i], verts[i].xconst);
kd = clmd->sim_parms.goalfrict * 0.01f; // friction force scale taken from SB
VECSUBADDSS(lF[i], velgoal, kd, lV[i], kd);
}
}
}
/* handle external forces like wind */
if(effectors)
{
float speed[3] = {0.0f, 0.0f,0.0f};
float force[3]= {0.0f, 0.0f, 0.0f};
#pragma omp parallel for private (i) shared(lF)
for(i = 0; i < cloth->numverts; i++)
{
float vertexnormal[3]={0,0,0};
float fieldfactor = 1000.0f, windfactor = 250.0f; // from sb
pdDoEffectors(effectors, lX[i], force, speed, (float)G.scene->r.cfra, 0.0f, PE_WIND_AS_SPEED);
// TODO apply forcefields here
VECADDS(lF[i], lF[i], force, fieldfactor*0.01f);
VECCOPY(wind_normalized, speed);
Normalize(wind_normalized);
calculateWeightedVertexNormal(clmd, mfaces, vertexnormal, i, lX);
VECADDS(lF[i], lF[i], wind_normalized, -calculateVertexWindForce(speed, vertexnormal));
}
}
// calculate spring forces
search = cloth->springs;
while(search)
{
// only handle active springs
// if(((clmd->sim_parms.flags & CSIMSETT_FLAG_TEARING_ENABLED) && !(springs[i].flags & CSPRING_FLAG_DEACTIVATE))|| !(clmd->sim_parms.flags & CSIMSETT_FLAG_TEARING_ENABLED)){}
cloth_calc_spring_force(clmd, search->link, lF, lX, lV, dFdV, dFdX);
search = search->next;
}
// apply spring forces
search = cloth->springs;
while(search)
{
// only handle active springs
// if(((clmd->sim_parms.flags & CSIMSETT_FLAG_TEARING_ENABLED) && !(springs[i].flags & CSPRING_FLAG_DEACTIVATE))|| !(clmd->sim_parms.flags & CSIMSETT_FLAG_TEARING_ENABLED))
cloth_apply_spring_force(clmd, search->link, lF, lX, lV, dFdV, dFdX);
search = search->next;
}
}
void simulate_implicit_euler(lfVector *Vnew, lfVector *lX, lfVector *lV, lfVector *lF, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, float dt, fmatrix3x3 *A, lfVector *B, lfVector *dV, fmatrix3x3 *S, lfVector *z, lfVector *olddV, fmatrix3x3 *P, fmatrix3x3 *Pinv)
{
unsigned int numverts = dFdV[0].vcount;
lfVector *dFdXmV = create_lfvector(numverts);
initdiag_bfmatrix(A, I);
zero_lfvector(dV, numverts);
subadd_bfmatrixS_bfmatrixS(A, dFdV, dt, dFdX, (dt*dt));
mul_bfmatrix_lfvector(dFdXmV, dFdX, lV);
add_lfvectorS_lfvectorS(B, lF, dt, dFdXmV, (dt*dt), numverts);
itstart();
cg_filtered(dV, A, B, z, S); /* conjugate gradient algorithm to solve Ax=b */
// cg_filtered_pre(dV, A, B, z, olddV, P, Pinv, dt);
itend();
// printf("cg_filtered calc time: %f\n", (float)itval());
cp_lfvector(olddV, dV, numverts);
// advance velocities
add_lfvector_lfvector(Vnew, lV, dV, numverts);
del_lfvector(dFdXmV);
}
int implicit_solver (Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
{
unsigned int i=0;
float step=0.0f, tf=1.0f;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts;
float dt = 1.0f / clmd->sim_parms.stepsPerFrame;
Implicit_Data *id = cloth->implicit;
int result = 0;
if(clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_GOAL) /* do goal stuff */
{
for(i = 0; i < numverts; i++)
{
// update velocities with constrained velocities from pinned verts
if(verts [i].goal >= SOFTGOALSNAP)
{
VECSUB(id->V[i], verts[i].xconst, cloth->xold[i]);
// VecMulf(id->V[i], 1.0 / dt);
}
}
}
while(step < tf)
{
effectors= pdInitEffectors(ob,NULL);
// calculate
cloth_calc_force(clmd, id->F, id->X, id->V, id->dFdV, id->dFdX, effectors, step );
simulate_implicit_euler(id->Vnew, id->X, id->V, id->F, id->dFdV, id->dFdX, dt, id->A, id->B, id->dV, id->S, id->z, id->olddV, id->P, id->Pinv);
add_lfvector_lfvectorS(id->Xnew, id->X, id->Vnew, dt, numverts);
if(clmd->coll_parms.flags & CLOTH_COLLISIONSETTINGS_FLAG_ENABLED)
{
// collisions
// itstart();
// update verts to current positions
for(i = 0; i < numverts; i++)
{
if(clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_GOAL) /* do goal stuff */
{
if(verts [i].goal >= SOFTGOALSNAP)
{
float tvect[3] = {.0,.0,.0};
// VECSUB(tvect, id->Xnew[i], verts[i].xold);
mul_fvector_S(tvect, id->V[i], step+dt);
VECADD(tvect, tvect, cloth->xold[i]);
VECCOPY(id->Xnew[i], tvect);
}
}
VECCOPY(cloth->current_x[i], id->Xnew[i]);
VECSUB(verts[i].tv, cloth->current_x[i], cloth->current_xold[i]);
VECCOPY(verts[i].v, verts[i].tv);
}
// call collision function
result = 0; // cloth_bvh_objcollision(clmd, step + dt, dt);
// copy corrected positions back to simulation
for(i = 0; i < numverts; i++)
{
if(result)
{
// VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
VECCOPY(cloth->current_xold[i], cloth->current_x[i]);
VECCOPY(id->Xnew[i], cloth->current_x[i]);
VECCOPY(id->Vnew[i], verts[i].tv);
VecMulf(id->Vnew[i], 1.0f / dt);
}
else
{
VECCOPY(cloth->current_xold[i], id->Xnew[i]);
}
}
// X = Xnew;
cp_lfvector(id->X, id->Xnew, numverts);
// if there were collisions, advance the velocity from v_n+1/2 to v_n+1
if(result)
{
// V = Vnew;
cp_lfvector(id->V, id->Vnew, numverts);
// calculate
cloth_calc_force(clmd, id->F, id->X, id->V, id->dFdV, id->dFdX, effectors, step);
simulate_implicit_euler(id->Vnew, id->X, id->V, id->F, id->dFdV, id->dFdX, dt / 2.0f, id->A, id->B, id->dV, id->S, id->z, id->olddV, id->P, id->Pinv);
}
}
else
{
// X = Xnew;
cp_lfvector(id->X, id->Xnew, numverts);
}
// itend();
// printf("collision time: %f\n", (float)itval());
// V = Vnew;
cp_lfvector(id->V, id->Vnew, numverts);
step += dt;
if(effectors) pdEndEffectors(effectors);
}
for(i = 0; i < numverts; i++)
{
if(clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_GOAL)
{
if(verts [i].goal < SOFTGOALSNAP)
{
VECCOPY(cloth->current_xold[i], id->X[i]);
VECCOPY(cloth->x[i], id->X[i]);
VECCOPY(verts[i].v, id->V[i]);
}
else
{
VECCOPY(cloth->current_xold[i], verts[i].xconst);
VECCOPY(cloth->x[i], verts[i].xconst);
VECCOPY(verts[i].v, id->V[i]);
}
}
else
{
VECCOPY(cloth->current_xold[i], id->X[i]);
VECCOPY(cloth->x[i], id->X[i]);
VECCOPY(verts[i].v, id->V[i]);
}
}
return 1;
}
void implicit_set_positions (ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts, i;
Implicit_Data *id = cloth->implicit;
for(i = 0; i < numverts; i++)
{
VECCOPY(id->X[i], cloth->x[i]);
VECCOPY(id->V[i], verts[i].v);
}
}
int collisions_collision_response_static(ClothModifierData *clmd, ClothModifierData *coll_clmd)
{
/*
unsigned int i = 0;
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1, *cloth2;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
// search = clmd->coll_parms.collision_list;
while(search)
{
collpair = search->link;
// compute barycentric coordinates for both collision points
collisions_compute_barycentric(collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3);
collisions_compute_barycentric(collpair->pb,
cloth2->verts[collpair->bp1].txold,
cloth2->verts[collpair->bp2].txold,
cloth2->verts[collpair->bp3].txold,
&u1, &u2, &u3);
// Calculate relative "velocity".
interpolateOnTriangle(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3);
interpolateOnTriangle(v2, cloth2->verts[collpair->bp1].tv, cloth2->verts[collpair->bp2].tv, cloth2->verts[collpair->bp3].tv, u1, u2, u3);
VECSUB(relativeVelocity, v1, v2);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR(relativeVelocity, collpair->normal);
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// If v_n_mag < 0 the edges are approaching each other.
if(magrelVel < -ALMOST_ZERO)
{
// Calculate Impulse magnitude to stop all motion in normal direction.
// const double I_mag = v_n_mag / (1/m1 + 1/m2);
float magnitude_i = magrelVel / 2.0f; // TODO implement masses
float tangential[3], magtangent, magnormal, collvel[3];
float vrel_t_pre[3];
float vrel_t[3];
double impulse;
float epsilon = clmd->coll_parms.epsilon;
float overlap = (epsilon + ALMOST_ZERO-collpair->distance);
// calculateFrictionImpulse(tangential, relativeVelocity, collpair->normal, magrelVel, clmd->coll_parms.friction*0.01, magrelVel);
// magtangent = INPR(tangential, tangential);
// Apply friction impulse.
if (magtangent < -ALMOST_ZERO)
{
// printf("friction applied: %f\n", magtangent);
// TODO check original code
}
impulse = -2.0f * magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3);
// printf("impulse: %f\n", impulse);
// face A
VECADDMUL(cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse);
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse);
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL(cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse);
cloth1->verts[collpair->ap3].impulse_count++;
// face B
VECADDMUL(cloth2->verts[collpair->bp1].impulse, collpair->normal, u1 * impulse);
cloth2->verts[collpair->bp1].impulse_count++;
VECADDMUL(cloth2->verts[collpair->bp2].impulse, collpair->normal, u2 * impulse);
cloth2->verts[collpair->bp2].impulse_count++;
VECADDMUL(cloth2->verts[collpair->bp3].impulse, collpair->normal, u3 * impulse);
cloth2->verts[collpair->bp3].impulse_count++;
result = 1;
// printf("magnitude_i: %f\n", magnitude_i); // negative before collision in my case
// Apply the impulse and increase impulse counters.
}
search = search->next;
}
return result;
*/
return 0;
}
int collisions_collision_response_moving_tris(ClothModifierData *clmd, ClothModifierData *coll_clmd)
{
}
int collisions_collision_response_moving_edges(ClothModifierData *clmd, ClothModifierData *coll_clmd)
{
}
void cloth_collision_static(ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2)
{
/*
CollPair *collpair = NULL;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon;
unsigned int i = 0;
for(i = 0; i < 4; i++)
{
collpair = (CollPair *)MEM_callocN(sizeof(CollPair), "cloth coll pair");
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
// check all possible pairs of triangles
if(i == 0)
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
if(i == 1)
{
if(face1->v4)
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if(i == 2)
{
if(face2->v4)
{
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i+=2;
}
if(i == 3)
{
if((face1->v4)&&(face2->v4))
{
collpair->ap1 = face1->v3;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->bp1 = face2->v3;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
}
else
i++;
}
// calc SIPcode (?)
if(i < 4)
{
// calc distance + normal
distance = plNearestPoints(
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, verts2[collpair->bp1].txold, verts2[collpair->bp2].txold, verts2[collpair->bp3].txold, collpair->pa,collpair->pb,collpair->vector);
if (distance <= (epsilon + ALMOST_ZERO))
{
// printf("dist: %f\n", (float)distance);
// collpair->face1 = tree1->tri_index;
// collpair->face2 = tree2->tri_index;
// VECCOPY(collpair->normal, collpair->vector);
// Normalize(collpair->normal);
// collpair->distance = distance;
}
else
{
MEM_freeN(collpair);
}
}
else
{
MEM_freeN(collpair);
}
}
*/
}
int collisions_are_edges_adjacent(ClothModifierData *clmd, ClothModifierData *coll_clmd, EdgeCollPair *edgecollpair)
{
Cloth *cloth1, *cloth2;
ClothVertex *verts1, *verts2;
float temp[3];
/*
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
VECSUB(temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p21].xold);
if(ABS(INPR(temp, temp)) < ALMOST_ZERO)
return 1;
VECSUB(temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p22].xold);
if(ABS(INPR(temp, temp)) < ALMOST_ZERO)
return 1;
VECSUB(temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p21].xold);
if(ABS(INPR(temp, temp)) < ALMOST_ZERO)
return 1;
VECSUB(temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p22].xold);
if(ABS(INPR(temp, temp)) < ALMOST_ZERO)
return 1;
*/
return 0;
}
void collisions_collision_moving_edges(ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2)
{
/*
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
for( i = 0; i < 5; i++)
{
if(i == 0)
{
edgecollpair.p11 = face1->v1;
edgecollpair.p12 = face1->v2;
}
else if(i == 1)
{
edgecollpair.p11 = face1->v2;
edgecollpair.p12 = face1->v3;
}
else if(i == 2)
{
if(face1->v4)
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v4;
}
else
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
i+=5; // get out of here after this edge pair is handled
}
}
else if(i == 3)
{
if(face1->v4)
{
edgecollpair.p11 = face1->v4;
edgecollpair.p12 = face1->v1;
}
else
continue;
}
else
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
}
for( j = 0; j < 5; j++)
{
if(j == 0)
{
edgecollpair.p21 = face2->v1;
edgecollpair.p22 = face2->v2;
}
else if(j == 1)
{
edgecollpair.p21 = face2->v2;
edgecollpair.p22 = face2->v3;
}
else if(j == 2)
{
if(face2->v4)
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v4;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
}
else if(j == 3)
{
if(face2->v4)
{
edgecollpair.p21 = face2->v4;
edgecollpair.p22 = face2->v1;
}
else
continue;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
if(!collisions_are_edges_adjacent(clmd, coll_clmd, &edgecollpair))
{
VECSUB(a, verts1[edgecollpair.p12].xold, verts1[edgecollpair.p11].xold);
VECSUB(b, verts1[edgecollpair.p12].v, verts1[edgecollpair.p11].v);
VECSUB(c, verts1[edgecollpair.p21].xold, verts1[edgecollpair.p11].xold);
VECSUB(d, verts1[edgecollpair.p21].v, verts1[edgecollpair.p11].v);
VECSUB(e, verts2[edgecollpair.p22].xold, verts1[edgecollpair.p11].xold);
VECSUB(f, verts2[edgecollpair.p22].v, verts1[edgecollpair.p11].v);
numsolutions = collisions_get_collision_time(a, b, c, d, e, f, solution);
for (k = 0; k < numsolutions; k++)
{
if ((solution[k] >= 0.0) && (solution[k] <= 1.0))
{
float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (edge) collision list
printf("Moving edge found!\n");
}
}
}
}
}
*/
}
void collisions_collision_moving_tris(ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2)
{
/*
CollPair collpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
double distance = 0;
float epsilon = clmd->coll_parms.epsilon;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
for(i = 0; i < 2; i++)
{
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = &(cloth1->mfaces[tree1->tri_index]);
face2 = &(cloth2->mfaces[tree2->tri_index]);
// check all possible pairs of triangles
if(i == 0)
{
collpair.ap1 = face1->v1;
collpair.ap2 = face1->v2;
collpair.ap3 = face1->v3;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
if(i == 1)
{
if(face1->v4)
{
collpair.ap1 = face1->v3;
collpair.ap2 = face1->v4;
collpair.ap3 = face1->v1;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
else
i++;
}
// calc SIPcode (?)
if(i < 2)
{
VECSUB(a, verts1[collpair.ap2].xold, verts1[collpair.ap1].xold);
VECSUB(b, verts1[collpair.ap2].v, verts1[collpair.ap1].v);
VECSUB(c, verts1[collpair.ap3].xold, verts1[collpair.ap1].xold);
VECSUB(d, verts1[collpair.ap3].v, verts1[collpair.ap1].v);
for(j = 0; j < 4; j++)
{
if((j==3) && !(face2->v4))
break;
VECSUB(e, verts2[collpair.pointsb[j]].xold, verts1[collpair.ap1].xold);
VECSUB(f, verts2[collpair.pointsb[j]].v, verts1[collpair.ap1].v);
numsolutions = collisions_get_collision_time(a, b, c, d, e, f, solution);
for (k = 0; k < numsolutions; k++)
{
if ((solution[k] >= 0.0) && (solution[k] <= 1.0))
{
float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (point-face) collision list
printf("Moving found!\n");
}
}
// TODO: check borders for collisions
}
}
}
*/
}
// move collision objects forward in time and update static bounding boxes
void collisions_update_collision_objects(float step)
{
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Object *coll_ob=NULL;
unsigned int i=0;
/*
// search all objects for collision object
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
Cloth *coll_cloth = coll_clmd->clothObject;
BVH *coll_bvh = coll_clmd->clothObject->tree;
unsigned int coll_numverts = coll_cloth->numverts;
// update position of collision object
for(i = 0; i < coll_numverts; i++)
{
VECCOPY(coll_cloth->verts[i].txold, coll_cloth->verts[i].tx);
VECADDS(coll_cloth->verts[i].tx, coll_cloth->verts[i].xold, coll_cloth->verts[i].v, step);
// no dt here because of float rounding errors
VECSUB(coll_cloth->verts[i].tv, coll_cloth->verts[i].tx, coll_cloth->verts[i].txold);
}
// update BVH of collision object
// bvh_update(coll_clmd, coll_bvh, 0); // 0 means STATIC, 1 means MOVING
}
else
printf ("collisions_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
*/
}
void collisions_collision_moving(ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2)
{
/*
// TODO: check for adjacent
collisions_collision_moving_edges(clmd, coll_clmd, tree1, tree2);
collisions_collision_moving_tris(clmd, coll_clmd, tree1, tree2);
collisions_collision_moving_tris(coll_clmd, clmd, tree2, tree1);
*/
}
// cloth - object collisions
int cloth_bvh_objcollision(ClothModifierData * clmd, float step, float dt)
{
/*
Base *base=NULL;
ClothModifierData *coll_clmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVH *collisions_bvh=NULL;
unsigned int i=0, j = 0, numfaces = 0, numverts = 0;
unsigned int result = 0, ic = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
float tnull[3] = {0,0,0};
int ret = 0;
LinkNode *collision_list = NULL;
if ((clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || !(((Cloth *)clmd->clothObject)->tree))
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
collisions_bvh = (BVH *) cloth->tree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
// bvh_update(clmd, collisions_bvh, 0); // 0 means STATIC, 1 means MOVING (see later in this function)
// update collision objects
collisions_update_collision_objects(step);
do
{
result = 0;
ic = 0;
// check all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
// fill collision list
bvh_traverse(collisions_bvh->root, coll_bvh->root, collision_list);
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for(j = 0; j < 10; j++) // 10 is just a value that ensures convergence
{
result = 0;
// result += collisions_collision_response_static_tris(clmd, coll_clmd, collision_list, 0);
// result += collisions_collision_response_static_tris(coll_clmd, clmd, collision_list, 1);
// apply impulses in parallel
ic=0;
for(i = 0; i < numverts; i++)
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if(verts[i].impulse_count)
{
VECADDMUL(verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count);
VECCOPY(verts[i].impulse, tnull);
verts[i].impulse_count = 0;
ic++;
ret++;
}
}
}
// free collision list
if(collision_list)
{
LinkNode *search = collision_list;
while(search)
{
CollisionPair *coll_pair = search->link;
MEM_freeN(coll_pair);
search = search->next;
}
BLI_linklist_free(collision_list,NULL);
collision_list = NULL;
}
}
else
printf ("collisions_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
printf("ic: %d\n", ic);
rounds++;
}
while(result && (10>rounds));// CLOTH_MAX_THRESHOLD
printf("\n");
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// moving collisions
////////////////////////////////////////////////////////////
// update cloth bvh
// bvh_update(clmd, collisions_bvh, 1); // 0 means STATIC, 1 means MOVING
// update moving bvh for collision object once
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
if(!coll_clmd->clothObject)
continue;
// if collision object go on
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
// bvh_update(coll_clmd, coll_bvh, 1); // 0 means STATIC, 1 means MOVING
}
}
do
{
result = 0;
ic = 0;
// check all collision objects
for (base = G.scene->base.first; base; base = base->next)
{
coll_ob = base->object;
coll_clmd = (ClothModifierData *) modifiers_findByType (coll_ob, eModifierType_Cloth);
if (!coll_clmd)
continue;
// if collision object go on
if (coll_clmd->sim_parms.flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ)
{
if (coll_clmd->clothObject && coll_clmd->clothObject->tree)
{
BVH *coll_bvh = coll_clmd->clothObject->tree;
bvh_traverse(collisions_bvh->root, coll_bvh->root, collision_list);
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for(j = 0; j < 10; j++) // 10 is just a value that ensures convergence
{
result = 0;
// handle all collision objects
if (coll_clmd->clothObject)
result += collisions_collision_response_moving_tris(clmd, coll_clmd);
else
printf ("collisions_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
// apply impulses in parallel
ic=0;
for(i = 0; i < numverts; i++)
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if(verts[i].impulse_count)
{
VECADDMUL(verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count);
VECCOPY(verts[i].impulse, tnull);
verts[i].impulse_count = 0;
ic++;
ret++;
}
}
}
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
// update cloth bvh
// bvh_update(clmd, collisions_bvh, 1); // 0 means STATIC, 1 means MOVING
// free collision list
if(collision_list)
{
LinkNode *search = collision_list;
while(search)
{
CollisionPair *coll_pair = search->link;
MEM_freeN(coll_pair);
search = search->next;
}
BLI_linklist_free(collision_list,NULL);
collision_list = NULL;
}
}
else
printf ("collisions_bvh_objcollision: found a collision object with clothObject or collData NULL.\n");
}
}
printf("ic: %d\n", ic);
rounds++;
}
while(result && (10>rounds)); // CLOTH_MAX_THRESHOLD
////////////////////////////////////////////////////////////
// update positions + velocities
////////////////////////////////////////////////////////////
// verts come from clmd
for(i = 0; i < numverts; i++)
{
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
return MIN2(ret, 1);
*/
}