Remove small ray offsets that were used to avoid self intersection, and leave that to the newly added primitive object/prim comparison. These changes together significantly reduce artifacts on small, large or far away objects. The balance here is that overlapping primitives are not handled well and should be avoided (though this was already an issue). The upside is that this is something a user has control over, whereas the other artifacts had no good manual solution in many cases. There is a known issue where the Blender particle system generates overlapping objects and in turn leads to render differences between CPU and GPU. This will be addressed separately. Differential Revision: https://developer.blender.org/D12954
240 lines
8.6 KiB
C
240 lines
8.6 KiB
C
/*
|
|
* Copyright 2011-2021 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/bvh/bvh.h"
|
|
#include "kernel/geom/geom.h"
|
|
#include "kernel/integrator/shader_eval.h"
|
|
#include "kernel/integrator/volume_stack.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device void integrator_volume_stack_update_for_subsurface(KernelGlobals kg,
|
|
IntegratorState state,
|
|
const float3 from_P,
|
|
const float3 to_P)
|
|
{
|
|
PROFILING_INIT(kg, PROFILING_INTERSECT_VOLUME_STACK);
|
|
|
|
ShaderDataTinyStorage stack_sd_storage;
|
|
ccl_private ShaderData *stack_sd = AS_SHADER_DATA(&stack_sd_storage);
|
|
|
|
kernel_assert(kernel_data.integrator.use_volumes);
|
|
|
|
Ray volume_ray ccl_optional_struct_init;
|
|
volume_ray.P = from_P;
|
|
volume_ray.D = normalize_len(to_P - from_P, &volume_ray.t);
|
|
volume_ray.self.object = INTEGRATOR_STATE(state, isect, object);
|
|
volume_ray.self.prim = INTEGRATOR_STATE(state, isect, prim);
|
|
volume_ray.self.light_object = OBJECT_NONE;
|
|
volume_ray.self.light_prim = PRIM_NONE;
|
|
/* Store to avoid global fetches on every intersection step. */
|
|
const uint volume_stack_size = kernel_data.volume_stack_size;
|
|
|
|
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
|
|
const uint32_t visibility = SHADOW_CATCHER_PATH_VISIBILITY(path_flag, PATH_RAY_ALL_VISIBILITY);
|
|
|
|
#ifdef __VOLUME_RECORD_ALL__
|
|
Intersection hits[2 * MAX_VOLUME_STACK_SIZE + 1];
|
|
uint num_hits = scene_intersect_volume_all(
|
|
kg, &volume_ray, hits, 2 * volume_stack_size, visibility);
|
|
if (num_hits > 0) {
|
|
Intersection *isect = hits;
|
|
|
|
qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
|
|
|
|
for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
|
|
shader_setup_from_ray(kg, stack_sd, &volume_ray, isect);
|
|
volume_stack_enter_exit(kg, state, stack_sd);
|
|
}
|
|
}
|
|
#else
|
|
Intersection isect;
|
|
int step = 0;
|
|
while (step < 2 * volume_stack_size &&
|
|
scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
|
|
shader_setup_from_ray(kg, stack_sd, &volume_ray, &isect);
|
|
volume_stack_enter_exit(kg, state, stack_sd);
|
|
|
|
/* Move ray forward. */
|
|
volume_ray.P = stack_sd->P;
|
|
if (volume_ray.t != FLT_MAX) {
|
|
volume_ray.D = normalize_len(to_P - volume_ray.P, &volume_ray.t);
|
|
}
|
|
++step;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ccl_device void integrator_volume_stack_init(KernelGlobals kg, IntegratorState state)
|
|
{
|
|
PROFILING_INIT(kg, PROFILING_INTERSECT_VOLUME_STACK);
|
|
|
|
ShaderDataTinyStorage stack_sd_storage;
|
|
ccl_private ShaderData *stack_sd = AS_SHADER_DATA(&stack_sd_storage);
|
|
|
|
Ray volume_ray ccl_optional_struct_init;
|
|
integrator_state_read_ray(kg, state, &volume_ray);
|
|
|
|
/* Trace ray in random direction. Any direction works, Z up is a guess to get the
|
|
* fewest hits. */
|
|
volume_ray.D = make_float3(0.0f, 0.0f, 1.0f);
|
|
volume_ray.t = FLT_MAX;
|
|
volume_ray.self.object = OBJECT_NONE;
|
|
volume_ray.self.prim = PRIM_NONE;
|
|
volume_ray.self.light_object = OBJECT_NONE;
|
|
volume_ray.self.light_prim = PRIM_NONE;
|
|
|
|
int stack_index = 0, enclosed_index = 0;
|
|
|
|
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
|
|
const uint32_t visibility = SHADOW_CATCHER_PATH_VISIBILITY(path_flag, PATH_RAY_CAMERA);
|
|
|
|
/* Initialize volume stack with background volume For shadow catcher the
|
|
* background volume is always assumed to be CG. */
|
|
if (kernel_data.background.volume_shader != SHADER_NONE) {
|
|
if (!(path_flag & PATH_RAY_SHADOW_CATCHER_PASS)) {
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, volume_stack, stack_index, object) = OBJECT_NONE;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(
|
|
state, volume_stack, stack_index, shader) = kernel_data.background.volume_shader;
|
|
stack_index++;
|
|
}
|
|
}
|
|
|
|
/* Store to avoid global fetches on every intersection step. */
|
|
const uint volume_stack_size = kernel_data.volume_stack_size;
|
|
|
|
#ifdef __VOLUME_RECORD_ALL__
|
|
Intersection hits[2 * MAX_VOLUME_STACK_SIZE + 1];
|
|
uint num_hits = scene_intersect_volume_all(
|
|
kg, &volume_ray, hits, 2 * volume_stack_size, visibility);
|
|
if (num_hits > 0) {
|
|
int enclosed_volumes[MAX_VOLUME_STACK_SIZE];
|
|
Intersection *isect = hits;
|
|
|
|
qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
|
|
|
|
for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
|
|
shader_setup_from_ray(kg, stack_sd, &volume_ray, isect);
|
|
if (stack_sd->flag & SD_BACKFACING) {
|
|
bool need_add = true;
|
|
for (int i = 0; i < enclosed_index && need_add; ++i) {
|
|
/* If ray exited the volume and never entered to that volume
|
|
* it means that camera is inside such a volume.
|
|
*/
|
|
if (enclosed_volumes[i] == stack_sd->object) {
|
|
need_add = false;
|
|
}
|
|
}
|
|
for (int i = 0; i < stack_index && need_add; ++i) {
|
|
/* Don't add intersections twice. */
|
|
VolumeStack entry = integrator_state_read_volume_stack(state, i);
|
|
if (entry.object == stack_sd->object) {
|
|
need_add = false;
|
|
break;
|
|
}
|
|
}
|
|
if (need_add && stack_index < volume_stack_size - 1) {
|
|
const VolumeStack new_entry = {stack_sd->object, stack_sd->shader};
|
|
integrator_state_write_volume_stack(state, stack_index, new_entry);
|
|
++stack_index;
|
|
}
|
|
}
|
|
else {
|
|
/* If ray from camera enters the volume, this volume shouldn't
|
|
* be added to the stack on exit.
|
|
*/
|
|
enclosed_volumes[enclosed_index++] = stack_sd->object;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
/* CUDA does not support definition of a variable size arrays, so use the maximum possible. */
|
|
int enclosed_volumes[MAX_VOLUME_STACK_SIZE];
|
|
int step = 0;
|
|
|
|
while (stack_index < volume_stack_size - 1 && enclosed_index < MAX_VOLUME_STACK_SIZE - 1 &&
|
|
step < 2 * volume_stack_size) {
|
|
Intersection isect;
|
|
if (!scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
|
|
break;
|
|
}
|
|
|
|
shader_setup_from_ray(kg, stack_sd, &volume_ray, &isect);
|
|
if (stack_sd->flag & SD_BACKFACING) {
|
|
/* If ray exited the volume and never entered to that volume
|
|
* it means that camera is inside such a volume.
|
|
*/
|
|
bool need_add = true;
|
|
for (int i = 0; i < enclosed_index && need_add; ++i) {
|
|
/* If ray exited the volume and never entered to that volume
|
|
* it means that camera is inside such a volume.
|
|
*/
|
|
if (enclosed_volumes[i] == stack_sd->object) {
|
|
need_add = false;
|
|
}
|
|
}
|
|
for (int i = 0; i < stack_index && need_add; ++i) {
|
|
/* Don't add intersections twice. */
|
|
VolumeStack entry = integrator_state_read_volume_stack(state, i);
|
|
if (entry.object == stack_sd->object) {
|
|
need_add = false;
|
|
break;
|
|
}
|
|
}
|
|
if (need_add) {
|
|
const VolumeStack new_entry = {stack_sd->object, stack_sd->shader};
|
|
integrator_state_write_volume_stack(state, stack_index, new_entry);
|
|
++stack_index;
|
|
}
|
|
}
|
|
else {
|
|
/* If ray from camera enters the volume, this volume shouldn't
|
|
* be added to the stack on exit.
|
|
*/
|
|
enclosed_volumes[enclosed_index++] = stack_sd->object;
|
|
}
|
|
|
|
/* Move ray forward. */
|
|
volume_ray.P = stack_sd->P;
|
|
++step;
|
|
}
|
|
#endif
|
|
|
|
/* Write terminator. */
|
|
const VolumeStack new_entry = {OBJECT_NONE, SHADER_NONE};
|
|
integrator_state_write_volume_stack(state, stack_index, new_entry);
|
|
}
|
|
|
|
ccl_device void integrator_intersect_volume_stack(KernelGlobals kg, IntegratorState state)
|
|
{
|
|
integrator_volume_stack_init(kg, state);
|
|
|
|
if (INTEGRATOR_STATE(state, path, flag) & PATH_RAY_SHADOW_CATCHER_PASS) {
|
|
/* Volume stack re-init for shadow catcher, continue with shading of hit. */
|
|
integrator_intersect_next_kernel_after_shadow_catcher_volume<
|
|
DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK>(kg, state);
|
|
}
|
|
else {
|
|
/* Volume stack init for camera rays, continue with intersection of camera ray. */
|
|
INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK,
|
|
DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|