Files
test2/intern/cycles/device/cpu/device_impl.cpp
Sergey Sharybin b803d7fabb Fix: Command line Cycles render crash on multi-CUDA device
Since #118841 there are more cases where Cycles would check for the
graphics interop support. This could lead to a crash when graphics
interop functions are called without having active graphics context.

This change makes it so there is no graphics interop calls when doing
headless render. In order to achieve this the device creation is now
aware of the headless mode.

Pull Request: https://projects.blender.org/blender/blender/pulls/122844
2024-06-07 17:53:44 +02:00

335 lines
8.2 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "device/cpu/device_impl.h"
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util/windows.h"
# include <OSL/oslexec.h>
#endif
#ifdef WITH_EMBREE
# if EMBREE_MAJOR_VERSION >= 4
# include <embree4/rtcore.h>
# else
# include <embree3/rtcore.h>
# endif
#endif
#include "device/cpu/kernel.h"
#include "device/cpu/kernel_thread_globals.h"
#include "device/device.h"
// clang-format off
#include "kernel/device/cpu/compat.h"
#include "kernel/device/cpu/globals.h"
#include "kernel/device/cpu/kernel.h"
#include "kernel/types.h"
#include "kernel/osl/globals.h"
// clang-format on
#include "bvh/embree.h"
#include "session/buffers.h"
#include "util/debug.h"
#include "util/foreach.h"
#include "util/function.h"
#include "util/guiding.h"
#include "util/log.h"
#include "util/map.h"
#include "util/openimagedenoise.h"
#include "util/optimization.h"
#include "util/progress.h"
#include "util/system.h"
#include "util/task.h"
#include "util/thread.h"
CCL_NAMESPACE_BEGIN
CPUDevice::CPUDevice(const DeviceInfo &info_, Stats &stats_, Profiler &profiler_, bool headless_)
: Device(info_, stats_, profiler_, headless_), texture_info(this, "texture_info", MEM_GLOBAL)
{
/* Pick any kernel, all of them are supposed to have same level of microarchitecture
* optimization. */
VLOG_INFO << "Using " << get_cpu_kernels().integrator_init_from_camera.get_uarch_name()
<< " CPU kernels.";
if (info.cpu_threads == 0) {
info.cpu_threads = TaskScheduler::max_concurrency();
}
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
#ifdef WITH_EMBREE
embree_device = rtcNewDevice("verbose=0");
#endif
need_texture_info = false;
}
CPUDevice::~CPUDevice()
{
#ifdef WITH_EMBREE
rtcReleaseDevice(embree_device);
#endif
texture_info.free();
}
BVHLayoutMask CPUDevice::get_bvh_layout_mask(uint /*kernel_features*/) const
{
BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_BVH2;
#ifdef WITH_EMBREE
bvh_layout_mask |= BVH_LAYOUT_EMBREE;
#endif /* WITH_EMBREE */
return bvh_layout_mask;
}
bool CPUDevice::load_texture_info()
{
if (!need_texture_info) {
return false;
}
texture_info.copy_to_device();
need_texture_info = false;
return true;
}
void CPUDevice::mem_alloc(device_memory &mem)
{
if (mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else if (mem.type == MEM_GLOBAL) {
assert(!"mem_alloc not supported for global memory.");
}
else {
if (mem.name) {
VLOG_WORK << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
}
if (mem.type == MEM_DEVICE_ONLY || !mem.host_pointer) {
size_t alignment = MIN_ALIGNMENT_CPU_DATA_TYPES;
void *data = util_aligned_malloc(mem.memory_size(), alignment);
mem.device_pointer = (device_ptr)data;
}
else {
mem.device_pointer = (device_ptr)mem.host_pointer;
}
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
}
void CPUDevice::mem_copy_to(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
global_alloc(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
tex_alloc((device_texture &)mem);
}
else {
if (!mem.device_pointer) {
mem_alloc(mem);
}
/* copy is no-op */
}
}
void CPUDevice::mem_copy_from(
device_memory & /*mem*/, size_t /*y*/, size_t /*w*/, size_t /*h*/, size_t /*elem*/)
{
/* no-op */
}
void CPUDevice::mem_zero(device_memory &mem)
{
if (!mem.device_pointer) {
mem_alloc(mem);
}
if (mem.device_pointer) {
memset((void *)mem.device_pointer, 0, mem.memory_size());
}
}
void CPUDevice::mem_free(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
}
else if (mem.device_pointer) {
if (mem.type == MEM_DEVICE_ONLY || !mem.host_pointer) {
util_aligned_free((void *)mem.device_pointer);
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
device_ptr CPUDevice::mem_alloc_sub_ptr(device_memory &mem, size_t offset, size_t /*size*/)
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void CPUDevice::const_copy_to(const char *name, void *host, size_t size)
{
#ifdef WITH_EMBREE
if (strcmp(name, "data") == 0) {
assert(size <= sizeof(KernelData));
// Update scene handle (since it is different for each device on multi devices)
KernelData *const data = (KernelData *)host;
data->device_bvh = embree_scene;
}
#endif
kernel_const_copy(&kernel_globals, name, host, size);
}
void CPUDevice::global_alloc(device_memory &mem)
{
VLOG_WORK << "Global memory allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
kernel_global_memory_copy(&kernel_globals, mem.name, mem.host_pointer, mem.data_size);
mem.device_pointer = (device_ptr)mem.host_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void CPUDevice::global_free(device_memory &mem)
{
if (mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void CPUDevice::tex_alloc(device_texture &mem)
{
VLOG_WORK << "Texture allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
mem.device_pointer = (device_ptr)mem.host_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
const uint slot = mem.slot;
if (slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount of re-allocations. */
texture_info.resize(slot + 128);
}
texture_info[slot] = mem.info;
texture_info[slot].data = (uint64_t)mem.host_pointer;
need_texture_info = true;
}
void CPUDevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
need_texture_info = true;
}
}
void CPUDevice::build_bvh(BVH *bvh, Progress &progress, bool refit)
{
#ifdef WITH_EMBREE
if (bvh->params.bvh_layout == BVH_LAYOUT_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_HIPRT_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_EMBREEGPU_EMBREE)
{
BVHEmbree *const bvh_embree = static_cast<BVHEmbree *>(bvh);
if (refit) {
bvh_embree->refit(progress);
}
else {
bvh_embree->build(progress, &stats, embree_device);
}
if (bvh->params.top_level) {
embree_scene = bvh_embree->scene;
}
}
else
#endif
Device::build_bvh(bvh, progress, refit);
}
void *CPUDevice::get_guiding_device() const
{
#ifdef WITH_PATH_GUIDING
if (!guiding_device) {
if (guiding_device_type() == 8) {
guiding_device = make_unique<openpgl::cpp::Device>(PGL_DEVICE_TYPE_CPU_8);
}
else if (guiding_device_type() == 4) {
guiding_device = make_unique<openpgl::cpp::Device>(PGL_DEVICE_TYPE_CPU_4);
}
}
return guiding_device.get();
#else
return nullptr;
#endif
}
void CPUDevice::get_cpu_kernel_thread_globals(
vector<CPUKernelThreadGlobals> &kernel_thread_globals)
{
/* Ensure latest texture info is loaded into kernel globals before returning. */
load_texture_info();
kernel_thread_globals.clear();
void *osl_memory = get_cpu_osl_memory();
for (int i = 0; i < info.cpu_threads; i++) {
kernel_thread_globals.emplace_back(kernel_globals, osl_memory, profiler, i);
}
}
void *CPUDevice::get_cpu_osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
bool CPUDevice::load_kernels(const uint /*kernel_features*/)
{
return true;
}
CCL_NAMESPACE_END