This patch unifies the behavior of the scale node by removing the arbitrary limit of scaling images. The change applies to scale and transform nodes. Note: with this change, Blender can crash for large resizing factors (around 10 000 x 10 000 relative factors). We think it's very unlikely users will run into this issue, so we agreed errors coming from failed memory allocation won't be handled, as is the case for GPU compositor. Pull Request: https://projects.blender.org/blender/blender/pulls/114764
204 lines
7.9 KiB
C++
204 lines
7.9 KiB
C++
/* SPDX-FileCopyrightText: 2021 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "COM_TransformOperation.h"
|
|
#include "BLI_math_rotation.h"
|
|
#include "COM_RotateOperation.h"
|
|
#include "COM_ScaleOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
TransformOperation::TransformOperation()
|
|
{
|
|
add_input_socket(DataType::Color, ResizeMode::None);
|
|
add_input_socket(DataType::Value, ResizeMode::None);
|
|
add_input_socket(DataType::Value, ResizeMode::None);
|
|
add_input_socket(DataType::Value, ResizeMode::None);
|
|
add_input_socket(DataType::Value, ResizeMode::None);
|
|
add_output_socket(DataType::Color);
|
|
translate_factor_x_ = 1.0f;
|
|
translate_factor_y_ = 1.0f;
|
|
convert_degree_to_rad_ = false;
|
|
sampler_ = PixelSampler::Bilinear;
|
|
invert_ = false;
|
|
|
|
flags_.can_be_constant = true;
|
|
}
|
|
|
|
void TransformOperation::init_data()
|
|
{
|
|
|
|
translate_x_ = get_input_operation(X_INPUT_INDEX)->get_constant_value_default(0.0f) *
|
|
translate_factor_x_;
|
|
translate_y_ = get_input_operation(Y_INPUT_INDEX)->get_constant_value_default(0.0f) *
|
|
translate_factor_y_;
|
|
|
|
const float degree = get_input_operation(DEGREE_INPUT_INDEX)->get_constant_value_default(0.0f);
|
|
const double rad = convert_degree_to_rad_ ? DEG2RAD(double(degree)) : degree;
|
|
rotate_cosine_ = cos(rad);
|
|
rotate_sine_ = sin(rad);
|
|
|
|
scale_ = get_input_operation(SCALE_INPUT_INDEX)->get_constant_value_default(1.0f);
|
|
}
|
|
|
|
void TransformOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
switch (input_idx) {
|
|
case IMAGE_INPUT_INDEX: {
|
|
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
|
|
const rcti &image_canvas = image_op->get_canvas();
|
|
if (invert_) {
|
|
/* Scale -> Rotate -> Translate. */
|
|
r_input_area = output_area;
|
|
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
|
|
RotateOperation::get_rotation_area_of_interest(scale_canvas_,
|
|
rotate_canvas_,
|
|
rotate_sine_,
|
|
rotate_cosine_,
|
|
r_input_area,
|
|
r_input_area);
|
|
ScaleOperation::get_scale_area_of_interest(
|
|
image_canvas, scale_canvas_, scale_, scale_, r_input_area, r_input_area);
|
|
}
|
|
else {
|
|
/* Translate -> Rotate -> Scale. */
|
|
ScaleOperation::get_scale_area_of_interest(
|
|
rotate_canvas_, scale_canvas_, scale_, scale_, output_area, r_input_area);
|
|
RotateOperation::get_rotation_area_of_interest(translate_canvas_,
|
|
rotate_canvas_,
|
|
rotate_sine_,
|
|
rotate_cosine_,
|
|
r_input_area,
|
|
r_input_area);
|
|
BLI_rcti_translate(&r_input_area, -translate_x_, -translate_y_);
|
|
}
|
|
expand_area_for_sampler(r_input_area, sampler_);
|
|
break;
|
|
}
|
|
case X_INPUT_INDEX:
|
|
case Y_INPUT_INDEX:
|
|
case DEGREE_INPUT_INDEX:
|
|
case SCALE_INPUT_INDEX: {
|
|
r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransformOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX];
|
|
BuffersIterator<float> it = output->iterate_with({}, area);
|
|
if (invert_) {
|
|
transform_inverted(it, input_img);
|
|
}
|
|
else {
|
|
transform(it, input_img);
|
|
}
|
|
}
|
|
|
|
void TransformOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
const bool image_determined =
|
|
get_input_socket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
|
|
if (image_determined) {
|
|
rcti image_canvas = r_area;
|
|
rcti unused = COM_AREA_NONE;
|
|
get_input_socket(X_INPUT_INDEX)->determine_canvas(image_canvas, unused);
|
|
get_input_socket(Y_INPUT_INDEX)->determine_canvas(image_canvas, unused);
|
|
get_input_socket(DEGREE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
|
|
get_input_socket(SCALE_INPUT_INDEX)->determine_canvas(image_canvas, unused);
|
|
|
|
init_data();
|
|
if (invert_) {
|
|
/* Scale -> Rotate -> Translate. */
|
|
scale_canvas_ = image_canvas;
|
|
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
|
|
|
|
RotateOperation::get_rotation_canvas(
|
|
scale_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
|
|
|
|
translate_canvas_ = rotate_canvas_;
|
|
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
|
|
|
|
r_area = translate_canvas_;
|
|
}
|
|
else {
|
|
/* Translate -> Rotate -> Scale. */
|
|
translate_canvas_ = image_canvas;
|
|
BLI_rcti_translate(&translate_canvas_, translate_x_, translate_y_);
|
|
|
|
RotateOperation::get_rotation_canvas(
|
|
translate_canvas_, rotate_sine_, rotate_cosine_, rotate_canvas_);
|
|
|
|
scale_canvas_ = rotate_canvas_;
|
|
ScaleOperation::scale_area(scale_canvas_, scale_, scale_);
|
|
|
|
r_area = scale_canvas_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransformOperation::transform(BuffersIterator<float> &it, const MemoryBuffer *input_img)
|
|
{
|
|
float rotate_center_x, rotate_center_y;
|
|
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
|
|
float rotate_offset_x, rotate_offset_y;
|
|
RotateOperation::get_rotation_offset(
|
|
translate_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
|
|
|
|
const float scale_center_x = BLI_rcti_size_x(&rotate_canvas_) / 2.0f;
|
|
const float scale_center_y = BLI_rcti_size_y(&rotate_canvas_) / 2.0f;
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(rotate_canvas_, scale_canvas_, scale_offset_x, scale_offset_y);
|
|
|
|
for (; !it.is_end(); ++it) {
|
|
float x = ScaleOperation::scale_coord_inverted(it.x + scale_offset_x, scale_center_x, scale_);
|
|
float y = ScaleOperation::scale_coord_inverted(it.y + scale_offset_y, scale_center_y, scale_);
|
|
|
|
x = rotate_offset_x + x;
|
|
y = rotate_offset_y + y;
|
|
RotateOperation::rotate_coords(
|
|
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
|
|
|
|
input_img->read_elem_sampled(x - translate_x_, y - translate_y_, sampler_, it.out);
|
|
}
|
|
}
|
|
|
|
void TransformOperation::transform_inverted(BuffersIterator<float> &it,
|
|
const MemoryBuffer *input_img)
|
|
{
|
|
const rcti &image_canvas = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas();
|
|
const float scale_center_x = BLI_rcti_size_x(&image_canvas) / 2.0f - translate_x_;
|
|
const float scale_center_y = BLI_rcti_size_y(&image_canvas) / 2.0f - translate_y_;
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(image_canvas, scale_canvas_, scale_offset_x, scale_offset_y);
|
|
|
|
float rotate_center_x, rotate_center_y;
|
|
RotateOperation::get_rotation_center(translate_canvas_, rotate_center_x, rotate_center_y);
|
|
rotate_center_x -= translate_x_;
|
|
rotate_center_y -= translate_y_;
|
|
float rotate_offset_x, rotate_offset_y;
|
|
RotateOperation::get_rotation_offset(
|
|
scale_canvas_, rotate_canvas_, rotate_offset_x, rotate_offset_y);
|
|
|
|
for (; !it.is_end(); ++it) {
|
|
float x = rotate_offset_x + (it.x - translate_x_);
|
|
float y = rotate_offset_y + (it.y - translate_y_);
|
|
RotateOperation::rotate_coords(
|
|
x, y, rotate_center_x, rotate_center_y, rotate_sine_, rotate_cosine_);
|
|
|
|
x = ScaleOperation::scale_coord_inverted(x + scale_offset_x, scale_center_x, scale_);
|
|
y = ScaleOperation::scale_coord_inverted(y + scale_offset_y, scale_center_y, scale_);
|
|
|
|
input_img->read_elem_sampled(x, y, sampler_, it.out);
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|