Files
test2/source/blender/blenkernel/intern/mesh_runtime.cc
Hans Goudey 024d7d12e2 Mesh: Move BVH storage to shared cache system
Avoid rebuilding BVH trees when meshes are copied.
Similar to the other uses of the shared cache system,
this can arbitrarily improve performance when meshes
are copied but not deformed and BVH building is the
main bottleneck. In a simple test file I got a 6x speedup.

The amount of code is also reduced and the system is
much simpler overall-- built out of common threading
patterns like `SharedCache` with its double-checked lock.
RAII is used in a few places to simplify memory management
too.

The downside is storing more `SharedCache` items in the
mesh runtime struct. That has a slight cost when copying
a small mesh many times, but we have ideas to improve that
in the future anyway (#104327).

Pull Request: https://projects.blender.org/blender/blender/pulls/130865
2024-12-04 00:17:17 +01:00

515 lines
15 KiB
C++

/* SPDX-FileCopyrightText: 2005 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "BLI_array_utils.hh"
#include "BLI_math_geom.h"
#include "BLI_task.hh"
#include "BKE_bake_data_block_id.hh"
#include "BKE_bvhutils.hh"
#include "BKE_customdata.hh"
#include "BKE_editmesh_cache.hh"
#include "BKE_lib_id.hh"
#include "BKE_mesh.hh"
#include "BKE_mesh_mapping.hh"
#include "BKE_mesh_runtime.hh"
#include "BKE_shrinkwrap.hh"
#include "BKE_subdiv_ccg.hh"
using blender::float3;
using blender::MutableSpan;
using blender::Span;
/* -------------------------------------------------------------------- */
/** \name Mesh Runtime Struct Utils
* \{ */
namespace blender::bke {
static void free_mesh_eval(MeshRuntime &mesh_runtime)
{
if (mesh_runtime.mesh_eval != nullptr) {
BKE_id_free(nullptr, mesh_runtime.mesh_eval);
mesh_runtime.mesh_eval = nullptr;
}
}
static void free_batch_cache(MeshRuntime &mesh_runtime)
{
if (mesh_runtime.batch_cache) {
BKE_mesh_batch_cache_free(mesh_runtime.batch_cache);
mesh_runtime.batch_cache = nullptr;
}
}
static void free_bvh_caches(MeshRuntime &mesh_runtime)
{
mesh_runtime.bvh_cache_verts.tag_dirty();
mesh_runtime.bvh_cache_edges.tag_dirty();
mesh_runtime.bvh_cache_faces.tag_dirty();
mesh_runtime.bvh_cache_corner_tris.tag_dirty();
mesh_runtime.bvh_cache_corner_tris_no_hidden.tag_dirty();
mesh_runtime.bvh_cache_loose_verts.tag_dirty();
mesh_runtime.bvh_cache_loose_verts_no_hidden.tag_dirty();
mesh_runtime.bvh_cache_loose_edges.tag_dirty();
mesh_runtime.bvh_cache_loose_edges_no_hidden.tag_dirty();
}
MeshRuntime::MeshRuntime() = default;
MeshRuntime::~MeshRuntime()
{
free_mesh_eval(*this);
free_batch_cache(*this);
}
static int reset_bits_and_count(MutableBitSpan bits, const Span<int> indices_to_reset)
{
int count = bits.size();
for (const int i : indices_to_reset) {
if (bits[i]) {
bits[i].reset();
count--;
}
}
return count;
}
static void bit_vector_with_reset_bits_or_empty(const Span<int> indices_to_reset,
const int indexed_elems_num,
BitVector<> &r_bits,
int &r_count)
{
r_bits.resize(0);
r_bits.resize(indexed_elems_num, true);
r_count = reset_bits_and_count(r_bits, indices_to_reset);
if (r_count == 0) {
r_bits.clear_and_shrink();
}
}
/**
* If there are no loose edges and no loose vertices, all vertices are used by faces.
*/
static void try_tag_verts_no_face_none(const Mesh &mesh)
{
if (!mesh.runtime->loose_edges_cache.is_cached() || mesh.loose_edges().count > 0) {
return;
}
if (!mesh.runtime->loose_verts_cache.is_cached() || mesh.loose_verts().count > 0) {
return;
}
mesh.runtime->verts_no_face_cache.ensure([&](LooseVertCache &r_data) {
r_data.is_loose_bits.clear_and_shrink();
r_data.count = 0;
});
}
} // namespace blender::bke
blender::Span<int> Mesh::corner_to_face_map() const
{
using namespace blender;
this->runtime->corner_to_face_map_cache.ensure([&](Array<int> &r_data) {
const OffsetIndices faces = this->faces();
r_data = bke::mesh::build_corner_to_face_map(faces);
});
return this->runtime->corner_to_face_map_cache.data();
}
blender::OffsetIndices<int> Mesh::vert_to_face_map_offsets() const
{
using namespace blender;
this->runtime->vert_to_face_offset_cache.ensure([&](Array<int> &r_data) {
r_data = Array<int>(this->verts_num + 1, 0);
offset_indices::build_reverse_offsets(this->corner_verts(), r_data);
});
return OffsetIndices<int>(this->runtime->vert_to_face_offset_cache.data());
}
blender::GroupedSpan<int> Mesh::vert_to_face_map() const
{
using namespace blender;
const OffsetIndices offsets = this->vert_to_face_map_offsets();
this->runtime->vert_to_face_map_cache.ensure([&](Array<int> &r_data) {
r_data.reinitialize(this->corners_num);
if (this->runtime->vert_to_corner_map_cache.is_cached() &&
this->runtime->corner_to_face_map_cache.is_cached())
{
/* The vertex to face cache can be built from the vertex to face corner
* and face corner to face maps if they are both already cached. */
array_utils::gather(this->runtime->corner_to_face_map_cache.data().as_span(),
this->runtime->vert_to_corner_map_cache.data().as_span(),
r_data.as_mutable_span());
}
else {
bke::mesh::build_vert_to_face_indices(this->faces(), this->corner_verts(), offsets, r_data);
}
});
return {offsets, this->runtime->vert_to_face_map_cache.data()};
}
blender::GroupedSpan<int> Mesh::vert_to_corner_map() const
{
using namespace blender;
const OffsetIndices offsets = this->vert_to_face_map_offsets();
this->runtime->vert_to_corner_map_cache.ensure([&](Array<int> &r_data) {
r_data = bke::mesh::build_vert_to_corner_indices(this->corner_verts(), offsets);
});
return {offsets, this->runtime->vert_to_corner_map_cache.data()};
}
const blender::bke::LooseVertCache &Mesh::loose_verts() const
{
using namespace blender::bke;
this->runtime->loose_verts_cache.ensure([&](LooseVertCache &r_data) {
const Span<int> verts = this->edges().cast<int>();
bit_vector_with_reset_bits_or_empty(
verts, this->verts_num, r_data.is_loose_bits, r_data.count);
});
return this->runtime->loose_verts_cache.data();
}
const blender::bke::LooseVertCache &Mesh::verts_no_face() const
{
using namespace blender::bke;
this->runtime->verts_no_face_cache.ensure([&](LooseVertCache &r_data) {
const Span<int> verts = this->corner_verts();
bit_vector_with_reset_bits_or_empty(
verts, this->verts_num, r_data.is_loose_bits, r_data.count);
});
return this->runtime->verts_no_face_cache.data();
}
bool Mesh::no_overlapping_topology() const
{
return this->flag & ME_NO_OVERLAPPING_TOPOLOGY;
}
const blender::bke::LooseEdgeCache &Mesh::loose_edges() const
{
using namespace blender::bke;
this->runtime->loose_edges_cache.ensure([&](LooseEdgeCache &r_data) {
const Span<int> edges = this->corner_edges();
bit_vector_with_reset_bits_or_empty(
edges, this->edges_num, r_data.is_loose_bits, r_data.count);
});
return this->runtime->loose_edges_cache.data();
}
void Mesh::tag_loose_verts_none() const
{
using namespace blender::bke;
this->runtime->loose_verts_cache.ensure([&](LooseVertCache &r_data) {
r_data.is_loose_bits.clear_and_shrink();
r_data.count = 0;
});
try_tag_verts_no_face_none(*this);
}
void Mesh::tag_loose_edges_none() const
{
using namespace blender::bke;
this->runtime->loose_edges_cache.ensure([&](LooseEdgeCache &r_data) {
r_data.is_loose_bits.clear_and_shrink();
r_data.count = 0;
});
try_tag_verts_no_face_none(*this);
}
void Mesh::tag_overlapping_none()
{
using namespace blender::bke;
this->flag |= ME_NO_OVERLAPPING_TOPOLOGY;
}
namespace blender::bke {
void TrianglesCache::freeze()
{
this->frozen = true;
this->dirty_while_frozen = false;
}
void TrianglesCache::unfreeze()
{
this->frozen = false;
if (this->dirty_while_frozen) {
this->data.tag_dirty();
}
this->dirty_while_frozen = false;
}
void TrianglesCache::tag_dirty()
{
if (this->frozen) {
this->dirty_while_frozen = true;
}
else {
this->data.tag_dirty();
}
}
} // namespace blender::bke
blender::Span<blender::int3> Mesh::corner_tris() const
{
this->runtime->corner_tris_cache.data.ensure([&](blender::Array<blender::int3> &r_data) {
const Span<float3> positions = this->vert_positions();
const blender::OffsetIndices faces = this->faces();
const Span<int> corner_verts = this->corner_verts();
r_data.reinitialize(poly_to_tri_count(faces.size(), corner_verts.size()));
if (BKE_mesh_face_normals_are_dirty(this)) {
blender::bke::mesh::corner_tris_calc(positions, faces, corner_verts, r_data);
}
else {
blender::bke::mesh::corner_tris_calc_with_normals(
positions, faces, corner_verts, this->face_normals(), r_data);
}
});
return this->runtime->corner_tris_cache.data.data();
}
blender::Span<int> Mesh::corner_tri_faces() const
{
using namespace blender;
this->runtime->corner_tri_faces_cache.ensure([&](blender::Array<int> &r_data) {
const OffsetIndices faces = this->faces();
r_data.reinitialize(poly_to_tri_count(faces.size(), this->corners_num));
bke::mesh::corner_tris_calc_face_indices(faces, r_data);
});
return this->runtime->corner_tri_faces_cache.data();
}
int BKE_mesh_runtime_corner_tris_len(const Mesh *mesh)
{
/* Allow returning the size without calculating the cache. */
return poly_to_tri_count(mesh->faces_num, mesh->corners_num);
}
void BKE_mesh_runtime_ensure_edit_data(Mesh *mesh)
{
if (!mesh->runtime->edit_data) {
mesh->runtime->edit_data = std::make_unique<blender::bke::EditMeshData>();
}
}
void BKE_mesh_runtime_clear_cache(Mesh *mesh)
{
using namespace blender::bke;
free_mesh_eval(*mesh->runtime);
free_batch_cache(*mesh->runtime);
mesh->runtime->edit_data.reset();
BKE_mesh_runtime_clear_geometry(mesh);
}
void BKE_mesh_runtime_clear_geometry(Mesh *mesh)
{
/* Tagging shared caches dirty will free the allocated data if there is only one user. */
free_bvh_caches(*mesh->runtime);
mesh->runtime->subdiv_ccg.reset();
mesh->runtime->bounds_cache.tag_dirty();
mesh->runtime->vert_to_face_offset_cache.tag_dirty();
mesh->runtime->vert_to_face_map_cache.tag_dirty();
mesh->runtime->vert_to_corner_map_cache.tag_dirty();
mesh->runtime->corner_to_face_map_cache.tag_dirty();
mesh->runtime->vert_normals_cache.tag_dirty();
mesh->runtime->face_normals_cache.tag_dirty();
mesh->runtime->corner_normals_cache.tag_dirty();
mesh->runtime->loose_edges_cache.tag_dirty();
mesh->runtime->loose_verts_cache.tag_dirty();
mesh->runtime->verts_no_face_cache.tag_dirty();
mesh->runtime->corner_tris_cache.data.tag_dirty();
mesh->runtime->corner_tri_faces_cache.tag_dirty();
mesh->runtime->shrinkwrap_boundary_cache.tag_dirty();
mesh->runtime->subsurf_face_dot_tags.clear_and_shrink();
mesh->runtime->subsurf_optimal_display_edges.clear_and_shrink();
mesh->flag &= ~ME_NO_OVERLAPPING_TOPOLOGY;
}
void Mesh::tag_edges_split()
{
/* Triangulation didn't change because vertex positions and loop vertex indices didn't change. */
free_bvh_caches(*this->runtime);
this->runtime->vert_normals_cache.tag_dirty();
this->runtime->subdiv_ccg.reset();
this->runtime->vert_to_face_offset_cache.tag_dirty();
this->runtime->vert_to_face_map_cache.tag_dirty();
this->runtime->vert_to_corner_map_cache.tag_dirty();
if (this->runtime->loose_edges_cache.is_cached() &&
this->runtime->loose_edges_cache.data().count != 0)
{
this->runtime->loose_edges_cache.tag_dirty();
}
if (this->runtime->loose_verts_cache.is_cached() &&
this->runtime->loose_verts_cache.data().count != 0)
{
this->runtime->loose_verts_cache.tag_dirty();
}
if (this->runtime->verts_no_face_cache.is_cached() &&
this->runtime->verts_no_face_cache.data().count != 0)
{
this->runtime->verts_no_face_cache.tag_dirty();
}
this->runtime->subsurf_face_dot_tags.clear_and_shrink();
this->runtime->subsurf_optimal_display_edges.clear_and_shrink();
this->runtime->shrinkwrap_boundary_cache.tag_dirty();
}
void Mesh::tag_sharpness_changed()
{
this->runtime->corner_normals_cache.tag_dirty();
}
void Mesh::tag_custom_normals_changed()
{
this->runtime->corner_normals_cache.tag_dirty();
}
void Mesh::tag_face_winding_changed()
{
this->runtime->vert_normals_cache.tag_dirty();
this->runtime->face_normals_cache.tag_dirty();
this->runtime->corner_normals_cache.tag_dirty();
this->runtime->vert_to_corner_map_cache.tag_dirty();
this->runtime->shrinkwrap_boundary_cache.tag_dirty();
}
void Mesh::tag_positions_changed()
{
this->runtime->vert_normals_cache.tag_dirty();
this->runtime->face_normals_cache.tag_dirty();
this->runtime->corner_normals_cache.tag_dirty();
this->runtime->shrinkwrap_boundary_cache.tag_dirty();
this->tag_positions_changed_no_normals();
}
void Mesh::tag_positions_changed_no_normals()
{
free_bvh_caches(*this->runtime);
this->runtime->corner_tris_cache.tag_dirty();
this->runtime->bounds_cache.tag_dirty();
this->runtime->shrinkwrap_boundary_cache.tag_dirty();
}
void Mesh::tag_positions_changed_uniformly()
{
/* The normals and triangulation didn't change, since all verts moved by the same amount. */
free_bvh_caches(*this->runtime);
this->runtime->bounds_cache.tag_dirty();
}
void Mesh::tag_topology_changed()
{
BKE_mesh_runtime_clear_geometry(this);
}
void Mesh::tag_visibility_changed()
{
this->runtime->bvh_cache_corner_tris_no_hidden.tag_dirty();
this->runtime->bvh_cache_loose_verts_no_hidden.tag_dirty();
this->runtime->bvh_cache_loose_edges_no_hidden.tag_dirty();
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Batch Cache Callbacks
* \{ */
/* Draw Engine */
void (*BKE_mesh_batch_cache_dirty_tag_cb)(Mesh *mesh, eMeshBatchDirtyMode mode) = nullptr;
void (*BKE_mesh_batch_cache_free_cb)(void *batch_cache) = nullptr;
void BKE_mesh_batch_cache_dirty_tag(Mesh *mesh, eMeshBatchDirtyMode mode)
{
if (mesh->runtime->batch_cache) {
BKE_mesh_batch_cache_dirty_tag_cb(mesh, mode);
}
}
void BKE_mesh_batch_cache_free(void *batch_cache)
{
BKE_mesh_batch_cache_free_cb(batch_cache);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Runtime Validation
* \{ */
#ifndef NDEBUG
bool BKE_mesh_runtime_is_valid(Mesh *mesh_eval)
{
const bool do_verbose = true;
const bool do_fixes = false;
bool is_valid = true;
bool changed = true;
if (do_verbose) {
printf("MESH: %s\n", mesh_eval->id.name + 2);
}
MutableSpan<float3> positions = mesh_eval->vert_positions_for_write();
MutableSpan<blender::int2> edges = mesh_eval->edges_for_write();
Span<int> face_offsets = mesh_eval->face_offsets();
Span<int> corner_verts = mesh_eval->corner_verts();
MutableSpan<int> corner_edges = mesh_eval->corner_edges_for_write();
is_valid &= BKE_mesh_validate_all_customdata(
&mesh_eval->vert_data,
mesh_eval->verts_num,
&mesh_eval->edge_data,
mesh_eval->edges_num,
&mesh_eval->corner_data,
mesh_eval->corners_num,
&mesh_eval->face_data,
mesh_eval->faces_num,
false, /* setting mask here isn't useful, gives false positives */
do_verbose,
do_fixes,
&changed);
MDeformVert *dverts = static_cast<MDeformVert *>(
CustomData_get_layer_for_write(&mesh_eval->vert_data, CD_MDEFORMVERT, mesh_eval->verts_num));
is_valid &= BKE_mesh_validate_arrays(
mesh_eval,
reinterpret_cast<float(*)[3]>(positions.data()),
positions.size(),
edges.data(),
edges.size(),
static_cast<MFace *>(CustomData_get_layer_for_write(
&mesh_eval->fdata_legacy, CD_MFACE, mesh_eval->totface_legacy)),
mesh_eval->totface_legacy,
corner_verts.data(),
corner_edges.data(),
corner_verts.size(),
face_offsets.data(),
mesh_eval->faces_num,
dverts,
do_verbose,
do_fixes,
&changed);
BLI_assert(changed == false);
return is_valid;
}
#endif /* !NDEBUG */
/** \} */