- Add an explicit check with a better error message than "Out of memory" - Initialize SDefVert so the later null checks don't try to free uninitialized data. Pull Request: https://projects.blender.org/blender/blender/pulls/147723
1758 lines
59 KiB
C++
1758 lines
59 KiB
C++
/* SPDX-FileCopyrightText: 2017 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
/** \file
|
|
* \ingroup modifiers
|
|
*/
|
|
|
|
#include "BLI_math_geom.h"
|
|
#include "BLI_math_matrix.h"
|
|
#include "BLI_task.h"
|
|
|
|
#include "BLT_translation.hh"
|
|
|
|
#include "DNA_defaults.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_screen_types.h"
|
|
|
|
#include "BKE_bvhutils.hh"
|
|
#include "BKE_deform.hh"
|
|
#include "BKE_lib_query.hh"
|
|
#include "BKE_mesh.hh"
|
|
#include "BKE_mesh_wrapper.hh"
|
|
#include "BKE_modifier.hh"
|
|
|
|
#include "UI_interface_layout.hh"
|
|
#include "UI_resources.hh"
|
|
|
|
#include "BLO_read_write.hh"
|
|
|
|
#include "RNA_access.hh"
|
|
#include "RNA_prototypes.hh"
|
|
|
|
#include "DEG_depsgraph.hh"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "MOD_ui_common.hh"
|
|
#include "MOD_util.hh"
|
|
|
|
struct SDefAdjacency {
|
|
SDefAdjacency *next;
|
|
uint index;
|
|
};
|
|
|
|
struct SDefAdjacencyArray {
|
|
SDefAdjacency *first;
|
|
uint num; /* Careful, this is twice the number of faces (avoids an extra loop) */
|
|
};
|
|
|
|
/**
|
|
* Polygons per edge (only 2, any more will exit calculation).
|
|
*/
|
|
struct SDefEdgePolys {
|
|
uint polys[2], num;
|
|
};
|
|
|
|
struct SDefBindCalcData {
|
|
blender::bke::BVHTreeFromMesh *treeData;
|
|
const SDefAdjacencyArray *vert_edges;
|
|
const SDefEdgePolys *edge_polys;
|
|
SDefVert *bind_verts;
|
|
blender::Span<blender::int2> edges;
|
|
blender::OffsetIndices<int> polys;
|
|
blender::Span<int> corner_verts;
|
|
blender::Span<int> corner_edges;
|
|
blender::Span<blender::int3> corner_tris;
|
|
blender::Span<int> tri_faces;
|
|
|
|
/** Coordinates to bind to, transformed into local space (compatible with `vertexCos`). */
|
|
float (*targetCos)[3];
|
|
/** Coordinates to bind (reference to the modifiers input argument). */
|
|
const float (*vertexCos)[3];
|
|
float imat[4][4];
|
|
float falloff;
|
|
int success;
|
|
/** Vertex group lookup data. */
|
|
const MDeformVert *dvert;
|
|
int defgrp_index;
|
|
bool invert_vgroup;
|
|
bool sparse_bind;
|
|
};
|
|
|
|
/**
|
|
* This represents the relationship between a point (a source coordinate)
|
|
* and the face-corner it's being bound to (from the target mesh).
|
|
*
|
|
* \note Some of these values could be de-duplicated however these are only
|
|
* needed once when running bind, so optimizing this structure isn't a priority.
|
|
*/
|
|
struct SDefBindPoly {
|
|
/** Coordinates copied directly from the modifiers input. */
|
|
float (*coords)[3];
|
|
/** Coordinates projected into 2D space using `normal`. */
|
|
float (*coords_v2)[2];
|
|
/** The point being queried projected into 2D space using `normal`. */
|
|
float point_v2[2];
|
|
float weight_angular;
|
|
float weight_dist_proj;
|
|
float weight_dist;
|
|
float weight;
|
|
/**
|
|
* Distances from the centroid to edges flanking the corner vertex, used to penalize
|
|
* small or long and narrow faces in favor of bigger and more square ones.
|
|
*/
|
|
float scales[2];
|
|
/**
|
|
* Distance weight from the corner vertex to the chord line, used to penalize
|
|
* cases with the three consecutive vertices being nearly in line.
|
|
*/
|
|
float scale_mid;
|
|
/** Center of `coords` */
|
|
float centroid[3];
|
|
/** Center of `coords_v2` */
|
|
float centroid_v2[2];
|
|
/**
|
|
* The calculated normal of coords (could be shared between faces).
|
|
*/
|
|
float normal[3];
|
|
/**
|
|
* Vectors pointing from the centroid to the midpoints of the two edges
|
|
* flanking the corner vertex.
|
|
*/
|
|
float cent_edgemid_vecs_v2[2][2];
|
|
/** Angle between the cent_edgemid_vecs_v2 vectors. */
|
|
float edgemid_angle;
|
|
/**
|
|
* Angles between the centroid-to-point and cent_edgemid_vecs_v2 vectors.
|
|
* Positive values measured towards the corner; clamped non-negative.
|
|
*/
|
|
float point_edgemid_angles[2];
|
|
/** Angles between the centroid-to-corner and cent_edgemid_vecs_v2 vectors. */
|
|
float corner_edgemid_angles[2];
|
|
/**
|
|
* Weight of the bind mode based on the corner and two adjacent vertices,
|
|
* versus the one based on the centroid and the dominant edge.
|
|
*/
|
|
float dominant_angle_weight;
|
|
/** Index of the input face. */
|
|
uint index;
|
|
/** Number of vertices in this face. */
|
|
uint verts_num;
|
|
/**
|
|
* This polygons loop-start.
|
|
* \note that we could look this up from the face.
|
|
*/
|
|
uint loopstart;
|
|
uint edge_inds[2];
|
|
uint edge_vert_inds[2];
|
|
/** The index of this corner in the face (starting at zero). */
|
|
uint corner_ind;
|
|
uint dominant_edge;
|
|
/** When true `point_v2` is inside `coords_v2`. */
|
|
bool inside;
|
|
};
|
|
|
|
struct SDefBindWeightData {
|
|
SDefBindPoly *bind_polys;
|
|
uint faces_num;
|
|
uint binds_num;
|
|
};
|
|
|
|
struct SDefDeformData {
|
|
const SDefVert *bind_verts;
|
|
float (*targetCos)[3];
|
|
float (*vertexCos)[3];
|
|
const MDeformVert *dvert;
|
|
int defgrp_index;
|
|
bool invert_vgroup;
|
|
float strength;
|
|
};
|
|
|
|
/* Bind result values */
|
|
enum {
|
|
MOD_SDEF_BIND_RESULT_SUCCESS = 1,
|
|
MOD_SDEF_BIND_RESULT_GENERIC_ERR = 0,
|
|
MOD_SDEF_BIND_RESULT_MEM_ERR = -1,
|
|
MOD_SDEF_BIND_RESULT_NONMANY_ERR = -2,
|
|
MOD_SDEF_BIND_RESULT_CONCAVE_ERR = -3,
|
|
MOD_SDEF_BIND_RESULT_OVERLAP_ERR = -4,
|
|
};
|
|
|
|
/* Infinite weight flags */
|
|
enum {
|
|
MOD_SDEF_INFINITE_WEIGHT_ANGULAR = (1 << 0),
|
|
MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ = (1 << 1),
|
|
MOD_SDEF_INFINITE_WEIGHT_DIST = (1 << 2),
|
|
};
|
|
|
|
static void init_data(ModifierData *md)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
|
|
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(smd, modifier));
|
|
|
|
MEMCPY_STRUCT_AFTER(smd, DNA_struct_default_get(SurfaceDeformModifierData), modifier);
|
|
}
|
|
|
|
static void required_data_mask(ModifierData *md, CustomData_MeshMasks *r_cddata_masks)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
|
|
/* Ask for vertex groups if we need them. */
|
|
if (smd->defgrp_name[0] != '\0') {
|
|
r_cddata_masks->vmask |= CD_MASK_MDEFORMVERT;
|
|
}
|
|
}
|
|
|
|
class BindVertsImplicitSharing : public blender::ImplicitSharingInfo {
|
|
public:
|
|
SDefVert *verts;
|
|
int bind_verts_num;
|
|
|
|
BindVertsImplicitSharing(SDefVert *data, int bind_verts_num)
|
|
: verts(data), bind_verts_num(bind_verts_num)
|
|
{
|
|
}
|
|
|
|
private:
|
|
void delete_self_with_data() override
|
|
{
|
|
for (int i = 0; i < this->bind_verts_num; i++) {
|
|
if (this->verts[i].binds) {
|
|
for (int j = 0; j < this->verts[i].binds_num; j++) {
|
|
MEM_SAFE_FREE(this->verts[i].binds[j].vert_inds);
|
|
MEM_SAFE_FREE(this->verts[i].binds[j].vert_weights);
|
|
}
|
|
MEM_freeN(this->verts[i].binds);
|
|
}
|
|
}
|
|
MEM_freeN(verts);
|
|
MEM_delete(this);
|
|
}
|
|
};
|
|
|
|
static void free_data(ModifierData *md)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
blender::implicit_sharing::free_shared_data(&smd->verts, &smd->verts_sharing_info);
|
|
}
|
|
|
|
static void copy_data(const ModifierData *md, ModifierData *target, const int flag)
|
|
{
|
|
const SurfaceDeformModifierData *smd = (const SurfaceDeformModifierData *)md;
|
|
SurfaceDeformModifierData *tsmd = (SurfaceDeformModifierData *)target;
|
|
|
|
BKE_modifier_copydata_generic(md, target, flag);
|
|
|
|
blender::implicit_sharing::copy_shared_pointer(
|
|
smd->verts, smd->verts_sharing_info, &tsmd->verts, &tsmd->verts_sharing_info);
|
|
}
|
|
|
|
static void foreach_ID_link(ModifierData *md, Object *ob, IDWalkFunc walk, void *user_data)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
|
|
walk(user_data, ob, (ID **)&smd->target, IDWALK_CB_NOP);
|
|
}
|
|
|
|
static void update_depsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
if (smd->target != nullptr) {
|
|
DEG_add_object_relation(
|
|
ctx->node, smd->target, DEG_OB_COMP_GEOMETRY, "Surface Deform Modifier");
|
|
}
|
|
}
|
|
|
|
static void freeAdjacencyMap(SDefAdjacencyArray *const vert_edges,
|
|
SDefAdjacency *const adj_ref,
|
|
SDefEdgePolys *const edge_polys)
|
|
{
|
|
MEM_freeN(edge_polys);
|
|
|
|
MEM_freeN(adj_ref);
|
|
|
|
MEM_freeN(vert_edges);
|
|
}
|
|
|
|
static int buildAdjacencyMap(const blender::OffsetIndices<int> polys,
|
|
const blender::Span<blender::int2> edges,
|
|
const blender::Span<int> corner_edges,
|
|
SDefAdjacencyArray *const vert_edges,
|
|
SDefAdjacency *adj,
|
|
SDefEdgePolys *const edge_polys)
|
|
{
|
|
/* Find polygons adjacent to edges. */
|
|
for (const int i : polys.index_range()) {
|
|
for (const int edge_i : corner_edges.slice(polys[i])) {
|
|
if (edge_polys[edge_i].num == 0) {
|
|
edge_polys[edge_i].polys[0] = i;
|
|
edge_polys[edge_i].polys[1] = -1;
|
|
edge_polys[edge_i].num++;
|
|
}
|
|
else if (edge_polys[edge_i].num == 1) {
|
|
edge_polys[edge_i].polys[1] = i;
|
|
edge_polys[edge_i].num++;
|
|
}
|
|
else {
|
|
return MOD_SDEF_BIND_RESULT_NONMANY_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find edges adjacent to vertices */
|
|
for (const int i : edges.index_range()) {
|
|
const blender::int2 &edge = edges[i];
|
|
adj->next = vert_edges[edge[0]].first;
|
|
adj->index = i;
|
|
vert_edges[edge[0]].first = adj;
|
|
vert_edges[edge[0]].num += edge_polys[i].num;
|
|
adj++;
|
|
|
|
adj->next = vert_edges[edge[1]].first;
|
|
adj->index = i;
|
|
vert_edges[edge[1]].first = adj;
|
|
vert_edges[edge[1]].num += edge_polys[i].num;
|
|
adj++;
|
|
}
|
|
|
|
return MOD_SDEF_BIND_RESULT_SUCCESS;
|
|
}
|
|
|
|
BLI_INLINE void sortPolyVertsEdge(uint *indices,
|
|
const int *const corner_verts,
|
|
const int *const corner_edges,
|
|
const uint edge,
|
|
const uint num)
|
|
{
|
|
bool found = false;
|
|
|
|
for (int i = 0; i < num; i++) {
|
|
if (corner_edges[i] == edge) {
|
|
found = true;
|
|
}
|
|
if (found) {
|
|
*indices = corner_verts[i];
|
|
indices++;
|
|
}
|
|
}
|
|
|
|
/* Fill in remaining vertex indices that occur before the edge */
|
|
for (int i = 0; corner_edges[i] != edge; i++) {
|
|
*indices = corner_verts[i];
|
|
indices++;
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void sortPolyVertsTri(uint *indices,
|
|
const int *const corner_verts,
|
|
const uint loopstart,
|
|
const uint num)
|
|
{
|
|
for (int i = loopstart; i < num; i++) {
|
|
*indices = corner_verts[i];
|
|
indices++;
|
|
}
|
|
|
|
for (int i = 0; i < loopstart; i++) {
|
|
*indices = corner_verts[i];
|
|
indices++;
|
|
}
|
|
}
|
|
|
|
BLI_INLINE uint nearestVert(SDefBindCalcData *const data, const float point_co[3])
|
|
{
|
|
BVHTreeNearest nearest{};
|
|
nearest.dist_sq = FLT_MAX;
|
|
nearest.index = -1;
|
|
|
|
float t_point[3];
|
|
float max_dist = FLT_MAX;
|
|
float dist;
|
|
uint index = 0;
|
|
|
|
mul_v3_m4v3(t_point, data->imat, point_co);
|
|
|
|
BLI_bvhtree_find_nearest(
|
|
data->treeData->tree, t_point, &nearest, data->treeData->nearest_callback, data->treeData);
|
|
|
|
const blender::IndexRange face = data->polys[data->tri_faces[nearest.index]];
|
|
|
|
for (int i = 0; i < face.size(); i++) {
|
|
const int edge_i = data->corner_edges[face.start() + i];
|
|
const blender::int2 &edge = data->edges[edge_i];
|
|
dist = dist_squared_to_line_segment_v3(
|
|
point_co, data->targetCos[edge[0]], data->targetCos[edge[1]]);
|
|
|
|
if (dist < max_dist) {
|
|
max_dist = dist;
|
|
index = edge_i;
|
|
}
|
|
}
|
|
|
|
const blender::int2 &edge = data->edges[index];
|
|
if (len_squared_v3v3(point_co, data->targetCos[edge[0]]) <
|
|
len_squared_v3v3(point_co, data->targetCos[edge[1]]))
|
|
{
|
|
return edge[0];
|
|
}
|
|
|
|
return edge[1];
|
|
}
|
|
|
|
BLI_INLINE int isPolyValid(const float coords[][2], const uint nr)
|
|
{
|
|
float prev_co[2], prev_prev_co[2];
|
|
float curr_vec[2], prev_vec[2];
|
|
|
|
if (!is_poly_convex_v2(coords, nr)) {
|
|
return MOD_SDEF_BIND_RESULT_CONCAVE_ERR;
|
|
}
|
|
|
|
copy_v2_v2(prev_prev_co, coords[nr - 2]);
|
|
copy_v2_v2(prev_co, coords[nr - 1]);
|
|
sub_v2_v2v2(prev_vec, prev_co, coords[nr - 2]);
|
|
normalize_v2(prev_vec);
|
|
|
|
for (int i = 0; i < nr; i++) {
|
|
sub_v2_v2v2(curr_vec, coords[i], prev_co);
|
|
|
|
/* Check overlap between directly adjacent vertices. */
|
|
const float curr_len = normalize_v2(curr_vec);
|
|
if (curr_len < FLT_EPSILON) {
|
|
return MOD_SDEF_BIND_RESULT_OVERLAP_ERR;
|
|
}
|
|
|
|
/* Check overlap between vertices skipping one. */
|
|
if (len_squared_v2v2(prev_prev_co, coords[i]) < FLT_EPSILON * FLT_EPSILON) {
|
|
return MOD_SDEF_BIND_RESULT_OVERLAP_ERR;
|
|
}
|
|
|
|
/* Check for adjacent parallel edges. */
|
|
if (1.0f - dot_v2v2(prev_vec, curr_vec) < FLT_EPSILON) {
|
|
return MOD_SDEF_BIND_RESULT_CONCAVE_ERR;
|
|
}
|
|
|
|
copy_v2_v2(prev_prev_co, prev_co);
|
|
copy_v2_v2(prev_co, coords[i]);
|
|
copy_v2_v2(prev_vec, curr_vec);
|
|
}
|
|
|
|
return MOD_SDEF_BIND_RESULT_SUCCESS;
|
|
}
|
|
|
|
static void freeBindData(SDefBindWeightData *const bwdata)
|
|
{
|
|
SDefBindPoly *bpoly = bwdata->bind_polys;
|
|
|
|
if (bwdata->bind_polys) {
|
|
for (int i = 0; i < bwdata->faces_num; bpoly++, i++) {
|
|
MEM_SAFE_FREE(bpoly->coords);
|
|
MEM_SAFE_FREE(bpoly->coords_v2);
|
|
}
|
|
|
|
MEM_freeN(bwdata->bind_polys);
|
|
}
|
|
|
|
MEM_freeN(bwdata);
|
|
}
|
|
|
|
BLI_INLINE float computeAngularWeight(const float point_angle, const float edgemid_angle)
|
|
{
|
|
return sinf(min_ff(point_angle / edgemid_angle, 1) * M_PI_2);
|
|
}
|
|
|
|
BLI_INLINE SDefBindWeightData *computeBindWeights(SDefBindCalcData *const data,
|
|
const float point_co[3])
|
|
{
|
|
const uint nearest = nearestVert(data, point_co);
|
|
const SDefAdjacency *const vert_edges = data->vert_edges[nearest].first;
|
|
const SDefEdgePolys *const edge_polys = data->edge_polys;
|
|
|
|
const SDefAdjacency *vedge;
|
|
|
|
SDefBindWeightData *bwdata;
|
|
SDefBindPoly *bpoly;
|
|
|
|
const float world[3] = {0.0f, 0.0f, 1.0f};
|
|
float avg_point_dist = 0.0f;
|
|
float tot_weight = 0.0f;
|
|
int inf_weight_flags = 0;
|
|
|
|
bwdata = MEM_callocN<SDefBindWeightData>("SDefBindWeightData");
|
|
if (bwdata == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
bwdata->faces_num = data->vert_edges[nearest].num / 2;
|
|
|
|
bpoly = MEM_calloc_arrayN<SDefBindPoly>(bwdata->faces_num, "SDefBindPoly");
|
|
if (bpoly == nullptr) {
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
bwdata->bind_polys = bpoly;
|
|
|
|
/* Loop over all adjacent edges,
|
|
* and build the #SDefBindPoly data for each face adjacent to those. */
|
|
for (vedge = vert_edges; vedge; vedge = vedge->next) {
|
|
uint edge_ind = vedge->index;
|
|
|
|
for (int i = 0; i < edge_polys[edge_ind].num; i++) {
|
|
{
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int j = 0; j < bwdata->faces_num; bpoly++, j++) {
|
|
/* If coords isn't allocated, we have reached the first uninitialized `bpoly`. */
|
|
if ((bpoly->index == edge_polys[edge_ind].polys[i]) || (!bpoly->coords)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if face was already created by another edge or still has to be initialized */
|
|
if (!bpoly->coords) {
|
|
float angle;
|
|
float axis[3];
|
|
float tmp_vec_v2[2];
|
|
int is_poly_valid;
|
|
|
|
bpoly->index = edge_polys[edge_ind].polys[i];
|
|
bpoly->coords = nullptr;
|
|
bpoly->coords_v2 = nullptr;
|
|
|
|
/* Copy face data */
|
|
const blender::IndexRange face = data->polys[bpoly->index];
|
|
|
|
bpoly->verts_num = face.size();
|
|
bpoly->loopstart = face.start();
|
|
|
|
bpoly->coords = MEM_malloc_arrayN<float[3]>(size_t(face.size()), "SDefBindPolyCoords");
|
|
if (bpoly->coords == nullptr) {
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
bpoly->coords_v2 = MEM_malloc_arrayN<float[2]>(size_t(face.size()),
|
|
"SDefBindPolyCoords_v2");
|
|
if (bpoly->coords_v2 == nullptr) {
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
for (int j = 0; j < face.size(); j++) {
|
|
const int vert_i = data->corner_verts[face.start() + j];
|
|
const int edge_i = data->corner_edges[face.start() + j];
|
|
copy_v3_v3(bpoly->coords[j], data->targetCos[vert_i]);
|
|
|
|
/* Find corner and edge indices within face loop array */
|
|
if (vert_i == nearest) {
|
|
bpoly->corner_ind = j;
|
|
bpoly->edge_vert_inds[0] = (j == 0) ? (face.size() - 1) : (j - 1);
|
|
bpoly->edge_vert_inds[1] = (j == face.size() - 1) ? (0) : (j + 1);
|
|
|
|
bpoly->edge_inds[0] = data->corner_edges[face.start() + bpoly->edge_vert_inds[0]];
|
|
bpoly->edge_inds[1] = edge_i;
|
|
}
|
|
}
|
|
|
|
/* Compute polygons parametric data. */
|
|
mid_v3_v3_array(bpoly->centroid, bpoly->coords, face.size());
|
|
normal_poly_v3(bpoly->normal, bpoly->coords, face.size());
|
|
|
|
/* Compute face skew angle and axis */
|
|
angle = angle_normalized_v3v3(bpoly->normal, world);
|
|
|
|
cross_v3_v3v3(axis, bpoly->normal, world);
|
|
normalize_v3(axis);
|
|
|
|
/* Map coords onto 2d normal plane. */
|
|
map_to_plane_axis_angle_v2_v3v3fl(bpoly->point_v2, point_co, axis, angle);
|
|
|
|
zero_v2(bpoly->centroid_v2);
|
|
for (int j = 0; j < face.size(); j++) {
|
|
map_to_plane_axis_angle_v2_v3v3fl(bpoly->coords_v2[j], bpoly->coords[j], axis, angle);
|
|
madd_v2_v2fl(bpoly->centroid_v2, bpoly->coords_v2[j], 1.0f / face.size());
|
|
}
|
|
|
|
is_poly_valid = isPolyValid(bpoly->coords_v2, face.size());
|
|
|
|
if (is_poly_valid != MOD_SDEF_BIND_RESULT_SUCCESS) {
|
|
freeBindData(bwdata);
|
|
data->success = is_poly_valid;
|
|
return nullptr;
|
|
}
|
|
|
|
bpoly->inside = isect_point_poly_v2(bpoly->point_v2, bpoly->coords_v2, face.size());
|
|
|
|
/* Initialize weight components */
|
|
bpoly->weight_angular = 1.0f;
|
|
bpoly->weight_dist_proj = len_v2v2(bpoly->centroid_v2, bpoly->point_v2);
|
|
bpoly->weight_dist = len_v3v3(bpoly->centroid, point_co);
|
|
|
|
avg_point_dist += bpoly->weight_dist;
|
|
|
|
/* Common vertex coordinates. */
|
|
const float *const vert0_v2 = bpoly->coords_v2[bpoly->edge_vert_inds[0]];
|
|
const float *const vert1_v2 = bpoly->coords_v2[bpoly->edge_vert_inds[1]];
|
|
const float *const corner_v2 = bpoly->coords_v2[bpoly->corner_ind];
|
|
|
|
/* Compute centroid to mid-edge vectors */
|
|
mid_v2_v2v2(bpoly->cent_edgemid_vecs_v2[0], vert0_v2, corner_v2);
|
|
mid_v2_v2v2(bpoly->cent_edgemid_vecs_v2[1], vert1_v2, corner_v2);
|
|
|
|
sub_v2_v2(bpoly->cent_edgemid_vecs_v2[0], bpoly->centroid_v2);
|
|
sub_v2_v2(bpoly->cent_edgemid_vecs_v2[1], bpoly->centroid_v2);
|
|
|
|
normalize_v2(bpoly->cent_edgemid_vecs_v2[0]);
|
|
normalize_v2(bpoly->cent_edgemid_vecs_v2[1]);
|
|
|
|
/* Compute face scales with respect to the two edges. */
|
|
bpoly->scales[0] = dist_to_line_v2(bpoly->centroid_v2, vert0_v2, corner_v2);
|
|
bpoly->scales[1] = dist_to_line_v2(bpoly->centroid_v2, vert1_v2, corner_v2);
|
|
|
|
/* Compute the angle between the edge mid vectors. */
|
|
bpoly->edgemid_angle = angle_normalized_v2v2(bpoly->cent_edgemid_vecs_v2[0],
|
|
bpoly->cent_edgemid_vecs_v2[1]);
|
|
|
|
/* Compute the angles between the corner and the edge mid vectors. The angles
|
|
* are computed signed in order to correctly clamp point_edgemid_angles later. */
|
|
float corner_angles[2];
|
|
|
|
sub_v2_v2v2(tmp_vec_v2, corner_v2, bpoly->centroid_v2);
|
|
normalize_v2(tmp_vec_v2);
|
|
|
|
corner_angles[0] = angle_signed_v2v2(tmp_vec_v2, bpoly->cent_edgemid_vecs_v2[0]);
|
|
corner_angles[1] = angle_signed_v2v2(tmp_vec_v2, bpoly->cent_edgemid_vecs_v2[1]);
|
|
|
|
bpoly->corner_edgemid_angles[0] = fabsf(corner_angles[0]);
|
|
bpoly->corner_edgemid_angles[1] = fabsf(corner_angles[1]);
|
|
|
|
/* Verify that the computed values are valid (the face isn't somehow
|
|
* degenerate despite having passed isPolyValid). */
|
|
if (bpoly->scales[0] < FLT_EPSILON || bpoly->scales[1] < FLT_EPSILON ||
|
|
bpoly->edgemid_angle < FLT_EPSILON || bpoly->corner_edgemid_angles[0] < FLT_EPSILON ||
|
|
bpoly->corner_edgemid_angles[1] < FLT_EPSILON)
|
|
{
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_GENERIC_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
/* Check for infinite weights, and compute angular data otherwise. */
|
|
if (bpoly->weight_dist < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ;
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST;
|
|
}
|
|
else if (bpoly->weight_dist_proj < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ;
|
|
}
|
|
else {
|
|
/* Compute angles between the point and the edge mid vectors. */
|
|
float cent_point_vec[2], point_angles[2];
|
|
|
|
sub_v2_v2v2(cent_point_vec, bpoly->point_v2, bpoly->centroid_v2);
|
|
normalize_v2(cent_point_vec);
|
|
|
|
point_angles[0] = angle_signed_v2v2(cent_point_vec, bpoly->cent_edgemid_vecs_v2[0]) *
|
|
signf(corner_angles[0]);
|
|
point_angles[1] = angle_signed_v2v2(cent_point_vec, bpoly->cent_edgemid_vecs_v2[1]) *
|
|
signf(corner_angles[1]);
|
|
|
|
if (point_angles[0] <= 0 && point_angles[1] <= 0) {
|
|
/* If the point is outside the corner formed by the edge mid vectors,
|
|
* choose to clamp the closest side and flip the other. */
|
|
if (point_angles[0] < point_angles[1]) {
|
|
point_angles[0] = bpoly->edgemid_angle - point_angles[1];
|
|
}
|
|
else {
|
|
point_angles[1] = bpoly->edgemid_angle - point_angles[0];
|
|
}
|
|
}
|
|
|
|
bpoly->point_edgemid_angles[0] = max_ff(0, point_angles[0]);
|
|
bpoly->point_edgemid_angles[1] = max_ff(0, point_angles[1]);
|
|
|
|
/* Compute the distance scale for the corner. The base value is the orthogonal
|
|
* distance from the corner to the chord, scaled by `sqrt(2)` to preserve the old
|
|
* values in case of a square grid. This doesn't use the centroid because the
|
|
* corner_triS method only uses these three vertices. */
|
|
bpoly->scale_mid = area_tri_v2(vert0_v2, corner_v2, vert1_v2) /
|
|
len_v2v2(vert0_v2, vert1_v2) * sqrtf(2);
|
|
|
|
if (bpoly->inside) {
|
|
/* When inside, interpolate to centroid-based scale close to the center. */
|
|
float min_dist = min_ff(bpoly->scales[0], bpoly->scales[1]);
|
|
|
|
bpoly->scale_mid = interpf(bpoly->scale_mid,
|
|
(bpoly->scales[0] + bpoly->scales[1]) / 2,
|
|
min_ff(bpoly->weight_dist_proj / min_dist, 1));
|
|
}
|
|
|
|
/* Verify that the additional computed values are valid. */
|
|
if (bpoly->scale_mid < FLT_EPSILON ||
|
|
bpoly->point_edgemid_angles[0] + bpoly->point_edgemid_angles[1] < FLT_EPSILON)
|
|
{
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_GENERIC_ERR;
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
avg_point_dist /= bwdata->faces_num;
|
|
|
|
/* If weights 1 and 2 are not infinite, loop over all adjacent edges again,
|
|
* and build adjacency dependent angle data (depends on all polygons having been computed) */
|
|
if (!inf_weight_flags) {
|
|
for (vedge = vert_edges; vedge; vedge = vedge->next) {
|
|
SDefBindPoly *bpolys[2];
|
|
const SDefEdgePolys *epolys;
|
|
float ang_weights[2];
|
|
uint edge_ind = vedge->index;
|
|
uint edge_on_poly[2];
|
|
|
|
epolys = &edge_polys[edge_ind];
|
|
|
|
/* Find bind polys corresponding to the edge's adjacent polys */
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0, j = 0; (i < bwdata->faces_num) && (j < epolys->num); bpoly++, i++) {
|
|
if (ELEM(bpoly->index, epolys->polys[0], epolys->polys[1])) {
|
|
bpolys[j] = bpoly;
|
|
|
|
if (bpoly->edge_inds[0] == edge_ind) {
|
|
edge_on_poly[j] = 0;
|
|
}
|
|
else {
|
|
edge_on_poly[j] = 1;
|
|
}
|
|
|
|
j++;
|
|
}
|
|
}
|
|
|
|
/* Compute angular weight component */
|
|
if (epolys->num == 1) {
|
|
ang_weights[0] = computeAngularWeight(bpolys[0]->point_edgemid_angles[edge_on_poly[0]],
|
|
bpolys[0]->edgemid_angle);
|
|
bpolys[0]->weight_angular *= ang_weights[0] * ang_weights[0];
|
|
}
|
|
else if (epolys->num == 2) {
|
|
ang_weights[0] = computeAngularWeight(bpolys[0]->point_edgemid_angles[edge_on_poly[0]],
|
|
bpolys[0]->edgemid_angle);
|
|
ang_weights[1] = computeAngularWeight(bpolys[1]->point_edgemid_angles[edge_on_poly[1]],
|
|
bpolys[1]->edgemid_angle);
|
|
|
|
bpolys[0]->weight_angular *= ang_weights[0] * ang_weights[1];
|
|
bpolys[1]->weight_angular *= ang_weights[0] * ang_weights[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute scaling and falloff:
|
|
* - Scale all weights if no infinite weight is found.
|
|
* - Scale only un-projected weight if projected weight is infinite.
|
|
* - Scale none if both are infinite. */
|
|
if (!inf_weight_flags) {
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0; i < bwdata->faces_num; bpoly++, i++) {
|
|
float corner_angle_weights[2];
|
|
float scale_weight, sqr, inv_sqr;
|
|
|
|
corner_angle_weights[0] = bpoly->point_edgemid_angles[0] / bpoly->corner_edgemid_angles[0];
|
|
corner_angle_weights[1] = bpoly->point_edgemid_angles[1] / bpoly->corner_edgemid_angles[1];
|
|
|
|
if (isnan(corner_angle_weights[0]) || isnan(corner_angle_weights[1])) {
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_GENERIC_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
/* Find which edge the point is closer to */
|
|
if (corner_angle_weights[0] < corner_angle_weights[1]) {
|
|
bpoly->dominant_edge = 0;
|
|
bpoly->dominant_angle_weight = corner_angle_weights[0];
|
|
}
|
|
else {
|
|
bpoly->dominant_edge = 1;
|
|
bpoly->dominant_angle_weight = corner_angle_weights[1];
|
|
}
|
|
|
|
/* Check for invalid weights just in case computations fail. */
|
|
if (bpoly->dominant_angle_weight < 0 || bpoly->dominant_angle_weight > 1) {
|
|
freeBindData(bwdata);
|
|
data->success = MOD_SDEF_BIND_RESULT_GENERIC_ERR;
|
|
return nullptr;
|
|
}
|
|
|
|
bpoly->dominant_angle_weight = sinf(bpoly->dominant_angle_weight * M_PI_2);
|
|
|
|
/* Compute quadratic angular scale interpolation weight */
|
|
{
|
|
const float edge_angle_a = bpoly->point_edgemid_angles[bpoly->dominant_edge];
|
|
const float edge_angle_b = bpoly->point_edgemid_angles[!bpoly->dominant_edge];
|
|
/* Clamp so skinny faces with near zero `edgemid_angle`
|
|
* won't cause numeric problems. see #81988. */
|
|
scale_weight = edge_angle_a / max_ff(edge_angle_a, bpoly->edgemid_angle);
|
|
scale_weight /= scale_weight + (edge_angle_b / max_ff(edge_angle_b, bpoly->edgemid_angle));
|
|
}
|
|
|
|
sqr = scale_weight * scale_weight;
|
|
inv_sqr = 1.0f - scale_weight;
|
|
inv_sqr *= inv_sqr;
|
|
scale_weight = sqr / (sqr + inv_sqr);
|
|
|
|
BLI_assert(scale_weight >= 0 && scale_weight <= 1);
|
|
|
|
/* Compute interpolated scale (no longer need the individual scales,
|
|
* so simply storing the result over the scale in index zero) */
|
|
bpoly->scales[0] = interpf(bpoly->scale_mid,
|
|
interpf(bpoly->scales[!bpoly->dominant_edge],
|
|
bpoly->scales[bpoly->dominant_edge],
|
|
scale_weight),
|
|
bpoly->dominant_angle_weight);
|
|
|
|
/* Scale the point distance weights, and introduce falloff */
|
|
bpoly->weight_dist_proj /= bpoly->scales[0];
|
|
bpoly->weight_dist_proj = powf(bpoly->weight_dist_proj, data->falloff);
|
|
|
|
bpoly->weight_dist /= avg_point_dist;
|
|
bpoly->weight_dist = powf(bpoly->weight_dist, data->falloff);
|
|
|
|
/* Re-check for infinite weights, now that all scalings and interpolations are computed */
|
|
if (bpoly->weight_dist < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ;
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST;
|
|
}
|
|
else if (bpoly->weight_dist_proj < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ;
|
|
}
|
|
else if (bpoly->weight_angular < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_ANGULAR;
|
|
}
|
|
}
|
|
}
|
|
else if (!(inf_weight_flags & MOD_SDEF_INFINITE_WEIGHT_DIST)) {
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0; i < bwdata->faces_num; bpoly++, i++) {
|
|
/* Scale the point distance weight by average point distance, and introduce falloff */
|
|
bpoly->weight_dist /= avg_point_dist;
|
|
bpoly->weight_dist = powf(bpoly->weight_dist, data->falloff);
|
|
|
|
/* Re-check for infinite weights, now that all scalings and interpolations are computed */
|
|
if (bpoly->weight_dist < FLT_EPSILON) {
|
|
inf_weight_flags |= MOD_SDEF_INFINITE_WEIGHT_DIST;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Final loop, to compute actual weights */
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0; i < bwdata->faces_num; bpoly++, i++) {
|
|
/* Weight computation from components */
|
|
if (inf_weight_flags & MOD_SDEF_INFINITE_WEIGHT_DIST) {
|
|
bpoly->weight = bpoly->weight_dist < FLT_EPSILON ? 1.0f : 0.0f;
|
|
}
|
|
else if (inf_weight_flags & MOD_SDEF_INFINITE_WEIGHT_DIST_PROJ) {
|
|
bpoly->weight = bpoly->weight_dist_proj < FLT_EPSILON ? 1.0f / bpoly->weight_dist : 0.0f;
|
|
}
|
|
else if (inf_weight_flags & MOD_SDEF_INFINITE_WEIGHT_ANGULAR) {
|
|
bpoly->weight = bpoly->weight_angular < FLT_EPSILON ?
|
|
1.0f / bpoly->weight_dist_proj / bpoly->weight_dist :
|
|
0.0f;
|
|
}
|
|
else {
|
|
bpoly->weight = 1.0f / bpoly->weight_angular / bpoly->weight_dist_proj / bpoly->weight_dist;
|
|
}
|
|
|
|
/* Apply after other kinds of scaling so the faces corner angle is always
|
|
* scaled in a uniform way, preventing heavily sub-divided triangle fans
|
|
* from having a lop-sided influence on the weighting, see #81988. */
|
|
bpoly->weight *= bpoly->edgemid_angle / M_PI;
|
|
|
|
tot_weight += bpoly->weight;
|
|
}
|
|
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0; i < bwdata->faces_num; bpoly++, i++) {
|
|
bpoly->weight /= tot_weight;
|
|
|
|
/* Evaluate if this face is relevant to bind */
|
|
/* Even though the weights should add up to 1.0,
|
|
* the losses of weights smaller than epsilon here
|
|
* should be negligible... */
|
|
if (bpoly->weight >= FLT_EPSILON) {
|
|
if (bpoly->inside) {
|
|
bwdata->binds_num += 1;
|
|
}
|
|
else {
|
|
if (bpoly->dominant_angle_weight < FLT_EPSILON ||
|
|
1.0f - bpoly->dominant_angle_weight < FLT_EPSILON)
|
|
{
|
|
bwdata->binds_num += 1;
|
|
}
|
|
else {
|
|
bwdata->binds_num += 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return bwdata;
|
|
}
|
|
|
|
BLI_INLINE float computeNormalDisplacement(const float point_co[3],
|
|
const float point_co_proj[3],
|
|
const float normal[3])
|
|
{
|
|
float disp_vec[3];
|
|
float normal_dist;
|
|
|
|
sub_v3_v3v3(disp_vec, point_co, point_co_proj);
|
|
normal_dist = len_v3(disp_vec);
|
|
|
|
if (dot_v3v3(disp_vec, normal) < 0) {
|
|
normal_dist *= -1;
|
|
}
|
|
|
|
return normal_dist;
|
|
}
|
|
|
|
static void bindVert(void *__restrict userdata,
|
|
const int index,
|
|
const TaskParallelTLS *__restrict /*tls*/)
|
|
{
|
|
SDefBindCalcData *const data = (SDefBindCalcData *)userdata;
|
|
float point_co[3];
|
|
float point_co_proj[3];
|
|
|
|
SDefBindWeightData *bwdata;
|
|
SDefVert *sdvert = data->bind_verts + index;
|
|
SDefBindPoly *bpoly;
|
|
SDefBind *sdbind;
|
|
|
|
sdvert->vertex_idx = index;
|
|
|
|
if (data->success != MOD_SDEF_BIND_RESULT_SUCCESS) {
|
|
sdvert->binds = nullptr;
|
|
sdvert->binds_num = 0;
|
|
return;
|
|
}
|
|
|
|
if (data->sparse_bind) {
|
|
float weight = 0.0f;
|
|
|
|
if (data->dvert && data->defgrp_index != -1) {
|
|
weight = BKE_defvert_find_weight(&data->dvert[index], data->defgrp_index);
|
|
}
|
|
|
|
if (data->invert_vgroup) {
|
|
weight = 1.0f - weight;
|
|
}
|
|
|
|
if (weight <= 0) {
|
|
sdvert->binds = nullptr;
|
|
sdvert->binds_num = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
copy_v3_v3(point_co, data->vertexCos[index]);
|
|
bwdata = computeBindWeights(data, point_co);
|
|
|
|
if (bwdata == nullptr) {
|
|
sdvert->binds = nullptr;
|
|
sdvert->binds_num = 0;
|
|
return;
|
|
}
|
|
|
|
sdvert->binds = MEM_calloc_arrayN<SDefBind>(bwdata->binds_num, "SDefVertBindData");
|
|
if (sdvert->binds == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
sdvert->binds_num = 0;
|
|
return;
|
|
}
|
|
|
|
sdvert->binds_num = bwdata->binds_num;
|
|
|
|
sdbind = sdvert->binds;
|
|
|
|
bpoly = bwdata->bind_polys;
|
|
|
|
for (int i = 0; i < bwdata->binds_num; bpoly++) {
|
|
if (bpoly->weight >= FLT_EPSILON) {
|
|
if (bpoly->inside) {
|
|
sdbind->influence = bpoly->weight;
|
|
sdbind->verts_num = bpoly->verts_num;
|
|
|
|
sdbind->mode = MOD_SDEF_MODE_NGONS;
|
|
sdbind->vert_weights = MEM_malloc_arrayN<float>(size_t(bpoly->verts_num),
|
|
"SDefNgonVertWeights");
|
|
if (sdbind->vert_weights == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
sdbind->vert_inds = MEM_malloc_arrayN<uint>(size_t(bpoly->verts_num), "SDefNgonVertInds");
|
|
if (sdbind->vert_inds == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
interp_weights_poly_v2(
|
|
sdbind->vert_weights, bpoly->coords_v2, bpoly->verts_num, bpoly->point_v2);
|
|
|
|
/* Re-project vert based on weights and original face verts,
|
|
* to reintroduce face non-planarity */
|
|
zero_v3(point_co_proj);
|
|
for (int j = 0; j < bpoly->verts_num; j++) {
|
|
const int vert_i = data->corner_verts[bpoly->loopstart + j];
|
|
madd_v3_v3fl(point_co_proj, bpoly->coords[j], sdbind->vert_weights[j]);
|
|
sdbind->vert_inds[j] = vert_i;
|
|
}
|
|
|
|
sdbind->normal_dist = computeNormalDisplacement(point_co, point_co_proj, bpoly->normal);
|
|
|
|
sdbind++;
|
|
i++;
|
|
}
|
|
else {
|
|
float tmp_vec[3];
|
|
float cent[3], norm[3];
|
|
float v1[3], v2[3], v3[3];
|
|
|
|
if (1.0f - bpoly->dominant_angle_weight >= FLT_EPSILON) {
|
|
sdbind->influence = bpoly->weight * (1.0f - bpoly->dominant_angle_weight);
|
|
sdbind->verts_num = bpoly->verts_num;
|
|
|
|
sdbind->mode = MOD_SDEF_MODE_CENTROID;
|
|
sdbind->vert_weights = MEM_malloc_arrayN<float>(3, "SDefCentVertWeights");
|
|
if (sdbind->vert_weights == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
sdbind->vert_inds = MEM_malloc_arrayN<uint>(size_t(bpoly->verts_num),
|
|
"SDefCentVertInds");
|
|
if (sdbind->vert_inds == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
sortPolyVertsEdge(sdbind->vert_inds,
|
|
&data->corner_verts[bpoly->loopstart],
|
|
&data->corner_edges[bpoly->loopstart],
|
|
bpoly->edge_inds[bpoly->dominant_edge],
|
|
bpoly->verts_num);
|
|
|
|
copy_v3_v3(v1, data->targetCos[sdbind->vert_inds[0]]);
|
|
copy_v3_v3(v2, data->targetCos[sdbind->vert_inds[1]]);
|
|
copy_v3_v3(v3, bpoly->centroid);
|
|
|
|
mid_v3_v3v3v3(cent, v1, v2, v3);
|
|
normal_tri_v3(norm, v1, v2, v3);
|
|
|
|
add_v3_v3v3(tmp_vec, point_co, bpoly->normal);
|
|
|
|
/* We are sure the line is not parallel to the plane.
|
|
* Checking return value just to avoid warning... */
|
|
if (!isect_line_plane_v3(point_co_proj, point_co, tmp_vec, cent, norm)) {
|
|
BLI_assert(false);
|
|
}
|
|
|
|
interp_weights_tri_v3(sdbind->vert_weights, v1, v2, v3, point_co_proj);
|
|
|
|
sdbind->normal_dist = computeNormalDisplacement(point_co, point_co_proj, bpoly->normal);
|
|
|
|
sdbind++;
|
|
i++;
|
|
}
|
|
|
|
if (bpoly->dominant_angle_weight >= FLT_EPSILON) {
|
|
sdbind->influence = bpoly->weight * bpoly->dominant_angle_weight;
|
|
sdbind->verts_num = bpoly->verts_num;
|
|
|
|
sdbind->mode = MOD_SDEF_MODE_CORNER_TRIS;
|
|
sdbind->vert_weights = MEM_malloc_arrayN<float>(3, "SDefTriVertWeights");
|
|
if (sdbind->vert_weights == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
sdbind->vert_inds = MEM_malloc_arrayN<uint>(size_t(bpoly->verts_num), "SDefTriVertInds");
|
|
if (sdbind->vert_inds == nullptr) {
|
|
data->success = MOD_SDEF_BIND_RESULT_MEM_ERR;
|
|
return;
|
|
}
|
|
|
|
sortPolyVertsTri(sdbind->vert_inds,
|
|
&data->corner_verts[bpoly->loopstart],
|
|
bpoly->edge_vert_inds[0],
|
|
bpoly->verts_num);
|
|
|
|
copy_v3_v3(v1, data->targetCos[sdbind->vert_inds[0]]);
|
|
copy_v3_v3(v2, data->targetCos[sdbind->vert_inds[1]]);
|
|
copy_v3_v3(v3, data->targetCos[sdbind->vert_inds[2]]);
|
|
|
|
mid_v3_v3v3v3(cent, v1, v2, v3);
|
|
normal_tri_v3(norm, v1, v2, v3);
|
|
|
|
add_v3_v3v3(tmp_vec, point_co, bpoly->normal);
|
|
|
|
/* We are sure the line is not parallel to the plane.
|
|
* Checking return value just to avoid warning... */
|
|
if (!isect_line_plane_v3(point_co_proj, point_co, tmp_vec, cent, norm)) {
|
|
BLI_assert(false);
|
|
}
|
|
|
|
interp_weights_tri_v3(sdbind->vert_weights, v1, v2, v3, point_co_proj);
|
|
|
|
sdbind->normal_dist = computeNormalDisplacement(point_co, point_co_proj, bpoly->normal);
|
|
|
|
sdbind++;
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
freeBindData(bwdata);
|
|
}
|
|
|
|
/* Remove vertices without bind data from the bind array. */
|
|
static void compactSparseBinds(SurfaceDeformModifierData *smd)
|
|
{
|
|
smd->bind_verts_num = 0;
|
|
|
|
for (uint i = 0; i < smd->mesh_verts_num; i++) {
|
|
if (smd->verts[i].binds_num > 0) {
|
|
smd->bind_verts_num++;
|
|
}
|
|
}
|
|
|
|
SDefVert *new_verts = MEM_malloc_arrayN<SDefVert>(size_t(smd->bind_verts_num), __func__);
|
|
|
|
/* Move data to new_verts. */
|
|
BLI_assert(smd->verts_sharing_info->is_mutable());
|
|
int dst_index = 0;
|
|
for (uint i = 0; i < smd->mesh_verts_num; i++) {
|
|
if (smd->verts[i].binds_num > 0) {
|
|
new_verts[dst_index++] = smd->verts[i];
|
|
smd->verts[i] = {};
|
|
}
|
|
}
|
|
|
|
smd->verts_sharing_info->remove_user_and_delete_if_last();
|
|
smd->verts = new_verts;
|
|
smd->verts_sharing_info = MEM_new<BindVertsImplicitSharing>(
|
|
__func__, smd->verts, smd->bind_verts_num);
|
|
}
|
|
|
|
static bool surfacedeformBind(Object *ob,
|
|
SurfaceDeformModifierData *smd_orig,
|
|
SurfaceDeformModifierData *smd_eval,
|
|
float (*vertexCos)[3],
|
|
uint verts_num,
|
|
uint target_faces_num,
|
|
uint target_verts_num,
|
|
Mesh *target,
|
|
Mesh *mesh)
|
|
{
|
|
using namespace blender;
|
|
const blender::Span<blender::float3> positions = target->vert_positions();
|
|
const blender::Span<blender::int2> edges = target->edges();
|
|
const blender::OffsetIndices polys = target->faces();
|
|
const blender::Span<int> corner_verts = target->corner_verts();
|
|
const blender::Span<int> corner_edges = target->corner_edges();
|
|
uint tedges_num = target->edges_num;
|
|
int adj_result;
|
|
|
|
if (target->faces_num == 0) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Target has no faces");
|
|
return false;
|
|
}
|
|
|
|
SDefAdjacencyArray *vert_edges = MEM_calloc_arrayN<SDefAdjacencyArray>(target_verts_num,
|
|
"SDefVertEdgeMap");
|
|
if (vert_edges == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
return false;
|
|
}
|
|
|
|
SDefAdjacency *adj_array = MEM_malloc_arrayN<SDefAdjacency>(2 * size_t(tedges_num),
|
|
"SDefVertEdge");
|
|
if (adj_array == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
MEM_freeN(vert_edges);
|
|
return false;
|
|
}
|
|
|
|
SDefEdgePolys *edge_polys = MEM_calloc_arrayN<SDefEdgePolys>(tedges_num, "SDefEdgeFaceMap");
|
|
if (edge_polys == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
MEM_freeN(vert_edges);
|
|
MEM_freeN(adj_array);
|
|
return false;
|
|
}
|
|
|
|
smd_orig->verts = MEM_calloc_arrayN<SDefVert>(size_t(verts_num), "SDefBindVerts");
|
|
if (smd_orig->verts == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
freeAdjacencyMap(vert_edges, adj_array, edge_polys);
|
|
return false;
|
|
}
|
|
smd_orig->verts_sharing_info = MEM_new<BindVertsImplicitSharing>(
|
|
__func__, smd_orig->verts, verts_num);
|
|
|
|
blender::bke::BVHTreeFromMesh treeData = target->bvh_corner_tris();
|
|
if (treeData.tree == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
freeAdjacencyMap(vert_edges, adj_array, edge_polys);
|
|
implicit_sharing::free_shared_data(&smd_orig->verts, &smd_orig->verts_sharing_info);
|
|
return false;
|
|
}
|
|
|
|
adj_result = buildAdjacencyMap(polys, edges, corner_edges, vert_edges, adj_array, edge_polys);
|
|
|
|
if (adj_result == MOD_SDEF_BIND_RESULT_NONMANY_ERR) {
|
|
BKE_modifier_set_error(
|
|
ob, (ModifierData *)smd_eval, "Target has edges with more than two polygons");
|
|
freeAdjacencyMap(vert_edges, adj_array, edge_polys);
|
|
implicit_sharing::free_shared_data(&smd_orig->verts, &smd_orig->verts_sharing_info);
|
|
return false;
|
|
}
|
|
|
|
smd_orig->mesh_verts_num = verts_num;
|
|
smd_orig->target_verts_num = target_verts_num;
|
|
smd_orig->target_polys_num = target_faces_num;
|
|
|
|
int defgrp_index;
|
|
const MDeformVert *dvert;
|
|
MOD_get_vgroup(ob, mesh, smd_orig->defgrp_name, &dvert, &defgrp_index);
|
|
const bool invert_vgroup = (smd_orig->flags & MOD_SDEF_INVERT_VGROUP) != 0;
|
|
const bool sparse_bind = (smd_orig->flags & MOD_SDEF_SPARSE_BIND) != 0;
|
|
|
|
SDefBindCalcData data{};
|
|
data.treeData = &treeData;
|
|
data.vert_edges = vert_edges;
|
|
data.edge_polys = edge_polys;
|
|
data.polys = polys;
|
|
data.edges = edges;
|
|
data.corner_verts = corner_verts;
|
|
data.corner_edges = corner_edges;
|
|
data.corner_tris = target->corner_tris();
|
|
data.tri_faces = target->corner_tri_faces();
|
|
data.targetCos = MEM_malloc_arrayN<float[3]>(size_t(target_verts_num),
|
|
"SDefTargetBindVertArray");
|
|
data.bind_verts = smd_orig->verts;
|
|
data.vertexCos = vertexCos;
|
|
data.falloff = smd_orig->falloff;
|
|
data.success = MOD_SDEF_BIND_RESULT_SUCCESS;
|
|
data.dvert = dvert;
|
|
data.defgrp_index = defgrp_index;
|
|
data.invert_vgroup = invert_vgroup;
|
|
data.sparse_bind = sparse_bind;
|
|
|
|
if (data.targetCos == nullptr) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
free_data((ModifierData *)smd_orig);
|
|
return false;
|
|
}
|
|
|
|
invert_m4_m4(data.imat, smd_orig->mat);
|
|
|
|
for (int i = 0; i < target_verts_num; i++) {
|
|
mul_v3_m4v3(data.targetCos[i], smd_orig->mat, positions[i]);
|
|
}
|
|
|
|
TaskParallelSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (verts_num > 10000);
|
|
BLI_task_parallel_range(0, verts_num, &data, bindVert, &settings);
|
|
|
|
MEM_freeN(data.targetCos);
|
|
|
|
if (sparse_bind) {
|
|
compactSparseBinds(smd_orig);
|
|
}
|
|
else {
|
|
smd_orig->bind_verts_num = verts_num;
|
|
}
|
|
|
|
if (data.success == MOD_SDEF_BIND_RESULT_MEM_ERR) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Out of memory");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
else if (data.success == MOD_SDEF_BIND_RESULT_NONMANY_ERR) {
|
|
BKE_modifier_set_error(
|
|
ob, (ModifierData *)smd_eval, "Target has edges with more than two polygons");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
else if (data.success == MOD_SDEF_BIND_RESULT_CONCAVE_ERR) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Target contains concave polygons");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
else if (data.success == MOD_SDEF_BIND_RESULT_OVERLAP_ERR) {
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Target contains overlapping vertices");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
else if (data.success == MOD_SDEF_BIND_RESULT_GENERIC_ERR) {
|
|
/* I know this message is vague, but I could not think of a way
|
|
* to explain this with a reasonably sized message.
|
|
* Though it shouldn't really matter all that much,
|
|
* because this is very unlikely to occur */
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "Target contains invalid polygons");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
else if (smd_orig->bind_verts_num == 0 || !smd_orig->verts) {
|
|
data.success = MOD_SDEF_BIND_RESULT_GENERIC_ERR;
|
|
BKE_modifier_set_error(ob, (ModifierData *)smd_eval, "No vertices were bound");
|
|
free_data((ModifierData *)smd_orig);
|
|
}
|
|
|
|
freeAdjacencyMap(vert_edges, adj_array, edge_polys);
|
|
|
|
return data.success == 1;
|
|
}
|
|
|
|
static void deformVert(void *__restrict userdata,
|
|
const int index,
|
|
const TaskParallelTLS *__restrict /*tls*/)
|
|
{
|
|
const SDefDeformData *const data = (SDefDeformData *)userdata;
|
|
const SDefBind *sdbind = data->bind_verts[index].binds;
|
|
const int sdbind_num = data->bind_verts[index].binds_num;
|
|
const uint vertex_idx = data->bind_verts[index].vertex_idx;
|
|
float *const vertexCos = data->vertexCos[vertex_idx];
|
|
float norm[3], temp[3], offset[3];
|
|
|
|
/* Retrieve the value of the weight vertex group if specified. */
|
|
float weight = 1.0f;
|
|
|
|
if (data->dvert && data->defgrp_index != -1) {
|
|
weight = BKE_defvert_find_weight(&data->dvert[vertex_idx], data->defgrp_index);
|
|
|
|
if (data->invert_vgroup) {
|
|
weight = 1.0f - weight;
|
|
}
|
|
}
|
|
|
|
/* Check if this vertex will be deformed. If it is not deformed we return and avoid
|
|
* unnecessary calculations. */
|
|
if (weight == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
zero_v3(offset);
|
|
|
|
int max_verts = 0;
|
|
for (int j = 0; j < sdbind_num; j++) {
|
|
max_verts = std::max(max_verts, int(sdbind[j].verts_num));
|
|
}
|
|
|
|
/* Allocate a `coords_buffer` that fits all the temp-data. */
|
|
blender::Array<blender::float3, 256> coords_buffer(max_verts);
|
|
|
|
for (int j = 0; j < sdbind_num; j++, sdbind++) {
|
|
for (int k = 0; k < sdbind->verts_num; k++) {
|
|
copy_v3_v3(coords_buffer[k], data->targetCos[sdbind->vert_inds[k]]);
|
|
}
|
|
|
|
normal_poly_v3(
|
|
norm, reinterpret_cast<const float (*)[3]>(coords_buffer.data()), sdbind->verts_num);
|
|
zero_v3(temp);
|
|
|
|
switch (sdbind->mode) {
|
|
/* ---------- corner_tri mode ---------- */
|
|
case MOD_SDEF_MODE_CORNER_TRIS: {
|
|
madd_v3_v3fl(temp, data->targetCos[sdbind->vert_inds[0]], sdbind->vert_weights[0]);
|
|
madd_v3_v3fl(temp, data->targetCos[sdbind->vert_inds[1]], sdbind->vert_weights[1]);
|
|
madd_v3_v3fl(temp, data->targetCos[sdbind->vert_inds[2]], sdbind->vert_weights[2]);
|
|
break;
|
|
}
|
|
|
|
/* ---------- ngon mode ---------- */
|
|
case MOD_SDEF_MODE_NGONS: {
|
|
for (int k = 0; k < sdbind->verts_num; k++) {
|
|
madd_v3_v3fl(temp, coords_buffer[k], sdbind->vert_weights[k]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* ---------- centroid mode ---------- */
|
|
case MOD_SDEF_MODE_CENTROID: {
|
|
float cent[3];
|
|
mid_v3_v3_array(
|
|
cent, reinterpret_cast<const float (*)[3]>(coords_buffer.data()), sdbind->verts_num);
|
|
|
|
madd_v3_v3fl(temp, data->targetCos[sdbind->vert_inds[0]], sdbind->vert_weights[0]);
|
|
madd_v3_v3fl(temp, data->targetCos[sdbind->vert_inds[1]], sdbind->vert_weights[1]);
|
|
madd_v3_v3fl(temp, cent, sdbind->vert_weights[2]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Apply normal offset (generic for all modes) */
|
|
madd_v3_v3fl(temp, norm, sdbind->normal_dist);
|
|
|
|
madd_v3_v3fl(offset, temp, sdbind->influence);
|
|
}
|
|
/* Subtract the vertex coord to get the deformation offset. */
|
|
sub_v3_v3(offset, vertexCos);
|
|
|
|
/* Add the offset to start coord multiplied by the strength and weight values. */
|
|
madd_v3_v3fl(vertexCos, offset, data->strength * weight);
|
|
}
|
|
|
|
static void surfacedeformModifier_do(ModifierData *md,
|
|
const ModifierEvalContext *ctx,
|
|
float (*vertexCos)[3],
|
|
uint verts_num,
|
|
Object *ob,
|
|
Mesh *mesh)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
Mesh *target;
|
|
uint target_verts_num, target_faces_num;
|
|
|
|
/* Exit function if bind flag is not set (free bind data if any). */
|
|
if (!(smd->flags & MOD_SDEF_BIND)) {
|
|
if (smd->verts != nullptr) {
|
|
if (!DEG_is_active(ctx->depsgraph)) {
|
|
BKE_modifier_set_error(ob, md, "Attempt to bind from inactive dependency graph");
|
|
return;
|
|
}
|
|
ModifierData *md_orig = BKE_modifier_get_original(ob, md);
|
|
free_data(md_orig);
|
|
}
|
|
return;
|
|
}
|
|
|
|
Object *ob_target = smd->target;
|
|
target = BKE_modifier_get_evaluated_mesh_from_evaluated_object(ob_target);
|
|
if (!target) {
|
|
BKE_modifier_set_error(ob, md, "No valid target mesh");
|
|
return;
|
|
}
|
|
|
|
target_verts_num = BKE_mesh_wrapper_vert_len(target);
|
|
target_faces_num = BKE_mesh_wrapper_face_len(target);
|
|
|
|
/* If not bound, execute bind. */
|
|
if (smd->verts == nullptr) {
|
|
if (!DEG_is_active(ctx->depsgraph)) {
|
|
BKE_modifier_set_error(ob, md, "Attempt to unbind from inactive dependency graph");
|
|
return;
|
|
}
|
|
|
|
SurfaceDeformModifierData *smd_orig = (SurfaceDeformModifierData *)BKE_modifier_get_original(
|
|
ob, md);
|
|
float tmp_mat[4][4];
|
|
|
|
invert_m4_m4(tmp_mat, ob->object_to_world().ptr());
|
|
mul_m4_m4m4(smd_orig->mat, tmp_mat, ob_target->object_to_world().ptr());
|
|
|
|
/* Avoid converting edit-mesh data, binding is an exception. */
|
|
BKE_mesh_wrapper_ensure_mdata(target);
|
|
|
|
if (!surfacedeformBind(ob,
|
|
smd_orig,
|
|
smd,
|
|
vertexCos,
|
|
verts_num,
|
|
target_faces_num,
|
|
target_verts_num,
|
|
target,
|
|
mesh))
|
|
{
|
|
smd->flags &= ~MOD_SDEF_BIND;
|
|
}
|
|
/* Early abort, this is binding 'call', no need to perform whole evaluation. */
|
|
return;
|
|
}
|
|
|
|
/* Geometry count on the deforming mesh. */
|
|
if (smd->mesh_verts_num != verts_num) {
|
|
BKE_modifier_set_error(
|
|
ob, md, "Vertices changed from %u to %u", smd->mesh_verts_num, verts_num);
|
|
return;
|
|
}
|
|
|
|
/* Geometry count on the target mesh. */
|
|
if (smd->target_polys_num != target_faces_num && smd->target_verts_num == 0) {
|
|
/* Change in the number of polygons does not really imply change in the vertex count, but
|
|
* this is how the modifier worked before the vertex count was known. Follow the legacy
|
|
* logic without requirement to re-bind the mesh. */
|
|
BKE_modifier_set_error(
|
|
ob, md, "Target polygons changed from %u to %u", smd->target_polys_num, target_faces_num);
|
|
return;
|
|
}
|
|
if (!ELEM(smd->target_verts_num, 0, target_verts_num)) {
|
|
if (smd->target_verts_num > target_verts_num) {
|
|
/* Number of vertices on the target did reduce. There is no usable recovery from this. */
|
|
BKE_modifier_set_error(ob,
|
|
md,
|
|
"Target vertices changed from %u to %u",
|
|
smd->target_verts_num,
|
|
target_verts_num);
|
|
return;
|
|
}
|
|
|
|
/* Assume the increase in the vertex count means that the "new" vertices in the target mesh are
|
|
* added after the original ones. This covers typical case when target was at the subdivision
|
|
* level 0 and then subdivision was increased (i.e. for the render purposes). */
|
|
|
|
BKE_modifier_set_warning(ob,
|
|
md,
|
|
"Target vertices changed from %u to %u, continuing anyway",
|
|
smd->target_verts_num,
|
|
target_verts_num);
|
|
|
|
/* In theory we only need the `smd->verts_num` vertices in the `targetCos` for evaluation, but
|
|
* it is not currently possible to request a subset of coordinates: the API expects that the
|
|
* caller needs coordinates of all vertices and asserts for it. */
|
|
}
|
|
|
|
/* Early out if modifier would not affect input at all - still *after* the sanity checks
|
|
* (and potential binding) above. */
|
|
if (smd->strength == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
int defgrp_index;
|
|
const MDeformVert *dvert;
|
|
MOD_get_vgroup(ob, mesh, smd->defgrp_name, &dvert, &defgrp_index);
|
|
const bool invert_vgroup = (smd->flags & MOD_SDEF_INVERT_VGROUP) != 0;
|
|
|
|
/* Actual vertex location update starts here */
|
|
SDefDeformData data{};
|
|
data.bind_verts = smd->verts;
|
|
data.targetCos = MEM_malloc_arrayN<float[3]>(size_t(target_verts_num), "SDefTargetVertArray");
|
|
data.vertexCos = vertexCos;
|
|
data.dvert = dvert;
|
|
data.defgrp_index = defgrp_index;
|
|
data.invert_vgroup = invert_vgroup;
|
|
data.strength = smd->strength;
|
|
|
|
if (data.targetCos != nullptr) {
|
|
BKE_mesh_wrapper_vert_coords_copy_with_mat4(
|
|
target, data.targetCos, target_verts_num, smd->mat);
|
|
|
|
TaskParallelSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (smd->bind_verts_num > 10000);
|
|
BLI_task_parallel_range(0, smd->bind_verts_num, &data, deformVert, &settings);
|
|
|
|
MEM_freeN(data.targetCos);
|
|
}
|
|
}
|
|
|
|
static void deform_verts(ModifierData *md,
|
|
const ModifierEvalContext *ctx,
|
|
Mesh *mesh,
|
|
blender::MutableSpan<blender::float3> positions)
|
|
{
|
|
surfacedeformModifier_do(md,
|
|
ctx,
|
|
reinterpret_cast<float (*)[3]>(positions.data()),
|
|
positions.size(),
|
|
ctx->object,
|
|
mesh);
|
|
}
|
|
|
|
static bool is_disabled(const Scene * /*scene*/, ModifierData *md, bool /*use_render_params*/)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
|
|
/* The object type check is only needed here in case we have a placeholder
|
|
* object assigned (because the library containing the mesh is missing).
|
|
*
|
|
* In other cases it should be impossible to have a type mismatch.
|
|
*/
|
|
return (smd->target == nullptr || smd->target->type != OB_MESH) &&
|
|
!(smd->verts != nullptr && !(smd->flags & MOD_SDEF_BIND));
|
|
}
|
|
|
|
static void panel_draw(const bContext * /*C*/, Panel *panel)
|
|
{
|
|
uiLayout *col;
|
|
uiLayout *layout = panel->layout;
|
|
|
|
PointerRNA ob_ptr;
|
|
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);
|
|
|
|
PointerRNA target_ptr = RNA_pointer_get(ptr, "target");
|
|
|
|
bool is_bound = RNA_boolean_get(ptr, "is_bound");
|
|
|
|
layout->use_property_split_set(true);
|
|
|
|
col = &layout->column(false);
|
|
col->active_set(!is_bound);
|
|
col->prop(ptr, "target", UI_ITEM_NONE, std::nullopt, ICON_NONE);
|
|
col->prop(ptr, "falloff", UI_ITEM_NONE, std::nullopt, ICON_NONE);
|
|
|
|
layout->prop(ptr, "strength", UI_ITEM_NONE, std::nullopt, ICON_NONE);
|
|
|
|
modifier_vgroup_ui(layout, ptr, &ob_ptr, "vertex_group", "invert_vertex_group", std::nullopt);
|
|
|
|
col = &layout->column(false);
|
|
col->enabled_set(!is_bound);
|
|
col->active_set(!is_bound && RNA_string_length(ptr, "vertex_group") != 0);
|
|
col->prop(ptr, "use_sparse_bind", UI_ITEM_NONE, std::nullopt, ICON_NONE);
|
|
|
|
layout->separator();
|
|
|
|
col = &layout->column(false);
|
|
if (is_bound) {
|
|
col->op("OBJECT_OT_surfacedeform_bind", IFACE_("Unbind"), ICON_NONE);
|
|
}
|
|
else {
|
|
col->active_set(!RNA_pointer_is_null(&target_ptr));
|
|
col->op("OBJECT_OT_surfacedeform_bind", IFACE_("Bind"), ICON_NONE);
|
|
}
|
|
modifier_error_message_draw(layout, ptr);
|
|
}
|
|
|
|
static void panel_register(ARegionType *region_type)
|
|
{
|
|
modifier_panel_register(region_type, eModifierType_SurfaceDeform, panel_draw);
|
|
}
|
|
|
|
static void blend_write(BlendWriter *writer, const ID *id_owner, const ModifierData *md)
|
|
{
|
|
SurfaceDeformModifierData smd = *(const SurfaceDeformModifierData *)md;
|
|
const bool is_undo = BLO_write_is_undo(writer);
|
|
|
|
if (ID_IS_OVERRIDE_LIBRARY(id_owner) && !is_undo) {
|
|
BLI_assert(!ID_IS_LINKED(id_owner));
|
|
const bool is_local = (md->flag & eModifierFlag_OverrideLibrary_Local) != 0;
|
|
if (!is_local) {
|
|
/* Modifier coming from linked data cannot be bound from an override, so we can remove all
|
|
* binding data, can save a significant amount of memory. */
|
|
smd.bind_verts_num = 0;
|
|
smd.verts = nullptr;
|
|
smd.verts_sharing_info = nullptr;
|
|
}
|
|
}
|
|
|
|
BLO_write_struct_at_address(writer, SurfaceDeformModifierData, md, &smd);
|
|
|
|
if (smd.verts != nullptr) {
|
|
BLO_write_shared(
|
|
writer, smd.verts, sizeof(SDefVert) * smd.bind_verts_num, smd.verts_sharing_info, [&]() {
|
|
SDefVert *bind_verts = smd.verts;
|
|
BLO_write_struct_array(writer, SDefVert, smd.bind_verts_num, bind_verts);
|
|
|
|
for (int i = 0; i < smd.bind_verts_num; i++) {
|
|
BLO_write_struct_array(writer, SDefBind, bind_verts[i].binds_num, bind_verts[i].binds);
|
|
|
|
if (bind_verts[i].binds) {
|
|
for (int j = 0; j < bind_verts[i].binds_num; j++) {
|
|
BLO_write_uint32_array(
|
|
writer, bind_verts[i].binds[j].verts_num, bind_verts[i].binds[j].vert_inds);
|
|
|
|
if (ELEM(bind_verts[i].binds[j].mode,
|
|
MOD_SDEF_MODE_CENTROID,
|
|
MOD_SDEF_MODE_CORNER_TRIS))
|
|
{
|
|
BLO_write_float3_array(writer, 1, bind_verts[i].binds[j].vert_weights);
|
|
}
|
|
else {
|
|
BLO_write_float_array(writer,
|
|
bind_verts[i].binds[j].verts_num,
|
|
bind_verts[i].binds[j].vert_weights);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
static void blend_read(BlendDataReader *reader, ModifierData *md)
|
|
{
|
|
SurfaceDeformModifierData *smd = (SurfaceDeformModifierData *)md;
|
|
|
|
if (smd->verts) {
|
|
smd->verts_sharing_info = BLO_read_shared(reader, &smd->verts, [&]() {
|
|
BLO_read_struct_array(reader, SDefVert, smd->bind_verts_num, &smd->verts);
|
|
for (int i = 0; i < smd->bind_verts_num; i++) {
|
|
BLO_read_struct_array(reader, SDefBind, smd->verts[i].binds_num, &smd->verts[i].binds);
|
|
|
|
if (smd->verts[i].binds) {
|
|
for (int j = 0; j < smd->verts[i].binds_num; j++) {
|
|
BLO_read_uint32_array(
|
|
reader, smd->verts[i].binds[j].verts_num, &smd->verts[i].binds[j].vert_inds);
|
|
|
|
if (ELEM(smd->verts[i].binds[j].mode,
|
|
MOD_SDEF_MODE_CENTROID,
|
|
MOD_SDEF_MODE_CORNER_TRIS))
|
|
{
|
|
BLO_read_float3_array(reader, 1, &smd->verts[i].binds[j].vert_weights);
|
|
}
|
|
else {
|
|
BLO_read_float_array(
|
|
reader, smd->verts[i].binds[j].verts_num, &smd->verts[i].binds[j].vert_weights);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return MEM_new<BindVertsImplicitSharing>(
|
|
"BindVertsImplicitSharing", smd->verts, smd->bind_verts_num);
|
|
});
|
|
}
|
|
}
|
|
|
|
ModifierTypeInfo modifierType_SurfaceDeform = {
|
|
/*idname*/ "SurfaceDeform",
|
|
/*name*/ N_("SurfaceDeform"),
|
|
/*struct_name*/ "SurfaceDeformModifierData",
|
|
/*struct_size*/ sizeof(SurfaceDeformModifierData),
|
|
/*srna*/ &RNA_SurfaceDeformModifier,
|
|
/*type*/ ModifierTypeType::OnlyDeform,
|
|
/*flags*/ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsEditmode,
|
|
/*icon*/ ICON_MOD_MESHDEFORM,
|
|
|
|
/*copy_data*/ copy_data,
|
|
|
|
/*deform_verts*/ deform_verts,
|
|
/*deform_matrices*/ nullptr,
|
|
/*deform_verts_EM*/ nullptr,
|
|
/*deform_matrices_EM*/ nullptr,
|
|
/*modify_mesh*/ nullptr,
|
|
/*modify_geometry_set*/ nullptr,
|
|
|
|
/*init_data*/ init_data,
|
|
/*required_data_mask*/ required_data_mask,
|
|
/*free_data*/ free_data,
|
|
/*is_disabled*/ is_disabled,
|
|
/*update_depsgraph*/ update_depsgraph,
|
|
/*depends_on_time*/ nullptr,
|
|
/*depends_on_normals*/ nullptr,
|
|
/*foreach_ID_link*/ foreach_ID_link,
|
|
/*foreach_tex_link*/ nullptr,
|
|
/*free_runtime_data*/ nullptr,
|
|
/*panel_register*/ panel_register,
|
|
/*blend_write*/ blend_write,
|
|
/*blend_read*/ blend_read,
|
|
/*foreach_cache*/ nullptr,
|
|
/*foreach_working_space_color*/ nullptr,
|
|
};
|