Files
test2/intern/cycles/kernel/integrator/integrator_volume_stack.h
Brecht Van Lommel 0803119725 Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.

Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.

Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles
https://wiki.blender.org/wiki/Source/Render/Cycles

Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)

For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.

Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
2021-09-21 14:55:54 +02:00

224 lines
6.8 KiB
C++

/*
* Copyright 2011-2021 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
/* Volume Stack
*
* This is an array of object/shared ID's that the current segment of the path
* is inside of. */
template<typename StackReadOp, typename StackWriteOp>
ccl_device void volume_stack_enter_exit(INTEGRATOR_STATE_ARGS,
const ShaderData *sd,
StackReadOp stack_read,
StackWriteOp stack_write)
{
/* todo: we should have some way for objects to indicate if they want the
* world shader to work inside them. excluding it by default is problematic
* because non-volume objects can't be assumed to be closed manifolds */
if (!(sd->flag & SD_HAS_VOLUME)) {
return;
}
if (sd->flag & SD_BACKFACING) {
/* Exit volume object: remove from stack. */
for (int i = 0;; i++) {
VolumeStack entry = stack_read(i);
if (entry.shader == SHADER_NONE) {
break;
}
if (entry.object == sd->object) {
/* Shift back next stack entries. */
do {
entry = stack_read(i + 1);
stack_write(i, entry);
i++;
} while (entry.shader != SHADER_NONE);
return;
}
}
}
else {
/* Enter volume object: add to stack. */
int i;
for (i = 0;; i++) {
VolumeStack entry = stack_read(i);
if (entry.shader == SHADER_NONE) {
break;
}
/* Already in the stack? then we have nothing to do. */
if (entry.object == sd->object) {
return;
}
}
/* If we exceed the stack limit, ignore. */
if (i >= VOLUME_STACK_SIZE - 1) {
return;
}
/* Add to the end of the stack. */
const VolumeStack new_entry = {sd->object, sd->shader};
const VolumeStack empty_entry = {OBJECT_NONE, SHADER_NONE};
stack_write(i, new_entry);
stack_write(i + 1, empty_entry);
}
}
ccl_device void volume_stack_enter_exit(INTEGRATOR_STATE_ARGS, const ShaderData *sd)
{
volume_stack_enter_exit(
INTEGRATOR_STATE_PASS,
sd,
[=](const int i) { return integrator_state_read_volume_stack(INTEGRATOR_STATE_PASS, i); },
[=](const int i, const VolumeStack entry) {
integrator_state_write_volume_stack(INTEGRATOR_STATE_PASS, i, entry);
});
}
ccl_device void shadow_volume_stack_enter_exit(INTEGRATOR_STATE_ARGS, const ShaderData *sd)
{
volume_stack_enter_exit(
INTEGRATOR_STATE_PASS,
sd,
[=](const int i) {
return integrator_state_read_shadow_volume_stack(INTEGRATOR_STATE_PASS, i);
},
[=](const int i, const VolumeStack entry) {
integrator_state_write_shadow_volume_stack(INTEGRATOR_STATE_PASS, i, entry);
});
}
/* Clean stack after the last bounce.
*
* It is expected that all volumes are closed manifolds, so at the time when ray
* hits nothing (for example, it is a last bounce which goes to environment) the
* only expected volume in the stack is the world's one. All the rest volume
* entries should have been exited already.
*
* This isn't always true because of ray intersection precision issues, which
* could lead us to an infinite non-world volume in the stack, causing render
* artifacts.
*
* Use this function after the last bounce to get rid of all volumes apart from
* the world's one after the last bounce to avoid render artifacts.
*/
ccl_device_inline void volume_stack_clean(INTEGRATOR_STATE_ARGS)
{
if (kernel_data.background.volume_shader != SHADER_NONE) {
/* Keep the world's volume in stack. */
INTEGRATOR_STATE_ARRAY_WRITE(volume_stack, 1, shader) = SHADER_NONE;
}
else {
INTEGRATOR_STATE_ARRAY_WRITE(volume_stack, 0, shader) = SHADER_NONE;
}
}
template<typename StackReadOp>
ccl_device float volume_stack_step_size(INTEGRATOR_STATE_ARGS, StackReadOp stack_read)
{
float step_size = FLT_MAX;
for (int i = 0;; i++) {
VolumeStack entry = stack_read(i);
if (entry.shader == SHADER_NONE) {
break;
}
int shader_flag = kernel_tex_fetch(__shaders, (entry.shader & SHADER_MASK)).flags;
bool heterogeneous = false;
if (shader_flag & SD_HETEROGENEOUS_VOLUME) {
heterogeneous = true;
}
else if (shader_flag & SD_NEED_VOLUME_ATTRIBUTES) {
/* We want to render world or objects without any volume grids
* as homogeneous, but can only verify this at run-time since other
* heterogeneous volume objects may be using the same shader. */
int object = entry.object;
if (object != OBJECT_NONE) {
int object_flag = kernel_tex_fetch(__object_flag, object);
if (object_flag & SD_OBJECT_HAS_VOLUME_ATTRIBUTES) {
heterogeneous = true;
}
}
}
if (heterogeneous) {
float object_step_size = object_volume_step_size(kg, entry.object);
object_step_size *= kernel_data.integrator.volume_step_rate;
step_size = fminf(object_step_size, step_size);
}
}
return step_size;
}
typedef enum VolumeSampleMethod {
VOLUME_SAMPLE_NONE = 0,
VOLUME_SAMPLE_DISTANCE = (1 << 0),
VOLUME_SAMPLE_EQUIANGULAR = (1 << 1),
VOLUME_SAMPLE_MIS = (VOLUME_SAMPLE_DISTANCE | VOLUME_SAMPLE_EQUIANGULAR),
} VolumeSampleMethod;
ccl_device VolumeSampleMethod volume_stack_sample_method(INTEGRATOR_STATE_ARGS)
{
VolumeSampleMethod method = VOLUME_SAMPLE_NONE;
for (int i = 0;; i++) {
VolumeStack entry = integrator_state_read_volume_stack(INTEGRATOR_STATE_PASS, i);
if (entry.shader == SHADER_NONE) {
break;
}
int shader_flag = kernel_tex_fetch(__shaders, (entry.shader & SHADER_MASK)).flags;
if (shader_flag & SD_VOLUME_MIS) {
/* Multiple importance sampling. */
return VOLUME_SAMPLE_MIS;
}
else if (shader_flag & SD_VOLUME_EQUIANGULAR) {
/* Distance + equiangular sampling -> multiple importance sampling. */
if (method == VOLUME_SAMPLE_DISTANCE) {
return VOLUME_SAMPLE_MIS;
}
/* Only equiangular sampling. */
method = VOLUME_SAMPLE_EQUIANGULAR;
}
else {
/* Distance + equiangular sampling -> multiple importance sampling. */
if (method == VOLUME_SAMPLE_EQUIANGULAR) {
return VOLUME_SAMPLE_MIS;
}
/* Distance sampling only. */
method = VOLUME_SAMPLE_DISTANCE;
}
}
return method;
}
CCL_NAMESPACE_END