Files
test2/scripts/startup/bl_operators/uvcalc_transform.py
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

498 lines
14 KiB
Python

# SPDX-FileCopyrightText: 2022-2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
import math
from bpy.types import Operator
from mathutils import Matrix, Vector
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
FloatVectorProperty,
IntProperty,
)
# ------------------------------------------------------------------------------
# Local Utility Functions
def is_face_uv_selected(face, uv_layer, any_edge):
"""
Returns True if the face is UV selected.
:arg face: the face to query.
:type face: :class:`BMFace`
:arg uv_layer: the UV layer to source UVs from.
:type bmesh: :class:`BMLayerItem`
:arg any_edge: use edge selection instead of vertex selection.
:type any_edge: bool
:return: True if the face is UV selected.
:rtype: bool
"""
if not face.select: # Geometry selection
return False
import bpy
if bpy.context.tool_settings.use_uv_select_sync:
# In sync selection mode, UV selection comes solely from geometry selection.
return True
if any_edge:
for loop in face.loops:
if loop[uv_layer].select_edge:
return True
return False
for loop in face.loops:
if not loop[uv_layer].select:
return False
return True
def is_island_uv_selected(island, uv_layer, any_edge):
"""
Returns True if the island is UV selected.
:arg island: list of faces to query.
:type island: sequence of :class:`BMFace`.
:arg uv_layer: the UV layer to source UVs from.
:type bmesh: :class:`BMLayerItem`
:arg any_edge: use edge selection instead of vertex selection.
:type any_edge: bool
:return: list of lists containing polygon indices.
:rtype: bool
"""
for face in island:
if is_face_uv_selected(face, uv_layer, any_edge):
return True
return False
def island_uv_bounds(island, uv_layer):
"""
The UV bounds of UV island.
:arg island: list of faces to query.
:type island: sequence of :class:`BMFace`.
:arg uv_layer: the UV layer to source UVs from.
:return: U-min, V-min, U-max, V-max.
:rtype: list
"""
minmax = [1e30, 1e30, -1e30, -1e30]
for face in island:
for loop in face.loops:
u, v = loop[uv_layer].uv
minmax[0] = min(minmax[0], u)
minmax[1] = min(minmax[1], v)
minmax[2] = max(minmax[2], u)
minmax[3] = max(minmax[3], v)
return minmax
def island_uv_bounds_center(island, uv_layer):
"""
The UV bounds center of UV island.
:arg island: list of faces to query.
:type island: sequence of :class:`BMFace`.
:arg uv_layer: the UV layer to source UVs from.
:return: U, V center.
:rtype: tuple
"""
minmax = island_uv_bounds(island, uv_layer)
return (
(minmax[0] + minmax[2]) / 2.0,
(minmax[1] + minmax[3]) / 2.0,
)
# ------------------------------------------------------------------------------
# Align UV Rotation Operator
def find_rotation_auto(bm, uv_layer, faces, aspect_y):
sum_u = 0.0
sum_v = 0.0
for face in faces:
prev_uv = face.loops[-1][uv_layer].uv
for loop in face.loops:
uv = loop[uv_layer].uv
du = uv[0] - prev_uv[0]
dv = uv[1] - prev_uv[1]
edge_angle = math.atan2(dv, du * aspect_y)
edge_angle *= 4.0 # Wrap 4 times around the circle
sum_u += math.cos(edge_angle)
sum_v += math.sin(edge_angle)
prev_uv = uv
# Compute angle.
return -math.atan2(sum_v, sum_u) / 4.0
def find_rotation_edge(bm, uv_layer, faces, aspect_y):
sum_u = 0.0
sum_v = 0.0
for face in faces:
prev_uv = face.loops[-1][uv_layer].uv
prev_select = face.loops[-1][uv_layer].select_edge
for loop in face.loops:
uv = loop[uv_layer].uv
if prev_select:
du = uv[0] - prev_uv[0]
dv = uv[1] - prev_uv[1]
edge_angle = math.atan2(dv, du * aspect_y)
edge_angle *= 2.0 # Wrap 2 times around the circle
sum_u += math.cos(edge_angle)
sum_v += math.sin(edge_angle)
prev_uv = uv
prev_select = loop[uv_layer].select_edge
# Add 90 degrees to align along V co-ordinate.
# Twice, because we divide by two.
sum_u, sum_v = -sum_u, -sum_v
# Compute angle.
return -math.atan2(sum_v, sum_u) / 2.0
def find_rotation_geometry(bm, uv_layer, faces, method, axis, aspect_y):
sum_u_co = Vector((0.0, 0.0, 0.0))
sum_v_co = Vector((0.0, 0.0, 0.0))
for face in faces:
# Triangulate.
for fan in range(2, len(face.loops)):
delta_uv0 = face.loops[fan - 1][uv_layer].uv - face.loops[0][uv_layer].uv
delta_uv1 = face.loops[fan][uv_layer].uv - face.loops[0][uv_layer].uv
delta_uv0[0] *= aspect_y
delta_uv1[0] *= aspect_y
mat = Matrix((delta_uv0, delta_uv1))
mat.invert_safe()
delta_co0 = face.loops[fan - 1].vert.co - face.loops[0].vert.co
delta_co1 = face.loops[fan].vert.co - face.loops[0].vert.co
w = delta_co0.cross(delta_co1).length
# U direction in geometry co-ordinates.
sum_u_co += (delta_co0 * mat[0][0] + delta_co1 * mat[0][1]) * w
# V direction in geometry co-ordinates.
sum_v_co += (delta_co0 * mat[1][0] + delta_co1 * mat[1][1]) * w
if axis == 'X':
axis_index = 0
elif axis == 'Y':
axis_index = 1
elif axis == 'Z':
axis_index = 2
# Compute angle.
return math.atan2(sum_u_co[axis_index], sum_v_co[axis_index])
def align_uv_rotation_island(bm, uv_layer, faces, method, axis, aspect_y):
angle = 0.0
if method == 'AUTO':
angle = find_rotation_auto(bm, uv_layer, faces, aspect_y)
elif method == 'EDGE':
angle = find_rotation_edge(bm, uv_layer, faces, aspect_y)
elif method == 'GEOMETRY':
angle = find_rotation_geometry(bm, uv_layer, faces, method, axis, aspect_y)
if angle == 0.0:
return False # No change.
# Find bounding box center.
mid_u, mid_v = island_uv_bounds_center(faces, uv_layer)
cos_angle = math.cos(angle)
sin_angle = math.sin(angle)
delta_u = mid_u - cos_angle * mid_u + sin_angle / aspect_y * mid_v
delta_v = mid_v - sin_angle * aspect_y * mid_u - cos_angle * mid_v
# Apply transform.
for face in faces:
for loop in face.loops:
pre_uv = loop[uv_layer].uv
u = cos_angle * pre_uv[0] - sin_angle / aspect_y * pre_uv[1] + delta_u
v = sin_angle * aspect_y * pre_uv[0] + cos_angle * pre_uv[1] + delta_v
loop[uv_layer].uv = u, v
return True
def align_uv_rotation_bmesh(mesh, bm, method, axis, aspect_y):
import bpy_extras.bmesh_utils
uv_layer = bm.loops.layers.uv.active
if not uv_layer:
return False
islands = bpy_extras.bmesh_utils.bmesh_linked_uv_islands(bm, uv_layer)
changed = False
for island in islands:
if is_island_uv_selected(island, uv_layer, method == 'EDGE'):
if align_uv_rotation_island(bm, uv_layer, island, method, axis, aspect_y):
changed = True
return changed
def get_aspect_y(context):
area = context.area
if not area:
return 1.0
space_data = context.area.spaces.active
if not space_data:
return 1.0
if not space_data.image:
return 1.0
image_width = space_data.image.size[0]
image_height = space_data.image.size[1]
if image_height:
return image_width / image_height
return 1.0
def align_uv_rotation(context, method, axis, correct_aspect):
import bmesh
aspect_y = 1.0
if correct_aspect:
aspect_y = get_aspect_y(context)
ob_list = context.objects_in_mode_unique_data
for ob in ob_list:
bm = bmesh.from_edit_mesh(ob.data)
if bm.loops.layers.uv:
if align_uv_rotation_bmesh(ob.data, bm, method, axis, aspect_y):
bmesh.update_edit_mesh(ob.data)
return {'FINISHED'}
class AlignUVRotation(Operator):
"""Align the UV island's rotation"""
bl_idname = "uv.align_rotation"
bl_label = "Align Rotation"
bl_options = {'REGISTER', 'UNDO'}
method: EnumProperty(
name="Method", description="Method to calculate rotation angle",
items=(
('AUTO', "Auto", "Align from all edges"),
('EDGE', "Edge", "Only selected edges"),
('GEOMETRY', "Geometry", "Align to Geometry axis"),
),
)
axis: EnumProperty(
name="Axis", description="Axis to align to",
items=(
('X', "X", "X axis"),
('Y', "Y", "Y axis"),
('Z', "Z", "Z axis"),
),
)
correct_aspect: BoolProperty(
name="Correct Aspect",
description="Take image aspect ratio into account",
default=False,
)
def execute(self, context):
return align_uv_rotation(context, self.method, self.axis, self.correct_aspect)
def draw(self, _context):
layout = self.layout
layout.prop(self, "method")
if self.method == 'GEOMETRY':
layout.prop(self, "axis")
layout.prop(self, "correct_aspect")
@classmethod
def poll(cls, context):
return context.mode == 'EDIT_MESH'
# ------------------------------------------------------------------------------
# Randomize UV Operator
def get_random_transform(transform_params, entropy):
from random import uniform
from random import seed as random_seed
(seed, loc, rot, scale, scale_even) = transform_params
# First, seed the RNG.
random_seed(seed + entropy)
# Next, call uniform a known number of times.
offset_u = uniform(0.0, 1.0)
offset_v = uniform(0.0, 1.0)
angle = uniform(0.0, 1.0)
scale_u = uniform(0.0, 1.0)
scale_v = uniform(0.0, 1.0)
# Apply the transform_params.
if loc:
offset_u *= loc[0]
offset_v *= loc[1]
else:
offset_u = 0.0
offset_v = 0.0
if rot:
angle *= rot
else:
angle = 0.0
if scale:
scale_u = scale_u * (2.0 * scale[0] - 2.0) + 2.0 - scale[0]
scale_v = scale_v * (2.0 * scale[1] - 2.0) + 2.0 - scale[1]
else:
scale_u = 1.0
scale_v = 1.0
if scale_even:
scale_v = scale_u
# Results in homogenous co-ordinates.
return [[scale_u * math.cos(angle), -scale_v * math.sin(angle), offset_u],
[scale_u * math.sin(angle), scale_v * math.cos(angle), offset_v]]
def randomize_uv_transform_island(bm, uv_layer, faces, transform_params):
# Ensure consistent random values for island, regardless of selection etc.
entropy = min(f.index for f in faces)
transform = get_random_transform(transform_params, entropy)
# Find bounding box center.
mid_u, mid_v = island_uv_bounds_center(faces, uv_layer)
del_u = transform[0][2] + mid_u - transform[0][0] * mid_u - transform[0][1] * mid_v
del_v = transform[1][2] + mid_v - transform[1][0] * mid_u - transform[1][1] * mid_v
# Apply transform.
for face in faces:
for loop in face.loops:
pre_uv = loop[uv_layer].uv
u = transform[0][0] * pre_uv[0] + transform[0][1] * pre_uv[1] + del_u
v = transform[1][0] * pre_uv[0] + transform[1][1] * pre_uv[1] + del_v
loop[uv_layer].uv = (u, v)
def randomize_uv_transform_bmesh(mesh, bm, transform_params):
import bpy_extras.bmesh_utils
uv_layer = bm.loops.layers.uv.verify()
islands = bpy_extras.bmesh_utils.bmesh_linked_uv_islands(bm, uv_layer)
for island in islands:
if is_island_uv_selected(island, uv_layer, False):
randomize_uv_transform_island(bm, uv_layer, island, transform_params)
def randomize_uv_transform(context, transform_params):
import bmesh
ob_list = context.objects_in_mode_unique_data
for ob in ob_list:
bm = bmesh.from_edit_mesh(ob.data)
if not bm.loops.layers.uv:
continue
# Only needed to access the minimum face index of each island.
bm.faces.index_update()
randomize_uv_transform_bmesh(ob.data, bm, transform_params)
for ob in ob_list:
bmesh.update_edit_mesh(ob.data)
return {'FINISHED'}
class RandomizeUVTransform(Operator):
"""Randomize the UV island's location, rotation, and scale"""
bl_idname = "uv.randomize_uv_transform"
bl_label = "Randomize"
bl_options = {'REGISTER', 'UNDO'}
random_seed: IntProperty(
name="Random Seed",
description="Seed value for the random generator",
min=0,
max=10000,
default=0,
)
use_loc: BoolProperty(
name="Randomize Location",
description="Randomize the location values",
default=True,
)
loc: FloatVectorProperty(
name="Location",
description=("Maximum distance the objects "
"can spread over each axis"),
min=-100.0,
max=100.0,
size=2,
subtype='TRANSLATION',
default=(0.0, 0.0),
)
use_rot: BoolProperty(
name="Randomize Rotation",
description="Randomize the rotation value",
default=True,
)
rot: FloatProperty(
name="Rotation",
description="Maximum rotation",
min=-2.0 * math.pi,
max=2.0 * math.pi,
subtype='ANGLE',
default=0.0,
)
use_scale: BoolProperty(
name="Randomize Scale",
description="Randomize the scale values",
default=True,
)
scale_even: BoolProperty(
name="Scale Even",
description="Use the same scale value for both axes",
default=False,
)
scale: FloatVectorProperty(
name="Scale",
description="Maximum scale randomization over each axis",
min=-100.0,
max=100.0,
default=(1.0, 1.0),
size=2,
)
@classmethod
def poll(cls, context):
return context.mode == 'EDIT_MESH'
def execute(self, context):
seed = self.random_seed
loc = [0.0, 0.0] if not self.use_loc else self.loc
rot = 0.0 if not self.use_rot else self.rot
scale = None if not self.use_scale else self.scale
scale_even = self.scale_even
transformParams = [seed, loc, rot, scale, scale_even]
return randomize_uv_transform(context, transformParams)
classes = (
AlignUVRotation,
RandomizeUVTransform,
)