Files
test2/intern/cycles/kernel/bvh/volume.h

237 lines
8.0 KiB
C

/* SPDX-FileCopyrightText: 2009-2010 NVIDIA Corporation
* SPDX-FileCopyrightText: 2009-2012 Intel Corporation
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0
*
* Adapted code from NVIDIA Corporation. */
#if BVH_FEATURE(BVH_HAIR)
# define NODE_INTERSECT bvh_node_intersect
#else
# define NODE_INTERSECT bvh_aligned_node_intersect
#endif
/* This is a template BVH traversal function for volumes, where
* various features can be enabled/disabled. This way we can compile optimized
* versions for each case without new features slowing things down.
*
* BVH_MOTION: motion blur rendering
*/
#ifndef __KERNEL_GPU__
ccl_device
#else
ccl_device_inline
#endif
bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals kg,
ccl_private const Ray *ray,
ccl_private Intersection *isect,
const uint visibility)
{
/* todo:
* - test if pushing distance on the stack helps (for non shadow rays)
* - separate version for shadow rays
* - likely and unlikely for if() statements
* - test restrict attribute for pointers
*/
/* traversal stack in CUDA thread-local memory */
int traversal_stack[BVH_STACK_SIZE];
traversal_stack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stack_ptr = 0;
int node_addr = kernel_data.bvh.root;
/* ray parameters in registers */
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
const float tmin = ray->tmin;
int object = OBJECT_NONE;
isect->t = ray->tmax;
isect->u = 0.0f;
isect->v = 0.0f;
isect->prim = PRIM_NONE;
isect->object = OBJECT_NONE;
/* traversal loop */
do {
do {
/* traverse internal nodes */
while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
int node_addr_child1, traverse_mask;
float dist[2];
float4 cnodes = kernel_data_fetch(bvh_nodes, node_addr + 0);
traverse_mask = NODE_INTERSECT(kg,
P,
#if BVH_FEATURE(BVH_HAIR)
dir,
#endif
idir,
tmin,
isect->t,
node_addr,
visibility,
dist);
node_addr = __float_as_int(cnodes.z);
node_addr_child1 = __float_as_int(cnodes.w);
if (traverse_mask == 3) {
/* Both children were intersected, push the farther one. */
bool is_closest_child1 = (dist[1] < dist[0]);
if (is_closest_child1) {
int tmp = node_addr;
node_addr = node_addr_child1;
node_addr_child1 = tmp;
}
++stack_ptr;
kernel_assert(stack_ptr < BVH_STACK_SIZE);
traversal_stack[stack_ptr] = node_addr_child1;
}
else {
/* One child was intersected. */
if (traverse_mask == 2) {
node_addr = node_addr_child1;
}
else if (traverse_mask == 0) {
/* Neither child was intersected. */
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
}
}
}
/* if node is leaf, fetch triangle list */
if (node_addr < 0) {
float4 leaf = kernel_data_fetch(bvh_leaf_nodes, (-node_addr - 1));
int prim_addr = __float_as_int(leaf.x);
if (prim_addr >= 0) {
const int prim_addr2 = __float_as_int(leaf.y);
const uint type = __float_as_int(leaf.w);
/* pop */
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
/* primitive intersection */
switch (type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
/* intersect ray against primitive */
for (; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_data_fetch(prim_type, prim_addr) == type);
/* only primitives from volume object */
const int prim_object = (object == OBJECT_NONE) ?
kernel_data_fetch(prim_object, prim_addr) :
object;
const int prim = kernel_data_fetch(prim_index, prim_addr);
if (intersection_skip_self(ray->self, prim_object, prim)) {
continue;
}
int object_flag = kernel_data_fetch(object_flag, prim_object);
if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
triangle_intersect(
kg, isect, P, dir, tmin, isect->t, visibility, prim_object, prim, prim_addr);
}
break;
}
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
/* intersect ray against primitive */
for (; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_data_fetch(prim_type, prim_addr) == type);
/* only primitives from volume object */
const int prim_object = (object == OBJECT_NONE) ?
kernel_data_fetch(prim_object, prim_addr) :
object;
const int prim = kernel_data_fetch(prim_index, prim_addr);
if (intersection_skip_self(ray->self, prim_object, prim)) {
continue;
}
int object_flag = kernel_data_fetch(object_flag, prim_object);
if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
continue;
}
motion_triangle_intersect(kg,
isect,
P,
dir,
tmin,
isect->t,
ray->time,
visibility,
prim_object,
prim,
prim_addr);
}
break;
}
#endif
default: {
break;
}
}
}
else {
/* instance push */
object = kernel_data_fetch(prim_object, -prim_addr - 1);
int object_flag = kernel_data_fetch(object_flag, object);
if (object_flag & SD_OBJECT_HAS_VOLUME) {
#if BVH_FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir);
#else
bvh_instance_push(kg, object, ray, &P, &dir, &idir);
#endif
++stack_ptr;
kernel_assert(stack_ptr < BVH_STACK_SIZE);
traversal_stack[stack_ptr] = ENTRYPOINT_SENTINEL;
node_addr = kernel_data_fetch(object_node, object);
}
else {
/* pop */
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
}
}
}
} while (node_addr != ENTRYPOINT_SENTINEL);
if (stack_ptr >= 0) {
kernel_assert(object != OBJECT_NONE);
/* instance pop */
bvh_instance_pop(ray, &P, &dir, &idir);
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr];
--stack_ptr;
}
} while (node_addr != ENTRYPOINT_SENTINEL);
return (isect->prim != PRIM_NONE);
}
ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals kg,
ccl_private const Ray *ray,
ccl_private Intersection *isect,
const uint visibility)
{
return BVH_FUNCTION_FULL_NAME(BVH)(kg, ray, isect, visibility);
}
#undef BVH_FUNCTION_NAME
#undef BVH_FUNCTION_FEATURES
#undef NODE_INTERSECT